GS815118T-150IT [GSI]

Standard SRAM, 1MX18, 10ns, CMOS, PQFP100;
GS815118T-150IT
型号: GS815118T-150IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Standard SRAM, 1MX18, 10ns, CMOS, PQFP100

时钟 静态存储器 内存集成电路
文件: 总32页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS815118/36T-225/200/180/166/150/133  
225 MHz133 MHz  
100-Pin TQFP  
Commercial Temp  
Industrial Temp  
1M x 18, 512K x 36  
16Mb Sync Burst SRAMs  
3.3 V V  
DD  
2.5 V or 3.3 V I/O  
Linear Burst Order (LBO) input. The Burst function need not  
be used. New addresses can be loaded on every cycle with no  
degradation of chip performance.  
Features  
• FT pin for user-configurable flow through or pipeline  
operation  
• Single Cycle Deselect (SCD) operation  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• On-chip read parity checking; even or odd selectable  
• 3.3 V +10%/5% core power supply  
Flow Through/Pipeline Reads  
The function of the Data Output register can be controlled by  
the user via the FT mode pin (Pin 14). Holding the FT mode  
pin low places the RAM in Flow Through mode, causing  
output data to bypass the Data Output Register. Holding FT  
high places the RAM in Pipeline mode, activating the rising-  
edge-triggered Data Output Register.  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleaved Burst mode  
• Internal input resistors on mode pins allow floating mode pins  
• Default to Interleaved Pipeline mode  
• Byte Write (BW) and/or Global Write (GW) operation  
• Internal self-timed write cycle  
SCD Pipelined Reads  
The GS815118/36T is a SCD (Single Cycle Deselect)  
pipelined synchronous SRAM. DCD (Dual Cycle Deselect)  
versions are also available. SCD SRAMs pipeline deselect  
commands one stage less than read commands. SCD RAMs  
begin turning off their outputs immediately after the deselect  
command has been captured in the input registers.  
• Automatic power-down for portable applications  
• JEDEC-standard 100-lead TQFP package  
-225 -200 -180 -166 -150 -133 Unit  
Flow  
Through  
tCycle  
tKQ  
4.4 5.0 5.5 6.0 6.6 7.5 ns  
2.5 3.0 3.2 3.5 3.8 4.0 ns  
Byte Write and Global Write  
Byte write operation is performed by using Byte Write enable  
(BW) input combined with one or more individual byte write  
signals (Bx). In addition, Global Write (GW) is available for  
writing all bytes at one time, regardless of the Byte Write  
control inputs.  
2-1-1-1 Curr (x18) 205 185 185 185 185 140 mA  
Curr (x36) 240 210 210 210 210 160 mA  
Pipeline  
3-1-1-1  
tKQ  
tCycle  
7.0 7.5 8.0 8.5 10.0 11.0 ns  
8.5 10.0 10.0 10.0 10.0 15.0 ns  
350 315 290 270 250 230 mA  
410 370 340 315 290 260 mA  
Curr (x18)  
Curr (x36)  
ByteSafe™ Parity Functions  
The GS815118/36 features ByteSafe data security functions.  
See detailed discussion following.  
Functional Description  
Sleep Mode  
Applications  
Low power (Sleep mode) is attained through the assertion  
(High) of the ZZ signal, or by stopping the clock (CK).  
Memory data is retained during Sleep mode.  
The GS815118/36T is a 18,874,368-bit high performance  
synchronous SRAM with a 2-bit burst address counter.  
Although of a type originally developed for Level 2 Cache  
applications supporting high performance CPUs, the device  
now finds application in synchronous SRAM applications,  
ranging from DSP main store to networking chip set support.  
Core and Interface Voltages  
The GS815118/36T operates on a 3.3 V power supply. All  
input are 3.3 V- and 2.5 V-compatible. Separate output power  
(VDDQ) pins are used to decouple output noise from the  
Controls  
internal circuits and are 3.3 V- and 2.5 V-compatible.  
Addresses, data I/Os, chip enable (E1), address burst control  
inputs (ADSP, ADSC, ADV) and write control inputs (Bx,  
BW, GW) are synchronous and are controlled by a positive-  
edge-triggered clock input (CK). Output enable (G) and power  
down control (ZZ) are asynchronous inputs. Burst cycles can  
be initiated with either ADSP or ADSC inputs. In Burst mode,  
subsequent burst addresses are generated internally and are  
controlled by ADV. The burst address counter may be  
configured to count in either linear or interleave order with the  
Rev: 1.01 11/2000  
1/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
ByteSafe is a Trademark of Giga Semiconductor, Inc. (GSI Technology).  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
GS815118 100-Pin TQFP Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A19  
NC  
NC  
VDDQ  
VSS  
NC  
DQA9  
DQA8  
DQA7  
VSS  
VDDQ  
DQA6  
DQA5  
VSS  
QE  
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
VDDQ  
4
VSS  
NC  
NC  
DQB1  
DQB2  
VSS  
VDDQ  
DQB3  
DQB4  
FT  
VDD  
DP  
VSS  
DQB5  
DQB6  
VDDQ  
5
6
7
8
9
1M X 18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Top View  
VDD  
ZZ  
DQA4  
DQA3  
VDDQ  
VSS  
DQA2  
DQA1  
NC  
VSS  
DQB7  
DQB8  
DQB9  
NC  
VSS  
VDDQ  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.01 11/2000  
2/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
GS815136 100-Pin TQFP Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
DQB9  
DQB8  
DQB7  
VDDQ  
VSS  
DQB6  
DQB5  
DQB4  
DQB3  
VSS  
VDDQ  
DQB2  
DQB1  
VSS  
QE  
VDD  
DQC9  
DQC8  
DQC7  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
VDDQ  
4
VSS  
DQC6  
DQC5  
DQC4  
DQC3  
VSS  
VDDQ  
DQC2  
DQC1  
FT  
VDD  
DP  
VSS  
DQD1  
DQD2  
VDDQ  
5
6
7
8
9
512K x 36  
Top View  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
ZZ  
DQA1  
DQA2  
VDDQ  
VSS  
DQA3  
DQA4  
DQA5  
DQA6  
VSS  
VDDQ  
DQA7  
DQA8  
DQA9  
VSS  
DQD3  
DQD4  
DQD5  
DQD6  
VSS  
VDDQ  
DQD7  
DQD8  
DQD9  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.01 11/2000  
3/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
TQFP Pin Description  
Typ  
e
Pin Location  
Symbol  
Description  
37, 36  
A0, A1  
A2A18  
A19  
I
I
I
Address field LSBs and Address Counter preset Inputs  
Address Inputs  
35, 34, 33, 32, 100, 99, 82, 81, 44, 45,  
46, 47, 48, 49, 50, 92, 97  
80  
Address Inputs (x18 versions)  
63, 62, 59, 58, 57, 53, 52  
68, 69, 72, 73, 74, 75, 78, 79  
13, 12, 9, 8, 7, 6, 3, 2  
DQA1DQA8  
DQB1DQB8  
DQC1DQC8  
DQD1DQD8  
I/O  
Data Input and Output pins (x36 Version)  
18, 19, 22, 23, 24, 25, 28, 29  
DQA9, DQB9,  
DQC9, DQD9  
51, 80, 1, 30  
I/O  
I/O  
Data Input and Output pins (x36 Version)  
Data Input and Output pins (x18 Version)  
58, 59, 62, 63, 68, 69, 72, 73, 74  
8, 9, 12, 13, 18, 19, 22, 23, 24  
DQA1DQA9  
DQB1DQB9  
51, 52, 53, 56, 57  
75, 78, 79,  
NC  
No Connect (x18 Version)  
1, 2, 3, 6, 7,  
25, 28, 29, 30  
16  
66  
DP  
QE  
I
O
I
Parity Input; 1 = Even, 0 = Odd  
Parity Error Out; Open Drain Output  
87  
BW  
Byte WriteWrites all enabled bytes; active low  
Byte Write Enable for DQA, DQB Data I/Os; active low  
93, 94  
BA, BB  
I
Byte Write Enable for DQC, DQD Data I/’s; active low  
(x36 Version)  
95, 96  
BC, BD  
I
95, 96  
89  
NC  
No Connect (x18 Version)  
Clock Input Signal; active high  
CK  
I
I
I
I
I
I
88  
GW  
Global Write EnableWrites all bytes; active low  
Chip Enable; active low  
98  
E1  
G
86  
Output Enable; active low  
83  
ADV  
Burst address counter advance enable; active low  
Address Strobe (Processor, Cache Controller); active low  
84, 85  
ADSP, ADSC  
Rev: 1.01 11/2000  
4/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Typ  
e
Pin Location  
Symbol  
Description  
64  
ZZ  
TMS  
TDI  
I
I
Sleep Mode control; active high  
Scan Test Mode Select  
38  
39  
I
Scan Test Data In  
42  
TDO  
TCK  
FT  
O
I
Scan Test Data Out  
43  
Scan Test Clock  
14  
31  
I
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
Core power supply  
LBO  
VDD  
I
15, 41, 65, 91  
I
VSS  
5,10,17, 21, 26, 40, 55, 60, 67, 71, 76, 90  
4, 11, 20, 27, 54, 61, 70, 77  
I
I
I/O and Core Ground  
VDDQ  
Output driver power supply  
Rev: 1.01 11/2000  
5/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
GS815118/36 Block Diagram  
Register  
A0An  
D
Q
A0  
A1  
A0  
A1  
D0  
D1  
Q0  
Q1  
Counter  
Load  
A
LBO  
ADV  
Memory  
Array  
CK  
ADSC  
ADSP  
Q
D
Register  
GW  
BW  
BA  
D
Q
36  
36  
Register  
D
Q
BB  
BC  
BD  
4
4
Register  
D
Q
Register  
D
Q
Register  
36  
D
Q
36  
36  
32  
Register  
E1  
D
Q
4
36  
Parity  
Encode  
Register  
D
Q
4
Parity  
Compare  
FT  
G
36  
1
Power Down  
Control  
DQx0DQx9  
QE  
DP  
ZZ  
Note: Only x36 version shown for simplicity.  
Rev: 1.01 11/2000  
6/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Mode Pin Functions  
Mode Name  
Pin  
Name  
State  
Function  
L
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
Burst Order Control  
Output Register Control  
Power Down Control  
LBO  
H
L
FT  
H or NC  
L or NC  
H
Active  
ZZ  
Standby, IDD = ISB  
L
Check for Odd Parity  
Check for Even Parity  
ByteSafe Data Parity Control  
DP  
H or NC  
Note:  
There areis a pull-up devices on the DP and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected  
and the chip will operate in the default states as specified in the above tables.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Rev: 1.01 11/2000  
7/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Byte Write Truth Table  
Function  
Read  
GW  
H
BW  
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Notes  
1
Read  
H
H
L
H
H
L
H
H
H
L
H
H
H
H
L
1
Write byte a  
Write byte b  
Write byte c  
Write byte d  
Write all bytes  
Write all bytes  
H
L
2, 3  
H
L
H
H
H
L
2, 3  
H
L
H
H
L
2, 3, 4  
2, 3, 4  
2, 3, 4  
H
L
H
L
H
L
L
L
X
X
X
X
X
Note:  
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.  
2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes.  
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.  
4. Bytes C” and “D” are only available on the x36 version.  
Rev: 1.01 11/2000  
8/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Synchronous Truth Table  
Operation  
State  
3
4
Diagram  
Address Used  
E1  
ADSP ADSC  
ADV  
W
DQ  
5
Key  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Read Cycle, Begin Burst  
None  
None  
X
X
H
L
X
L
L
X
L
X
X
X
X
X
X
L
X
X
X
X
F
T
F
F
T
T
F
F
T
T
High-Z  
High-Z  
None  
X
L
L
H
L
High-Z  
External  
External  
External  
Next  
R
X
L
Q
Q
D
Q
Q
D
D
Q
Q
D
D
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
R
L
L
X
H
X
H
X
H
X
H
H
H
H
X
H
X
H
X
H
X
W
L
CR  
CR  
CW  
CW  
H
H
H
H
H
H
H
H
Next  
L
Next  
L
Next  
L
Current  
Current  
Current  
Current  
H
H
H
H
Notes:  
1. X = Don’t Care, H = High, L = Low  
2. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.  
3. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown  
as “Q” in the Truth Table above).  
4. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish  
basic synchronous or synchronous burst operations and may be avoided for simplicity.  
5. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.  
6. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.  
Rev: 1.01 11/2000  
9/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Simplified State Diagram  
X
Deselect  
W
R
W
R
X
R
X
First Write  
First Read  
CW  
CR  
CR  
W
R
R
X
Burst Write  
X
Burst Read  
CR  
CR  
CW  
Notes:  
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.  
2. The upper portion of the diagram assumes active use of only the Enable (E1) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and  
that ADSP is tied high and ADSC is tied low.  
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, and  
assumes ADSP is tied high and ADV is tied low.  
Rev: 1.01 11/2000  
10/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Simplified State Diagram with G  
X
Deselect  
W
R
W
R
X
W
R
X
First Write  
First Read  
CR  
CW  
CW  
CR  
W
R
R
W
X
Burst Write  
X
Burst Read  
CR  
CW  
CW  
CR  
Notes:  
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.  
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing  
through a deselect cycle. Dummy read cycles increment the address counter just like normal read cycles.  
3. Transitions shown in gray tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet  
Data Input Set Up Time.  
Rev: 1.01 11/2000  
11/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
Description  
Value  
Unit  
Voltage on VDD Pins  
–0.5 to 4.6  
–0.5 to VDD  
V
V
V
VDDQ  
VCK  
Voltage in VDDQ Pins  
Voltage on Clock Input Pin  
Voltage on I/O Pins  
–0.5 to 6  
VI/O  
–0.5 to VDDQ +0.5 (£ 4.6 V max.)  
V
V
VIN  
–0.5 to VDD +0.5 (£ 4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
IIN  
+/–20  
+/–20  
mA  
mA  
W
IOUT  
PD  
1.5  
oC  
oC  
TSTG  
–55 to 125  
–55 to 125  
TBIAS  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min.  
3.135  
2.375  
1.7  
Typ.  
3.3  
2.5  
Max.  
3.6  
Unit  
V
Notes  
VDD  
I/O Supply Voltage  
V
1
2
2
3
3
VDD +0.3  
Input High Voltage  
V
VIL  
Input Low Voltage  
–0.3  
0
0.8  
70  
85  
V
TA  
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
°C  
°C  
TA  
–40  
25  
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 2.75 V £ VDDQ £ 2.375 V  
(i.e., 2.5 V I/O) and 3.6 V £ VDDQ £ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case.  
2. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of  
Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
4. Input Under/overshoot voltage must be –2 V > Vi < VDD +2 V with a pulse width not to exceed 20% tKC.  
Rev: 1.01 11/2000  
12/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 2.0 V  
VSS  
50%  
VDD  
50%  
VSS – 2.0 V  
20% tKC  
VIL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)  
Parameter  
Symbol  
Test conditions  
Typ.  
4
Max.  
5
Unit  
CIN  
VIN = 0 V  
Input Capacitance  
pF  
6 (x36)  
12 (x18) 12 (x18)  
7 (x36)  
CI/O  
VOUT = 0 V  
Input/Output Capacitance  
pF  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
RQJA  
Max  
40  
Unit  
°C/W  
°C/W  
°C/W  
Notes  
1,2  
single  
four  
RQJA  
24  
1,2  
RQJC  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.01 11/2000  
13/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for tLZ, tHZ, tOLZ and tOHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225W  
225W  
DQ  
30pF*  
50W  
5pF*  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
–1 uA  
1 uA  
VDD ³ VIN ³ VIH  
0 V £ VIN £ VIH  
–1 uA  
–1 uA  
1 uA  
300 uA  
IINZZ  
IINM  
IOL  
ZZ Input Current  
VDD ³ VIN ³ VIL  
0 V £ VIN £ VIL  
–300 uA  
–1 uA  
1 uA  
1 uA  
Mode Pin Input Current  
Output Leakage Current  
Output Disable,  
VOUT = 0 to VDD  
–1 uA  
1 uA  
VOH  
VOH  
VOL  
IOH = –4 mA, VDDQ = 2.375 V  
IOH = –4 mA, VDDQ = 3.135 V  
IOL = 4 mA  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1.7 V  
2.4 V  
0.4 V  
Rev: 1.01 11/2000  
14/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Rev: 1.01 11/2000  
15/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
AC Electrical Characteristics  
-225  
-200  
-180  
-166  
-150  
-133  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock Cycle Time  
tKC  
tKQ  
4.4  
1.5  
1.5  
8.5  
3.0  
3.0  
1.3  
1.5  
1.5  
0
2.5  
7.0  
2.5  
2.5  
5.0  
3.0  
7.5  
5.5  
3.2  
8.0  
6.0  
3.5  
8.5  
3.5  
3.5  
6.7  
3.8  
10.0  
3.8  
3.8  
7.5  
1.5  
1.5  
15.0  
3.0  
3.0  
1.7  
2
4.0  
ns  
ns  
ns  
ns  
ns  
Pipeline  
tKQX  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
1.5  
1.5  
10.0  
tLZ1  
tKC  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQ  
11.0 ns  
Flow  
Through  
tKQX  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.5  
1.7  
1.5  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tLZ1  
tKH  
tKL  
Clock LOW Time  
tHZ1  
tOE  
Clock to Output in High-Z  
G to Output Valid  
3.0 1.5 3.2  
1.5  
0
3.2  
3.2  
tOLZ1  
G to output in Low-Z  
0
0
0
0
tOHZ1  
tS  
G to output in High-Z  
Setup time  
1.5  
0.5  
5
2.5  
1.5  
0.5  
5
3.0  
1.5  
0.5  
5
3.2  
1.5  
0.5  
5
3.5  
1.5  
0.5  
5
3.8  
1.5  
0.5  
5
4.0  
ns  
ns  
ns  
ns  
Hold time  
tH  
tZZS2  
ZZ setup time  
tZZH2  
tZZR  
ZZ hold time  
ZZ recovery  
1
1
1
1
1
1
ns  
ns  
100  
100  
100  
100  
100  
100  
Notes:  
1. These parameters are sampled and are not 100% tested  
2. ZZ is an asynchronous signal. However, In order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.01 11/2000  
16/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Write Cycle Timing  
Single Write  
tS tH  
Burst Write  
Deselected  
Write  
CK  
ADSP is blocked by E inactive  
tKC  
tKL  
tKH  
ADSP  
tH  
tH  
tS  
ADSC initiated write  
ADSC  
tS  
ADV  
ADV must be inactive for ADSP Write  
tH  
tS  
WR2  
WR3  
WR1  
A0–An  
tS tH  
GW  
BW  
tH  
tS  
tS  
tH  
WR3  
WR1  
WR2  
BA–BD  
E1  
tS  
tH  
E1 masks ADSP  
E1 only sampled with ADSP or ADSC  
G
tS  
tH  
Write specified byte for 2A and all bytes for 2B, 2C& 2D  
Hi-Z  
D1A  
D2C  
D2D  
D3A  
DQA–DQD  
D2A  
D2B  
Rev: 1.01 11/2000  
17/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Flow Through Read Cycle Timing  
Single Read  
Burst Read  
tKL  
CK  
tS  
tKH  
tS  
tH  
ADSP is blocked by E inactive  
tKC  
ADSP  
ADSC  
ADV  
tH  
ADSC initiated read  
tH  
tS  
Suspend Burst  
Suspend Burst  
tS  
tH  
RD1  
RD2  
RD3  
A0–An  
GW  
tS  
tS  
tH  
tH  
BW  
BA–BD  
tH  
tS  
E1 masks ADSP  
E1  
G
tOHZ  
tOE  
tKQX  
tKQX  
tHZ  
tOLZ  
Hi-Z  
Q2B  
Q2c  
Q3A  
Q1A  
Q2A  
Q2D  
DQA–DQD  
tLZ  
tKQ  
Rev: 1.01 11/2000  
18/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Flow Through Read-Write Cycle Timing  
Single Write  
Burst Read  
Single Read  
CK  
tS tH  
tKC  
ADSP is blocked by E inactive  
ADSC initiated read  
tKH tKL  
ADSP  
ADSC  
tS tH  
tS tH  
ADV  
tS  
tH  
RD2  
RD1  
WR1  
A0–An  
tS tH  
GW  
tH  
tS  
BW  
tS  
tH  
BA–BD  
WR1  
tS  
tH  
E1 masks ADSP  
E1  
tOHZ  
tOE  
G
tS  
tH  
tKQ  
Hi-Z  
DQA–DQD  
Q1A  
D1A  
Q2A  
Q2A  
Q2B  
Q2c  
Q2D  
Burst wrap around to it’s initial state  
Rev: 1.01 11/2000  
19/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Pipelined SCD Read Cycle Timing  
Single Read  
Burst Read  
tKC  
CK  
tKL  
tKH  
tH  
tH  
tS  
ADSP is blocked by E inactive  
ADSP  
ADSC  
tS  
ADSC initiated read  
tS tH  
Suspend Burst  
ADV  
tH  
tS  
RD2  
RD3  
RD1  
A0–An  
tS  
tS  
tH  
tH  
GW  
BW  
BWA–BWD  
tH  
tS  
E1 masks ADSP  
E1  
tOE  
G
tOHZ  
tKQX  
Q3A  
tKQX  
Q2A  
tOLZ  
tLZ  
Hi-Z  
DQA–DQD  
Q1A  
Q2B  
Q2D  
Q2c  
tHZ  
tKQ  
Rev: 1.01 11/2000  
20/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Pipelined SCD Read-Write Cycle Timing  
Single Write  
Single Read  
Burst Read  
tKL  
CK  
tH  
tS  
tKH  
tKC  
ADSP is blocked by E inactive  
ADSC initiated read  
ADSP  
ADSC  
tS tH  
tS tH  
ADV  
tS  
tH  
RD2  
WR1  
A0–An  
RD1  
tS  
tH  
GW  
BW  
tS  
tH  
tH  
tS  
WR1  
BWA–BWD  
E1  
tS  
tH  
E1 masks ADSP  
tOE  
tOHZ  
G
tS  
tH  
tKQ  
Hi-Z  
Q1A  
D1A  
Q2A  
Q2B  
Q2c  
DQA–DQD  
Q2D  
Rev: 1.01 11/2000  
21/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Sleep Mode Timing Diagram  
CK  
tH  
tS  
tKC  
tKL  
tKH  
ADSP  
ADSC  
ZZ  
tZZH  
tZZS  
tZZR  
Snooze  
Application Tips  
Single and Dual Cycle Deselect  
SCD devices force the use of “dummy read cycles” (read cycles that are launched normally but that are ended with the output  
drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance but their use usually assures there  
will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on  
dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address  
boundary crossings) but greater care must be exercised to avoid excessive bus contention.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface  
standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Unlike  
JTAG implementations that have been common among SRAM vendors for the last several years, this implementation does offer a  
form of EXTEST, known as Clock Assisted EXTEST, reducing or eliminating the “hand coding” that has been required to  
overcome the test program compiler errors caused by previous non-compliant implementations. The JTAG Port interfaces with  
conventional 2.5 V CMOS logic level signaling.  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.  
Rev: 1.01 11/2000  
22/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.01 11/2000  
23/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2
1
0
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
1
1
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
10 9 8 7 6 5 4 3 2 1  
0
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
1
1
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. Although the TAP controller in this device follows the 1149.1 conventions, it is not 1194.1  
compliant because some of the mandatory instructions are uniquely implemented. The TAP on this device may be used to monitor  
all input and I/O pads, but cannot be used to load address, data or control signals into the RAM or to preload the I/O buffers.This  
device will not perform INTEST or the preload portion of the SAMPLE / PRELOAD command.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
Rev: 1.01 11/2000  
24/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm  
the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data cap-  
ture set-up plus hold time (tTS plus tTH ). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O  
ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the  
TDI and TDO pins. Because the PRELOAD portion of the command is not implemented in this device, moving the controller to the Update-  
DR state with the SAMPLE / PRELOAD instruction loaded in the Instruction Register has the same effect as the Pause-DR command. This  
Rev: 1.01 11/2000  
25/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
functionality is not Standard 1149.1 compliant.  
EXTEST (EXTEST-A)  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in  
the device, is loaded with all logic 0s. The EXTEST implementation in this device does not, without further user intervention, actually move  
the contents of the scan chain onto the RAM’s output pins. Therefore, this device is not strictly 1149.1-compliant. Nevertheless, this RAM’s  
TAP does respond to an all 0s instruction, EXTEST (000), by overriding the RAM’s control inputs and activating the Data I/O output drivers.  
The RAM’s main clock (CK) may then be used to transfer Boundary Scan Register contents associated with each I/O from the scan register  
to the RAM’s output drivers and onto the I/O pins. A single CK transition is sufficient to transfer the data, but more transitions will do no  
harm.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Bound-  
ary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST-A  
IDCODE  
Code  
000  
Description  
Notes  
Places the Boundary Scan Register between TDI and TDO.  
This RAM implements an Clock Assisted EXTEST function. *Not 1149.1  
Compliant *  
1
1, 2  
1
001  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
010  
TDO.  
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
011  
100  
1
1
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
This RAM does not implement 1149.1 PRELOAD function. *Not 1149.1  
Compliant *  
SAMPLE/  
PRELOAD  
GSI  
RFU  
101  
110  
111  
GSI private instruction.  
1
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.01 11/2000  
26/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
VIHT  
Min.  
Max.  
Unit Notes  
0.7 * VDD  
VDD +0.3  
Test Port Input High Voltage  
V
V
1, 2  
1, 2  
3
VILT  
0.3 * VDD  
Test Port Input Low Voltage  
0.3  
300  
1  
IINTH  
IINTL  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
1
1
uA  
uA  
uA  
V
4
IOLT  
1  
1
5
VOHT  
VOLT  
1.7  
0.4  
6, 7  
6, 8  
V
Note:  
1. This device features input buffers compatible with 2.5 V I/O drivers.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDD +2 V with a pulse width not to exceed 20% tTKC.  
3. VDD ³ VIN ³ VIL  
4. 0 V £ VIN £ VIL  
5. Output Disable, VOUT = 0 to VDD  
6. The TDO output driver is served by the VDD supply.  
7. IOH = 4 mA  
8. IOL = + 4 mA  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
2.3 V  
JTAG Port AC Test Load  
DQ  
Input low level  
0.2 V  
30pF*  
Input slew rate  
1 V/ns  
50W  
Input reference level  
Output reference level  
1.25 V  
VT = 1.25 V  
1.25 V  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
Rev: 1.01 11/2000  
27/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
JTAG Port Timing Diagram  
tTKL  
tTKH  
tTKC  
TCK  
tTS tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol Min Max Unit  
TCK Cycle Time  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
20  
10  
10  
5
10  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
tTH  
5
Rev: 1.01 11/2000  
28/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
GS816118/36T TQFP Boundary Scan Register  
Order  
1
x36  
PH = 0  
x18  
Pin  
n/a  
n/a  
44  
45  
46  
47  
48  
49  
50  
Order  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
x36  
ADSC  
x18  
Pin  
85  
86  
87  
88  
89  
n/a  
n/a  
92  
93  
94  
Order  
66  
x36  
x18  
Pin  
DQD5  
DQD6  
DQD7  
DQD8  
DQB9  
24  
2
PH = 0  
A10  
G
BW  
67  
NC = 1 25  
NC = 1 28  
NC = 1 29  
3
68  
4
A11  
GW  
CK  
69  
5
A12  
70  
x36 = DQD9 NC = 1 30  
6
A13  
PH = 0  
PH = 0  
A17  
71  
LBO  
A5  
31  
32  
33  
34  
35  
36  
37  
7
A14  
72  
8
A15  
73  
A4  
9
A16  
BA  
74  
A3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
30  
31  
32  
33  
x36 = DQA9 NC = 1 51  
BB  
75  
A2  
DQA8  
DQA7  
DQA6  
DQA5  
DQA4  
DQA3  
DQA2  
DQA1  
NC = 1 52  
NC = 1 53  
NC = 1 56  
NC = 1 57  
BC  
NC = 1 95  
76  
A1  
BD  
NC = 1 96  
77  
A0  
A18  
E1  
A7  
A6  
97  
98  
78  
PH = 0  
n/a  
BPR 1999.05.14  
DQA1  
DQA2  
DQA3  
DQA4  
58  
59  
62  
63  
64  
66  
68  
69  
72  
73  
74  
99  
100  
x36 = DQC9 NC = 1  
1
2
DQC8  
DQC7  
DQC6  
DQC5  
DQC4  
DQC3  
DQC2  
DQC1  
NC = 1  
NC = 1  
NC = 1  
NC = 1  
DQB1  
ZZ  
3
QE  
6
DQB1  
DQB2  
DQB3  
DQB4  
DQB5  
DQB6  
DQB7  
DQB8  
DQA5  
DQA6  
DQA7  
DQA8  
DQA9  
7
8
DQB2  
9
DQB3  
12  
13  
14  
16  
n/a  
18  
19  
22  
23  
DQB4  
NC = 1 75  
FT  
NC = 1 78  
DP  
NC = 1 79  
PH = 1  
A9  
A8  
81  
82  
83  
84  
DQD1  
DQB5  
DQB6  
DQB7  
DQB8  
DQD2  
DQD3  
DQD4  
ADV  
ADSP  
Note:  
1. The Boundary Scan Register contains a number of registers that are not connected to any pin. They default to the value shown at reset.  
2. Registers are listed in exit order (i.e. Location 1 is the first out of the TDO pin.  
3. NC = No Connect, NA = Not Active, PH = Place Holder (No associated pin)  
Rev: 1.01 11/2000  
29/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
TQFP Package Drawing  
q
L
c
L1  
Symbol  
Description  
Standoff  
Min. Nom. Max  
A1  
A2  
b
0.05  
1.35  
0.20  
0.09  
0.10  
1.40  
0.30  
0.15  
1.45  
0.40  
0.20  
22.1  
20.1  
16.1  
14.1  
Body Thickness  
Lead Width  
c
Lead Thickness  
D
Terminal Dimension 21.9  
Package Body 19.9  
Terminal Dimension 15.9  
22.0  
20.0  
16.0  
14.0  
0.65  
0.60  
1.00  
e
D1  
E
b
E1  
e
Package Body  
Lead Pitch  
13.9  
L
Foot Length  
Lead Length  
Coplanarity  
Lead Angle  
0.45  
0.75  
L1  
Y
A1  
A2  
E1  
E
0.10  
q
0°  
7°  
Notes:  
1. All dimensions are in millimeters (mm).  
2. Package width and length do not include mold protrusion.  
Rev: 1.01 11/2000  
30/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
Ordering Information for GSI Synchronous Burst RAMs  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
1M x 18  
1M x 18  
GS815118 T-225  
GS815118 T-200  
GS815118 T-180  
GS815118 T-166  
GS815118 T-150  
GS815118 T-133  
GS815136T-225  
GS815136T-200  
GS815136T-180  
GS815136T-166  
GS815136T-150  
GS815136T-133  
GS815118 T-225I  
GS815118 T-200I  
GS815118 T-180I  
GS815118 T-166I  
GS815118 T-150I  
GS815118 T-133I  
GS815136T-225I  
GS815136T-200I  
GS815136T-180I  
GS815136T-166I  
GS815136T-150I  
GS815136T-133I  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
ByteSafe Pipeline/Flow Through  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
225/7  
200/7.5  
180/8  
C
C
C
C
C
C
C
C
C
C
C
C
I
1M x 18  
1M x 18  
166/8.5  
150/10  
133/11  
225/7  
1M x 18  
1M x 18  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1M x 18  
200/7.5  
180/8  
166/8.5  
150/10  
133/11  
225/7  
Not Available  
Not Available  
1M x 18  
200/7.5  
180/8  
I
1M x 18  
I
1M x 18  
166/8.5  
150/10  
133/11  
225/7  
I
1M x 18  
I
1M x 18  
I
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
Notes:  
I
Not Available  
Not Available  
200/7.5  
180/8  
I
I
166/8.5  
150/10  
133/11  
I
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS815118T-150IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.01 11/2000  
31/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS815118/36T-225/200/180/166/150/133  
16M Sync SRAM Data Sheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
815118_r1  
• Update Features list on page 1  
815118_r1; 815118_r1_01  
Content  
• Completely change table on page 1  
• Update Mode Pin Functions table on page 7  
Rev: 1.01 11/2000  
32/32  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS815118T-150T

Standard SRAM, 1MX18, 10ns, CMOS, PQFP100
GSI

GS815118T-166

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100
GSI

GS815118T-166IT

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100
GSI

GS815118T-166T

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100, TQFP-100
GSI

GS815118T-180IT

Standard SRAM, 1MX18, 8ns, CMOS, PQFP100
GSI

GS815118T-200T

Standard SRAM, 1MX18, 7.5ns, CMOS, PQFP100
GSI

GS815136T-133IT

Standard SRAM, 512KX36, 11ns, CMOS, PQFP100
GSI

GS815136T-150I

Standard SRAM, 512KX36, 10ns, CMOS, PQFP100
GSI

GS815136T-150IT

Standard SRAM, 512KX36, 10ns, CMOS, PQFP100
GSI

GS815136T-150T

Standard SRAM, 512KX36, 10ns, CMOS, PQFP100
GSI

GS815136T-166T

Standard SRAM, 512KX32, 8.5ns, CMOS, PQFP100, TQFP-100
GSI

GS815136T-180I

Standard SRAM, 512KX36, 8ns, CMOS, PQFP100
GSI