GS8150V18AGB-250 [GSI]

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM; 1M ×18 , 512K ×36 18MB注册,注册后写入SRAM
GS8150V18AGB-250
型号: GS8150V18AGB-250
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
1M ×18 , 512K ×36 18MB注册,注册后写入SRAM

静态存储器
文件: 总25页 (文件大小:800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Preview  
GS8150V18/36AB-357/333/300/250  
250 MHz–357 MHz  
119-Bump BGA  
Commercial Temp  
Industrial Temp  
1M x 18, 512K x 36  
1.8 V V  
DD  
18Mb Register-Register Late Write SRAM 1.5 V or 1.8 V HSTL I/O  
Features  
Functional Description  
• Register-Register Late Write mode, Pipelined Read mode  
• 1.8 V +150/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
• ZQ controlled programmable output drivers  
• Dual Cycle Deselect  
Because GS8150V18/36A are synchronous devices, address  
data inputs and read/write control inputs are captured on the  
rising edge of the input clock. Write cycles are internally self-  
timed and initiated by the rising edge of the clock input. This  
feature eliminates complex off-chip write pulse generation  
required by asynchronous SRAMs and simplifies input signal  
timing.  
• Fully coherent read and write pipelines  
• Byte write operation (9-bit bytes)  
• Differential HSTL clock inputs, K and K  
• Asynchronous output enable  
• Sleep mode via ZZ  
• IEEE 1149.1 JTAG-compliant Serial Boundary Scan  
• JEDEC-standard 119-bump BGA package  
• Pb-Free 119-bump BGA package available  
GS8150V18/36A support pipelined reads utilizing a rising-  
edge-triggered output register. They also utilize a Dual Cycle  
Deselect (DCD) output deselect protocol.  
GS8150V18/36A are implemented with high performance  
HSTL technology and are packaged in a 119-bump BGA.  
Family Overview  
GS8150V18/36A are 18,874,368-bit (18Mb) high  
Mode Control  
performance SRAMs. This family of wide, very low voltage  
HSTL I/O SRAMs is designed to operate at the speeds needed  
to implement economical high performance cache systems.  
There are two mode control select pins (M1 and M2), which  
allow the user to set the correct read protocol for the design.  
The GS8150V18/36A support single clock Pipeline mode,  
which directly affects the two mode control select pins. In  
order for the part to fuction correctly, and as specified, M1  
must be tied to VSS and M2 must be tied to V or V  
.
DD  
DDQ  
This must be set at power-up and should not be changed during  
operation.  
Sleep Mode  
Low power (Sleep mode) is attained through the assertion (High)  
of the ZZ signal, or by stopping the clock (CK). Memory data is  
retained during Sleep mode.  
Parameter Synopsis  
-357  
-333  
-300  
-250  
Unit  
Pipeline  
Cycle  
tKHQV  
2.8  
1.4  
3.0  
1.5  
3.3  
1.6  
4.0  
2.0  
ns  
ns  
Curr (x18)  
Curr (x36)  
600  
650  
550  
600  
500  
550  
450  
500  
mA  
mA  
Rev: 1.04 4/2005  
1/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
GS8150V36 Pinout—119-Bump BGA—Top View (Package B)  
1
2
3
A
4
NC  
NC  
VDD  
ZQ  
SS  
G
5
A
6
7
VDDQ  
NC  
A
A
VDDQ  
NC  
A
B
C
D
E
F
A
A
A
A
NC  
A
A
A
A
NC  
DQC  
DQC  
VDDQ  
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQD  
NC  
DQC  
DQC  
DQC  
DQC  
DQC  
VDD  
DQD  
DQD  
DQD  
DQD  
DQD  
A
VSS  
VSS  
VSS  
BC  
VSS  
VSS  
VSS  
BB  
DQB  
DQB  
DQB  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQA  
A
DQB  
DQB  
VDDQ  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
DQA  
NC  
NC  
NC  
VDD  
CK  
CK  
SW  
A
G
H
J
VSS  
VREF  
VSS  
BD  
VSS  
VREF  
VSS  
BA  
K
L
VSS  
VSS  
VSS  
M1  
A
VSS  
VSS  
VSS  
M2  
A
M
N
P
R
T
A
VDD  
NC  
NC  
A
NC  
ZZ  
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
U
Rev: 1.04 4/2005  
2/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
GS8150V18 Pinout—119-Bump BGA—Top View (Package B)  
1
2
A
3
A
4
NC  
NC  
VDD  
ZQ  
SS  
G
5
A
6
A
7
VDDQ  
NC  
VDDQ  
NC  
A
B
C
D
E
F
A
A
A
A
NC  
A
A
A
A
NC  
DQB  
NC  
NC  
DQB  
NC  
DQB  
NC  
VDD  
DQB  
NC  
DQB  
NC  
DQB  
A
VSS  
VSS  
VSS  
BB  
VSS  
VSS  
VSS  
NC  
VSS  
VREF  
VSS  
BA  
DQA  
NC  
DQA  
NC  
DQA  
VDD  
NC  
DQA  
NC  
DQA  
NC  
A
NC  
DQA  
VDDQ  
DQA  
NC  
VDDQ  
NC  
NC  
NC  
VDD  
CK  
CK  
SW  
A
G
H
J
DQB  
VDDQ  
NC  
VSS  
VREF  
VSS  
NC  
VSS  
VSS  
VSS  
M1  
A
VDDQ  
DQA  
NC  
K
L
DQB  
VDDQ  
DQB  
NC  
VSS  
VSS  
VSS  
M2  
A
VDDQ  
NC  
M
N
P
R
T
A
DQA  
NC  
NC  
VDD  
NC  
TCK  
NC  
A
A
ZZ  
VDDQ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Rev: 1.04 4/2005  
3/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
GS8150V18/36 BGA Pin Description  
Symbol  
Type  
Description  
A
I
Address Inputs  
DQA  
DQB  
DQC  
DQD  
I/O  
Data Input and Output pins  
BA, BB, BC, BD  
I
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low  
No Connect  
NC  
CK  
CK  
SW  
G
Clock Input Signal; active high  
Clock Input Signal; active low  
Write Enable; active low  
I
I
I
Output Enable; active low  
ZZ  
I
Sleep mode control; active high  
Read Operation Protocol Select—Selects Register-Register read operations; must be tied low in this  
device  
M1  
M2  
I
I
Read Operation Protocol Select—Selects Register-Register read operations; must be tied high in this  
device  
ZQ  
SS  
I
I
FLXDrive-II™ Output Impedance Control  
Synchronous Select Input  
Scan Test Mode Select  
Scan Test Data In  
I
TMS  
TDI  
I
O
I
Scan Test Data Out  
TDO  
TCK  
Scan Test Clock  
V
I
I
I
I
Input Reference Voltage  
Core power supply  
REF  
V
DD  
V
I/O and Core Ground  
Output driver power supply  
SS  
V
DDQ  
Read Operations  
Pipelined Read  
A read cycle begins when the RAM captures logic 0 on SS and logic 1 on SW at the rising edge of K (and the falling edge of K).  
Address inputs captured on that clock edge are propigated into the RAM, which delivers data to the input of the output registers.  
The second rising edge of K fires the output registers and releases read data to the output drivers. If G is held active low, the  
drivers drive the data onto the output pins. Read data is sustained on the output pins as long as G is held low or until the next rising  
edge of K, at which point the outputs may update to new data or deselect, depending on what control command was registered at  
the second rising edge of K.  
Dual Cycle Deselect  
Chip deselect (SS = logic 1) is pipelined to the same degree as read data. Therefore, a deselect command entered on the rising edge  
of K is acted upon in response to the next rising edge of K.  
Rev: 1.04 4/2005  
4/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Write Operations  
Write operations are initiated when the write enable input signal (SW) and chip select (SS) are captured at logic 0 on a rising edge  
of the K clock (and falling edge of the K clock).  
Late Write  
In Late Write mode the RAM requires Data In one rising clock edge later than the edge used to load Address and Control. Late  
Write protocol has been employed on SRAMs designed for RISC processor L2 cache applications and in Flow Through mode NBT  
SRAMs.  
Byte Write Control  
The Byte Write Enable inputs (Bx) determine which bytes will be written. Any combination of Byte Write Enable control pins,  
including all or none, may be activated. A Write Cycle with no Byte Write inputs active is a write abort cycle. Byte write control  
inputs are captured by the same clock edge used to capture SW.  
Example of x36 Byte Write Truth Table  
Function  
SW  
H
L
Ba  
X
Bb  
X
Bc  
X
Bd  
X
Read  
Write Byte A  
L
H
L
H
H
L
H
H
H
L
Write Byte B  
L
H
H
H
L
Write Byte C  
L
H
H
L
Write Byte D  
Write all Bytes  
L
H
L
L
L
Write Abort  
L
H
H
H
H
FLXDrive-II™ HSTL Output Driver Impedance Control  
HSTL I/O SigmaRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to V via an  
SS  
external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the value  
of the desired SRAM driver impedance. The allowable range of RQ to guarantee impedance matching with specified tolerance is  
between 150and 300. Periodic readjustment of the output driver impedance occurs automatically because driver impedance is  
affected by drifts in supply voltage and die temperature. A clock cycle counter periodically triggers an impedance evaluation,  
resets and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the  
optimum level. The output driver is implemented with discrete binary weighted impedance steps. The SRAM requires 32K start-up  
clock cycles, selected or deselected, after VDD reaches its operating range to reach its programmed output driver impedance.  
Rev: 1.04 4/2005  
5/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Register-Register Late Write, Pipelined Read Truth Table  
DQ  
DQ  
CK  
ZZ  
SS  
SW Bx  
G
Current Operation  
(t )  
(t  
)
n
n+1  
Hi-Z  
Hi-Z  
Hi-Z  
X
1
0
0
0
X
1
0
0
X
X
1
1
X
X
X
X
X
X
1
0
Sleep (Power Down) mode  
Hi-Z  
***  
Deselect  
Read  
Hi-Z/  
***  
Q(t )  
Read  
n
D(t )  
0
0
0
0
0
0
0
0
0
0
X
1
X
X
X
Write All Bytes  
Write Bytes with Bx = 0  
Write (Abort)  
***  
***  
***  
n
D(t )  
n
Hi-Z  
Notes:  
1. If one or more Bx = 0, then B = “T” else B = “F”.  
2. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”.  
3. “***” indicates that the DQ input requirement/output state and CQ output state are determined by the previous operation.  
4. DQs are tristated in response to Bank Deselect, Deselect, and Write commands, one full cycle after the command is sampled.  
5. CQs are tristated in response to Bank Deselect commands only, one full cycle after the command is sampled.  
6. Up to three (3) Continue operations may be initiated after a Read or Write operation is initiated to burst transfer up to four (4) distinct pieces  
of data per single external address input. If a fourth (4th) Continue operation is initiated, the internal address wraps back to the initial exter-  
nal (base) address.  
Rev: 1.04 4/2005  
6/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
Voltage on V Pins  
–0.5 to 2.5  
V
V
DD  
DD  
V
Voltage in V  
Pins  
–0.5 to V  
DDQ  
DDQ  
DD  
V
–0.5 to V  
+ 0.5 (2.5 V max.)  
DDQ  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
V
I/O  
V
–0.5 to V + 0.5 (2.5 V max.)  
DDQ  
V
IN  
I
+/–100  
+/–100  
125  
mA dc  
mA dc  
IN  
I
OUT  
o
T
Maximum Junction Temperature  
Storage Temperature  
C
J
T
–55 to 125  
ºC  
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.95  
1.6  
Unit  
Notes  
V
V
V
V
DD  
V
1.5 V I/O Supply Voltage  
1.8 V I/O Supply Voltage  
1.4  
1.5  
DDQ  
V
1.7  
1.8  
1.9  
DDQ  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
25  
70  
85  
°C  
°C  
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
1
A
Note:  
The part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted  
are evaluated for worst case in the temperature range marked on the device.  
Rev: 1.04 4/2005  
7/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
HSTL I/O DC Input Characteristics  
Parameter  
DC Input Logic High  
Symbol  
Min  
Typ  
Max  
Units Notes  
V
(dc)  
V
+ 100  
V
+ 300  
DDQ  
mV  
mV  
IH  
REF  
V (dc)  
V
V
– 100  
+ 300  
DC Input Logic Low  
–300  
100  
IL  
REF  
V
(dc)  
(dc)  
(dc)  
(dc)  
DC Clock Input Differential Voltage  
mV  
V
2
1
DIF  
DDQ  
V
DC Voltage  
V
V
/2 – 0.1  
V
DDQ  
/2 + 0.1  
+ 300  
REF  
REF  
DDQ  
V
V
DDQ  
Clock Input Voltag  
–300  
600  
V
CK  
V
Clock Input Commone Mode Voltage  
750  
900  
V
CM  
Notes:  
1. The peak to peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. SRAM performance is a function of clock input differential voltage (V ).  
DIF  
3. To guarantee AC characteristics, V ,V ,Trise and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
4. For devices supplied with HSTL I/O input buffers.Compatible with both 1.8 V and 1.5 V I/O drivers.  
5. See AC Input Definition drawing below.  
HSTL I/O AC Input Characteristics  
Parameter  
Symbol  
Min  
Max  
Units  
mV  
Notes  
3,4  
V
(ac)  
V
+ 200  
REF  
AC Input Logic High  
IH  
V (ac)  
V
– 200  
REF  
AC Input Logic Low  
800  
mV  
3,4  
IL  
V
(ac)  
(ac)  
AC Clock Input Differential Voltage  
mV  
2,3  
DIF  
V
Peak to Peak AC Voltage  
V
5% V  
(DC)  
REF  
mV  
1
REF  
REF  
Notes:  
1. The peak to peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. SRAM performance is a function of clock input differential voltage (V ). The RAM can be operated with a single ended clocking with  
DIF  
either CK or CK tied to V  
.
REF  
3. To guarantee AC characteristics, V ,V ,Trise and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
4. For devices supplied with HSTL I/O input buffers.Compatible with both 1.8 V and 1.5 V I/O drivers.  
5. See AC Input Definition drawing below.  
Rev: 1.04 4/2005  
8/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
HSTL I/O AC Input Definitions  
V
DDQ  
V
(AC)  
(DC)  
IH  
V
IH  
V
REF  
V
(DC)  
(AC)  
IL  
V
IH  
V
SS  
Differential Voltage and Common Mode Voltage  
Common Mode and Differential Voltage  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VCM  
K
K#  
VCM  
VDIF  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1.2  
-1.4  
-1.6  
-1.8  
Rev: 1.04 4/2005  
9/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Max.  
Unit  
pF  
C
V
= 0 V  
= 0 V  
Input Capacitance  
4
5
5
IN  
IN  
C
V
OUT  
Output Capacitance  
pF  
OUT  
C
V = 0 V  
IN  
Output Capacitance (Clock)  
pF  
IN(CK)  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Conditions  
1.25 V  
Input high level  
Input low level  
0.25 V  
Input rise/fall time (10% to 90%)  
Input reference level  
0.5 ns/0.5 ns  
V
/2  
DDQ  
Clock input reference level  
Output reference level  
Differential cross point  
/2  
V
DDQ  
Clock (V  
Clock (V  
V
)
0.75 V  
0.75 V  
1.5 V  
DIF  
)
CM  
DDQ  
RQ  
250Ω  
Rev: 1.04 4/2005  
10/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
AC Test Load Diagram  
50Ω  
Device Under Test  
V
/2  
50Ω  
50Ω  
DDQ  
V
= 1.5 V  
DDQ  
5pF  
25Ω  
V
/2  
DDQ  
50Ω  
ZQ  
V
/2  
DDQ  
5pF  
RQ = 250Ω  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
I
V
= 0 to V  
–2 uA  
2 uA  
IL  
IN  
DDQ  
ZQ, MCH, MCL, EP2, EP3  
Pin Input Current  
I
V
= 0 to V  
–50 uA  
–2 uA  
50 uA  
2 uA  
INM  
IN  
DDQ  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
OL  
V
OUT  
DDQ  
Operating Currents  
-357  
-333  
-300  
–40°C  
-250  
–40°C  
0°C  
to  
–40°C  
to  
0°C  
to  
–40°C  
to  
0°C  
to  
0°C  
to  
Parameter  
Symbol  
Test Conditions  
to  
to  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
IDD  
IDD  
SS VIL Max.  
tKHKH tKHKH Min.  
All other inputs  
x36  
x18  
650 mA 660 mA 600 mA 610 mA 550 mA 560 mA 500 mA 510 mA  
Operating  
Current  
600 mA 610 mA 550 mA 560 mA 500 mA 510 mA 450 mA 460 mA  
VIL VIN VIH  
Device Deselected  
All inputs  
VSS + 0.10 V  
HSTL  
Deselect  
Current  
IDD3  
150 mA 160 mA 150 mA 160 mA 150 mA 160 mA 150 mA 160 mA  
VIN  
VDD – 0.10 V  
Rev: 1.04 4/2005  
11/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
AC Electrical Characteristics  
-357  
Min  
-333  
Min  
-300  
Min  
-250  
Min  
Parameter  
Symbol  
Unit Notes  
Max  
Max  
Max  
Max  
Clock Cycle Time  
Clock High Time  
tKHKH  
tKHKL  
tKLKH  
tKHQX1  
tKHQV  
tKHQX  
tKHQZ  
tAVKH  
tKHAX  
tEVKH  
tKHEX  
tWVKH  
tKHWX  
tBVKH  
tKHBX  
tDVKH  
tKHDX  
tGLQV  
tGLQX  
tGHQZ  
tZZE  
2.8  
1.1  
1.1  
0.5  
3.0  
1.2  
1.2  
0.5  
3.3  
1.3  
1.3  
0.5  
4.0  
1.5  
1.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
Clock Low Time  
Clock High to Output Low-Z  
Clock High to Output Valid  
Clock High to Output Invalid  
Clock High to Output High-Z  
Address Valid to Clock High  
Clock High to Address Don’t Care  
Enable Valid to Clock High  
Clock High to Enable Don’t Care  
Write Valid to Clock High  
1.4  
1.5  
1.6  
2.0  
1
0.5  
0.5  
0.5  
0.5  
1.4  
1.5  
1.6  
2.0  
0.5  
0.4  
0.5  
0.4  
0.5  
0.4  
0.5  
0.4  
0.5  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
0.5  
0.4  
0.7  
0.4  
0.7  
0.4  
0.7  
0.4  
0.7  
0.4  
0.5  
0.4  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.5  
0.5  
Clock High to Write Don’t Care  
Byte Write Valid to Clock High  
Clock High to Byte Write Don’t Care  
Data In Valid to Clock High  
Clock High to Data In Don’t Care  
Output Enable Low to Output Data Valid  
Output Enable Low to Output Data Low-Z  
Output Enable High to Output Data High-Z  
Sleep Mode Enable Time  
1.4  
1.5  
1.6  
2.0  
0
0
0
0
1.4  
15  
1.5  
15  
1.6  
15  
2.0  
15  
Sleep Mode Recovery Time  
Notes:  
tZZR  
20  
20  
20  
20  
1. Measured at 100 mV from steady state. Not 100% tested.  
2. Guaranteed by design. Not 100% tested.  
Rev: 1.04 4/2005  
12/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
G Controlled Read-Write  
Read A1  
KHKL  
Read A2  
Read A0  
Write A3  
Write A4  
Read A5  
Read A4  
Read A6  
Read A7  
KHKH  
KLKH  
K
tAVKH  
tKHAX  
A1  
A2  
A0  
A3  
A4  
A5  
A4  
A6  
A7  
A
G
tWVKH  
tKHWX  
SW  
tWVKH  
tKHWX  
BWx  
KHQX  
GLQV  
GLQX  
Q1  
DVKH  
KHDX  
KHQV  
GHQZ  
KHQX1  
Q2  
D3  
D4  
Q5  
Q4  
Q6  
DQn  
Note:  
K is not shown; assumes K tied to V  
or out of phase with K  
REF  
SS Controlled Read-Write  
Read A1  
KHKL  
Read A2  
Deselect  
Write A3  
Write A4  
Read A5  
Read A4  
Read A6  
Read A7  
KHKH  
KLKH  
K
A
tAVKH  
tKHAX  
A1  
A2  
A3  
A4  
A5  
A4  
A6  
A7  
tEVKH  
tKHEX  
SS  
tWVKH  
tKHWX  
SW  
BWx  
DQn  
tBVKH  
tKHBX  
KHQZ  
tDVKH  
tKHDX  
KHQX1  
Q1  
KHQV  
Q2  
KHQX  
Q4  
D3  
D4  
Q5  
Note:  
K is not shown; assumes K tied to V  
or out of phase with K  
REF  
Rev: 1.04 4/2005  
13/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
ZZ Timing  
Read A1  
KHKL  
Read A2  
Deselect  
Clock is a Don't care during Sleep ModeRead A1  
Read A2  
Read A3  
KHKH  
KLKH  
K
A
tAVKH  
tKHAX  
A1  
A2  
A1  
A2  
A3  
tEVKH  
tKHEX  
SS  
tWVKH  
tKHWX  
SW  
SWx  
Begin ISB  
ZZR  
ZZ  
ZZE  
Q2  
KHQX  
KHQX1  
Q1  
KHQV  
Q1  
DQn  
Note:  
K is not shown; assumes K tied to V  
or out of phase with K  
REF  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
Rev: 1.04 4/2005  
14/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
JTAG Port Registers  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.04 4/2005  
15/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.04 4/2005  
16/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Tap Controller Instruction Set  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
I/O  
Configuration  
Not Used  
ID Code  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
X
X
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.04 4/2005  
17/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
1
1
Exit2 DR  
Exit2 IR  
0
0
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Rev: 1.04 4/2005  
18/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 1.04 4/2005  
19/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
DQ  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
/2  
V
V
/2  
Input reference level  
DDQ  
DDQ  
* Distributed Test Jig Capacitance  
/2  
Output reference level  
DDQ  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
RFU  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
RFU  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.04 4/2005  
20/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
TDI  
tTH  
tTS  
tTH  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
20  
20  
10  
10  
ns  
ns  
ns  
tTH  
ns  
Rev: 1.04 4/2005  
21/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Package Dimensions—119-Bump FPBGA (Package B, Variation 2)  
TOP VIEW  
BOTTOM VIEW  
A1  
A1  
S
Ø0.10  
C
S
S
S
Ø0.30 C A  
B
Ø0.60~0.90 (119x)  
1
2
3
4
5
6
7
7
6
5
4 3  
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
M
N
P
R
T
U
K
L
M
N
P
R
T
U
B
1.27  
7.62  
14±0.10  
A
0.20(4x)  
SEATING PLANE  
C
Rev: 1.04 4/2005  
22/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Ordering Information  
Speed  
(MHz)  
T
Org  
Part Number  
Type  
I/O  
A
1M x 18  
1M x 18  
GS8150V18AB-357  
GS8150V18AB-333  
GS8150V18AB-300  
GS8150V18AB-250  
GS8150V36AB-357  
GS8150V36AB-333  
GS8150V36AB-300  
GS8150V36AB-250  
GS8150V18AB-357I  
GS8150V18AB-333I  
GS8150V18AB-300I  
GS8150V18AB-250I  
GS8150V36AB-357I  
GS8150V36AB-333I  
GS8150V36AB-300I  
GS8150V36AB-250I  
GS8150V18AGB-357  
GS8150V18AGB-333  
GS8150V18AGB-300  
GS8150V18AGB-250  
GS8150V36AGB-357  
GS8150V36AGB-333  
GS8150V36AGB-300  
GS8150V36AGB-250  
GS8150V18AGB-357I  
GS8150V18AGB-333I  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
357 MHz  
333 MHz  
300 MHz  
250 MHz  
357MHz  
333 MHz  
300 MHz  
250 MHz  
357 MHz  
333 MHz  
300 MHz  
250 MHz  
357 MHz  
333 MHz  
300 MHz  
250 MHz  
357 MHz  
333 MHz  
300 MHz  
250 MHz  
357MHz  
333 MHz  
300 MHz  
250 MHz  
357 MHz  
333 MHz  
C
C
C
C
C
C
C
C
I
1M x 18  
1M x 18  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1M x 18  
1M x 18  
I
1M x 18  
I
1M x 18  
I
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1M x 18  
I
I
I
I
C
C
C
C
C
C
C
C
I
1M x 18  
1M x 18  
1M x 18  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1M x 18  
1M x 18  
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8150V36AB-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.04 4/2005  
23/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
Ordering Information  
Speed  
(MHz)  
T
Org  
Part Number  
Type  
I/O  
A
1M x 18  
1M x 18  
GS8150V18AGB-300I  
GS8150V18AGB-250I  
GS8150V36AGB-357I  
GS8150V36AGB-333I  
GS8150V36AGB-300I  
GS8150V36AGB-250I  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
Pb-Free Register-Register Late Write SRAM  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
HSTL  
300 MHz  
250 MHz  
357 MHz  
333 MHz  
300 MHz  
250 MHz  
I
I
I
I
I
I
512K x 36  
512K x 36  
512K x 36  
512K x 36  
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8150V36AB-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.04 4/2005  
24/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Product Preview  
GS8150V18/36AB-357/333/300/250  
18Mb Sync SRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
8150VxxA_r1  
• Corrected L3 from VSS to NC  
• Updated entire format  
• Placed corrected BGA diagram in document  
8150VxxA_r1;  
8150VxxA_r1_01  
Content/Format  
• Updated format  
• Added variation information to 119 BGA mechanical drawing  
8150VxxA_r1_01;  
8150VxxA_r1_02  
Content/Format  
Content  
• Updated AC Characteristics table  
• Updated /G Controlled Read-Write timing diagram  
8150VxxA_r1_02;  
8150VxxA_r1_03  
• Pb-Free information added  
8150VxxA_r1_03;  
8150VxxA_r1_04  
Content  
Rev: 1.04 4/2005  
25/25  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8150V18AGB-250I

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI

GS8150V18AGB-300

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI

GS8150V18AGB-300I

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI
GSI

GS8150V18AGB-300T

暂无描述
GSI

GS8150V18AGB-333

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI

GS8150V18AGB-333I

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI

GS8150V18AGB-333IT

Late-Write SRAM, 1MX18, 1.5ns, CMOS, PBGA119, ROHS COMPLIANT, FBGA-119
GSI

GS8150V18AGB-333T

Late-Write SRAM, 1MX18, 1.5ns, CMOS, PBGA119, ROHS COMPLIANT, FBGA-119
GSI

GS8150V18AGB-357

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI

GS8150V18AGB-357I

1M x 18, 512K x 36 18Mb Register-Register Late Write SRAM
GSI

GS8150V18AGB-357IT

Late-Write SRAM, 1MX18, 1.4ns, CMOS, PBGA119, ROHS COMPLIANT, FBGA-119
GSI