GS8170DW72AC-250IT [GSI]

暂无描述;
GS8170DW72AC-250IT
型号: GS8170DW72AC-250IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

暂无描述

文件: 总32页 (文件大小:1007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS8170DW36/72AC-350/333/300/250  
250 MHz–350 MHz  
209-Bump BGA  
Commercial Temp  
Industrial Temp  
18Mb Σ1x1Dp CMOS I/O  
Double Late Write SigmaRAM™  
1.8 V V  
DD  
1.8 V I/O  
Features  
• Double Late Write mode, Pipelined Read mode  
• JEDEC-standard SigmaRAMpinout and package  
• 1.8 V +150/–100 mV core power supply  
• 1.8 V CMOS Interface  
• ZQ controlled user-selectable output drive strength  
• Dual Cycle Deselect  
• Burst Read and Write option  
• Fully coherent read and write pipelines  
• Echo Clock outputs track data output drivers  
• Byte write operation (9-bit bytes)  
• 2 user-programmable chip enable inputs  
• IEEE 1149.1 JTAG-compliant Serial Boundary Scan  
• 209-bump, 14 mm x 22 mm, 1 mm bump pitch BGA package  
• Pin-compatible with future 36Mb, 72Mb, and 144Mb  
devices  
• Pb-Free 209-bump BGA package available  
Bottom View  
SigmaRAM Family Overview  
209-Bump, 14 mm x 22 mm BGA  
1 mm Bump Pitch, 11 x 19 Bump Array  
GS8170DW36/72A SigmaRAMs are built in compliance with  
the SigmaRAM pinout standard for synchronous SRAMs.  
They are 18,874,368-bit (18Mb) SRAMs. This family of wide,  
very low voltage CMOS I/O SRAMs is designed to operate at  
the speeds needed to implement economical high performance  
networking systems.  
Functional Description  
Because SigmaRAMs are synchronous devices, address data  
inputs and read/write control inputs are captured on the rising  
edge of the input clock. Write cycles are internally self-timed  
and initiated by the rising edge of the clock input. This feature  
eliminates complex off-chip write pulse generation required by  
asynchronous SRAMs and simplifies input signal timing.  
ΣRAMs support pipelined reads utilizing a rising-edge-  
triggered output register. They also utilize a Dual Cycle  
Deselect (DCD) output deselect protocol.  
ΣRAMs are offered in a number of configurations including  
Late Write, Double Late Write, and Double Data Rate (DDR).  
The logical differences between the protocols employed by  
these RAMs mainly involve various approaches to write  
cueing and data transfer rates. The ΣRAMfamily standard  
allows a user to implement the interface protocol best suited to  
the task at hand.  
ΣRAMs are implemented with high performance CMOS  
technology and are packaged in a 209-bump BGA.  
Parameter Synopsis  
Key Fast Bin Specs  
Cycle Time  
Symbol  
tKHKH  
tKHQV  
- 350  
2.86 ns  
1.7 ns  
Access Time  
Rev: 1.04 4/2005  
1/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
SigmaRAM Pinouts  
256K x 72 Common I/O—Top View (Package C)  
1
2
3
4
5
A
6
ADV  
W
7
A
8
9
A
10  
11  
A
B
C
DQg  
DQg  
DQg  
DQg  
DQg  
DQg  
A
E2  
Bg  
Bd  
E3  
Bb  
Be  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
Bc  
Bh  
NC  
A
Bf  
Ba  
NC  
E1  
NC  
(144M)  
D
E
F
DQg  
DQg  
DQc  
DQc  
DQc  
DQc  
CQ2  
DQh  
DQh  
DQh  
DQh  
DQd  
DQd  
DQd  
DQg  
DQc  
DQc  
DQc  
DQc  
DQc  
CQ2  
DQh  
DQh  
DQh  
DQh  
DQh  
DQd  
DQd  
V
NC  
NC  
MCL  
NC  
NC  
V
DQb  
DQf  
DQf  
DQf  
DQf  
DQf  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQa  
DQe  
DQe  
DQb  
DQb  
DQf  
DQf  
DQf  
DQf  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQe  
DQe  
DQe  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
V
V
V
ZQ  
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
G
H
J
V
V
EP2  
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
V
V
V
EP3  
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
V
MCH  
MCL  
MCH  
MCL  
MCH  
MCL  
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
K
L
CK  
NC  
V
V
NC  
NC  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DD  
DD  
DDQ  
M
N
P
R
T
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
V
NC  
A
NC  
MCL  
A
NC  
NC  
A
V
SS  
SS  
U
NC  
NC  
NC  
NC  
(72M)  
(36M)  
V
DQd  
DQd  
DQd  
DQd  
A
A
A
A
A1  
A0  
A
A
A
A
DQe  
DQe  
DQe  
DQe  
W
• 2002.06  
TMS  
TDI  
TDO  
TCK  
2
11 x 19 Bump BGA—14 x 22 mm Body—1 mm Bump Pitch  
Note:  
Users of CMOS I/O SigmaRAMs may wish to connect “NC, V ” and the “NC, CK” pins to V  
(i.e., V  
/2) to  
DDQ  
REF  
REF  
allow alternate use of future HSTL I/O SigmaRAMs.  
Rev: 1.04 4/2005  
2/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
512K x 36 Common I/O—Top View (Package C)  
1
2
3
4
5
A
A
6
ADV  
W
7
A
8
9
10  
11  
A
B
C
NC  
NC  
NC  
NC  
NC  
NC  
A
E2  
NC  
Bd  
E3  
Bb  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
Bc  
NC  
A
NC  
Ba  
NC  
E1  
NC  
(144M)  
D
E
F
NC  
NC  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
CQ2  
NC  
V
NC  
NC  
MCL  
NC  
NC  
V
DQb  
NC  
DQb  
DQb  
NC  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
DQc  
DQc  
DQc  
DQc  
CQ2  
NC  
V
V
V
ZQ  
V
V
V
NC  
SS  
SS  
SS  
SS  
SS  
SS  
G
H
J
V
V
EP2  
V
V
NC  
NC  
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
V
V
V
EP3  
V
V
V
NC  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
MCH  
MCL  
MCH  
MCL  
MCH  
MCL  
V
V
NC  
NC  
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
K
L
CK  
NC  
V
V
NC  
NC  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQa  
NC  
CQ1  
DQa  
DQa  
DQa  
DQa  
NC  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DD  
DD  
DDQ  
M
N
P
R
T
NC  
NC  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
NC  
NC  
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
NC  
NC  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
DQd  
DQd  
V
NC  
A
NC  
MCL  
A
NC  
NC  
A
V
NC  
SS  
SS  
U
NC  
NC  
NC  
NC  
NC  
NC  
(72M)  
(36M)  
V
DQd  
DQd  
DQd  
DQd  
A
A
A
A
A1  
A0  
A
A
A
A
NC  
NC  
NC  
NC  
W
TMS  
TDI  
TDO  
TCK  
2
• 2002.06  
11 x 19 Bump BGA—14 x 22 mm Body—1 mm Bump Pitch  
Note:  
Users of CMOS I/O SigmaRAMs may wish to connect “NC, V ” and the “NC, CK” pins to V  
(i.e., V  
/2) to  
DDQ  
REF  
REF  
allow alternate use of future HSTL I/O SigmaRAMs.  
Rev: 1.04 4/2005  
3/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Pin Description Table  
Symbol  
A
Description  
Address  
Type  
Input  
Comments  
Active High  
ADV  
Advance  
Input  
Bx  
Byte Write Enable  
Write Enable  
Chip Enable  
Chip Enable  
Chip Enable Program Pin  
Clock  
Input  
Active Low  
W
Input  
Active Low  
E1  
Input  
Active Low  
E2 & E3  
EP2 & EP3  
CK  
Input  
Programmable Active High or Low  
To be tied directly to V , V  
or V  
SS  
Mode Input  
Input  
DD DDQ  
Active High  
CQ, CQ  
DQ  
Echo Clock  
Output  
Input/Output  
Three State - Deselect via E2 or E3 False  
Data I/O  
Three State  
Active High  
MCH  
MCL  
Must Connect High  
Must Connect Low  
Input  
Input  
To be tied directly to V or V  
DD  
DDQ  
Active Low  
To be tied directly to V  
SS  
Low = Low Impedance [High Drive]  
High = High Impedance [Low Drive]  
ZQ  
Output Impedance Control  
Mode Input  
To be tied directly to V  
or V  
DDQ  
SS  
TCK  
TDI  
Test Clock  
Test Data In  
Input  
Input  
Output  
Input  
Active High  
TDO  
TMS  
NC  
Test Data Out  
Test Mode Select  
No Connect  
Not connected to die or any other pin  
V
Core Power Supply  
Input  
1.8 V Nominal  
1.8 V Nominal  
DD  
V
Output Driver Power Supply  
Ground  
Input  
Input  
DDQ  
V
SS  
Operation Control  
All address, data and control inputs (with the exception of EP2, EP3, ZQ, and the mode pins, L6, M6, and J6) are synchronized to  
rising clock edges. Data in is captured on both rising and falling edges of CK. Read and write operations must be initiated with the  
Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of  
the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable inputs will deactivate the device. It should be noted  
that ONLY deactivation of the RAM via E2 and/or E3 deactivates the Echo Clocks, CQ1–CQ2.  
Rev: 1.04 4/2005  
4/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Read Operations  
Pipelined Read  
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: All three chip enables (E1, E2,  
and E3) are active, the write enable input signal (W) is deasserted high, and ADV is asserted low. The address presented to the  
address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines  
that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge  
of clock the read data is allowed to propagate through the output register and onto the output pins.  
Single Data Rate Pipelined Read  
Read  
Deselect  
Read  
Read  
Read  
CK  
Address  
ADV  
/E1  
A
XX  
C
D
E
F
/W  
DQ  
QA  
QC  
QD  
CQ  
Key  
Hi-Z  
Access  
Write Operations  
Write operation occurs when the following conditions are satisfied at the rising edge of clock: All three chip enables (E1, E2, and  
E3) are active, the write enable input signal (W) is asserted low, and ADV is asserted low.  
Rev: 1.04 4/2005  
5/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Double Late Write  
Double Late Write means that Data In is required on the third rising edge of clock. Double Late Write is used to implement  
Pipeline mode NBT SRAMs.  
SigmaRAM Double Late Write with Pipelined Read  
Read  
Write  
Read  
Write  
Read  
CK  
Address  
ADV  
/E1  
A
B
C
D
E
F
/W  
DQ  
QA  
DB  
QC  
DD  
CQ  
Key  
Hi-Z  
Access  
Byte Write Control  
The Byte Write Enable inputs (Bx) determine which bytes will be written. Any combination of Byte Write Enable control pins,  
including all or none, may be activated. A Write Cycle with no Byte Write inputs active is a write abort cycle.  
Example of x36 Byte Write Truth Table  
Function  
Read  
W
H
L
Ba  
X
Bb  
X
Bc  
X
Bd  
X
Write Byte A  
Write Byte B  
Write Byte C  
Write Byte D  
Write all Bytes  
Write Abort  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Rev: 1.04 4/2005  
6/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Two Byte Write Control Example with Double Late Write SigmaRAM  
Write  
Write  
Write  
Non-Write  
Write  
CK  
Address  
ADV  
/E1  
A
B
C
D
E
F
ADV  
/BA  
/BB  
DA  
DA  
DB  
DE  
DQA0-DQA8  
DC  
DQB0-DQB8  
CQ  
Special Functions  
Burst Cycles  
Although SRAMs can sustain 100% bus bandwidth by eliminating the bus turnaround cycle in Double Late Write mode, burst read  
or burst write cycles may also be performed. SRAMs provide an on-chip burst address generator that can be utilized, if desired, to  
simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the  
internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in  
a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.  
Rev: 1.04 4/2005  
7/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
SigmaRAM Pipelined Burst Reads with Counter Wrap-around  
Read  
Continue  
Continue  
Continue  
Continue  
CK  
External  
Address  
A2  
A2  
XX  
A3  
XX  
A0  
XX  
A1  
XX  
A2  
Internal  
Address  
Counter Wraps  
ADV  
/E1  
/W  
DQ  
CQ  
QA2  
QA3  
QA0  
QA1  
Rev: 1.04 4/2005  
8/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
SigmaRAM Double Late Write SRAM Burst Writes with Counter Wrap-around  
Write  
Continue  
Continue  
Continue  
Continue  
CK  
Address  
A2  
A2  
XX  
A3  
XX  
A0  
XX  
A1  
XX  
A2  
XX  
Internal  
Address  
ADV  
/E1  
Counter Wraps  
/W  
DQ  
CQ  
D2  
D3  
D0  
D1  
D2  
Burst Order  
The burst address counter wraps around to its initial state after four internal addresses (the loaded address and three more) have  
been accessed. SigmaRAMs always count in linear burst order.  
Linear Burst Order  
A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Note:  
The burst counter wraps to initial state on the 5th rising edge of clock.  
Echo Clock  
SRAMs feature Echo Clocks, CQ1, CQ2, CQ1, and CQ2 that track the performance of the output drivers. The Echo Clocks are  
delayed copies of the main RAM clock, CK. Echo Clocks are designed to track changes in output driver delays due to variance in  
die temperature and supply voltage. The Echo Clocks are designed to fire with the rest of the data output drivers. SigmaRAMs  
provide both in-phase, or true, Echo Clock outputs (CQ1 and CQ2) and inverted Echo Clock outputs (CQ1 and CQ2).  
It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of  
Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via E1 does not deactivate the  
Echo Clocks.  
Rev: 1.04 4/2005  
9/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Programmable Enables  
ΣRAMs feature two user-programmable chip enable inputs, E2 and E3. The sense of the inputs, whether they function as active  
low or active high inputs, is determined by the state of the programming inputs, EP2 and EP3. For example, if EP2 is held at V  
,
DD  
E2 functions as an active high enable. If EP2 is held to V , E2 functions as an active low chip enable input.  
SS  
Programmability of E2 and E3 allows four banks of depth expansion to be accomplished with no additional logic. By programming  
the enable inputs of four SRAMs in binary sequence (00, 01, 10, 11) and driving the enable inputs with two address inputs, four  
SRAMs can be made to look like one larger RAM to the system.  
Example Four Bank Depth Expansion Schematic—Σ1x1Dp  
A –A  
0
n
E1  
CK  
W
DQ –DQ  
0
n
Bank 0  
Bank 3  
Bank 1  
Bank 2  
A
A –A  
A –A  
A –A  
A –A  
0
n – 2  
n – 1  
0
n – 2  
n – 1  
0
n – 2  
n – 1  
0
n – 2  
A
A
A
A
A
A
A
n – 1  
E3  
E2  
E1  
CK  
E3  
E2  
E1  
CK  
E3  
E3  
A
A
A
A
n
n
n
n
E2  
E2  
E1  
E1  
CK  
CK  
EP3  
EP2  
1
0
EP3  
EP2  
1
1
EP3  
EP2  
0
0
EP3  
0
1
W
W
W
W
DQ  
CQ  
DQ  
CQ  
DQ  
CQ  
DQ  
CQ  
EP2  
CQ  
Bank Enable Truth Table  
EP2  
EP3  
E2  
E3  
Bank 0  
V
V
V
Active Low  
Active Low  
Active High  
Active High  
Active Low  
Active High  
Active Low  
Active High  
SS  
SS  
DD  
DD  
SS  
DD  
Bank 1  
Bank 2  
Bank 3  
V
V
V
V
SS  
DD  
V
Rev: 1.04 4/2005  
10/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Echo Clock Control in Two Banks of SigmaRAMs  
Read  
Read  
Read  
Read  
Read  
CK  
Address  
A
B
C
D
E
F
ADV  
/E1  
/E2 Bank 1  
E2 Bank 2  
DQ  
Bank 1  
QA  
QC  
CQ  
Bank 1  
CQ1 + CQ2  
CQ  
Bank 2  
DQ  
Bank 2  
QB  
QD  
Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.  
It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of  
Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via E1 does not deactivate the  
Echo Clocks.  
In some applications it may be appropriate to pause between banks; to deselect both RAMs with E1 before resuming read  
operations. An E1 deselect at a bank switch will allow at least one clock to be issued from the new bank before the first read cycle  
in the bank. Although the following drawing illustrates a E1 read pause upon switching from Bank 1 to Bank 2, a write to Bank 2  
would have the same effect, causing the RAM in Bank 2 to issue at least one clock before it is needed.  
Rev: 1.04 4/2005  
11/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
.
Pipelined Read Bank Switch with E1 Deselect  
Read  
No Op  
Read  
Read  
Read  
CK  
Address  
A
XX  
C
D
E
F
ADV  
/E1  
/E2 Bank 1  
E2 Bank 2  
DQ  
Bank 1  
QA  
CQ  
Bank 1  
CQ1 + CQ2  
CQ  
Bank 2  
DQ  
Bank 2  
QC  
QD  
Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.  
CMOS Output Driver Impedance Control  
CMOS I/O SigmaRAMs are supplied with selectable (high or low) impedance output drivers. The ZQ pin allows selection between  
SRAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ high) point-to-point  
applications.  
Rev: 1.04 4/2005  
12/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Double Late Write, Pipelined Read Truth Table  
E1  
E
ADV W  
B
DQ/CQ  
DQ/CQ  
(t  
DQ/CQ  
Previous  
Operation  
CK  
Current Operation  
(t ) (t ) (t ) (t ) (t )  
(t )  
)
(t  
)
n
n
n
n
n
n
n+1  
n+2  
01  
01  
01  
01  
X
F
0
X
X
X
Bank Deselect  
***/***  
Hi-Z/Hi-Z  
***/***  
Hi-Z/Hi-Z  
Hi-Z/Hi-Z  
Hi-Z/CQ  
Hi-Z/CQ  
---  
X
1
X
T
X
1
0
1
X
X
X
X
X
X
Bank Deselect Bank Deselect (Continue)  
---  
X
Deselect  
---  
X
Deselect  
Deselect (Continue)  
Hi-Z/CQ  
---  
Write  
01  
01  
01  
0
0
T
T
X
X
0
0
1
1
0
0
T
F
T
F
X
Loads new address  
Stores DQx if Bx = 0  
***/***  
***/***  
***/***  
***/***  
***/***  
***/***  
D1/CQ  
Hi-Z/CQ  
Dn/CQ  
Write (Abort)  
Loads new address  
No data stored  
X
Write Continue  
Increments address by 1  
Stores DQx if Bx = 0  
X
X
X
X
Write  
Write  
Dn-1/CQ  
Dn-1/CQ  
Write Continue (Abort)  
Increments address by 1  
No data stored  
01  
01  
Hi-Z/CQ  
Read  
Loads new address  
0
T
X
0
1
1
X
X
X
***/***  
Q1/CQ  
Qn/CQ  
---  
---  
Read Continue  
Increments address by 1  
01  
X
X
Read  
Qn-1/CQ  
Notes:  
1. If E2 = EP2 and E3 = EP3, then E = “T” else E = “F”.  
2. If one or more Bx = 0, then B = “T” else B = “F”.  
3. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
4. “***” indicates that the DQ input requirement / output state and CQ output state are determined by the previous operation.  
5. “---” indicates that the DQ input requirement / output state and CQ output state are determined by the next operation.  
6. DQs are tristated in response to Bank Deselect, Deselect, and Write commands, one full cycle after the command is sampled.  
7. CQs are tristated in response to Bank Deselect commands only, one full cycle after the command is sampled.  
8. Up to three (3) Continue operations may be initiated after a Read or Write operation is initiated to burst transfer up to four (4) distinct pieces  
of data per single external address input. If a fourth (4th) Continue operation is initiated, the internal address wraps back to the initial exter-  
nal (base) address.  
Rev: 1.04 4/2005  
13/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Common I/O State Diagram  
X,F,0,X or X,X,1,X  
Bank  
Deselect  
0,T,0,1  
0,T,0,0  
1,T,0,X  
X,F,0,X  
Deselect  
0,T,0,1  
0,T,0,0  
1,T,0,X or X,X,1,X  
1,T,0,X  
1,T,0,X  
0,T,0,0  
0,T,0,1  
Read  
Read  
Write  
X,F,0,X  
X,F,0,X  
0,T,0,1  
0,T,0,1  
X,X,1,X  
X,X,1,X  
0,T,0,0  
0,T,0,0  
1,T,0,X  
X,F,0,X  
0,T,0,0 0,T,0,1  
1,T,0,X  
X,F,0,X  
Write  
Continue  
Continue  
X,X,1,X  
X,X,1,X  
n
n+1  
n+2  
n+3  
Key  
Input Command Code  
Clock (CK)  
ƒ
Transition  
Current State (n)  
Next State (n + 1)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State & Next State Definition for Read/Write Control State Diagram  
Notes:  
1. The notation “X,X,X,X” controlling the state transitions above indicate the states of inputs E1, E, ADV, and W respectively.  
2. If (E2 = EP2 and E3 = EP3) then E = “T” else E = “F”.  
3. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
Rev: 1.04 4/2005  
14/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
Voltage on V Pins  
–0.5 to 2.5  
V
V
DD  
DD  
V
Voltage in V  
Pins  
–0.5 to V  
DDQ  
DDQ  
DD  
V
–0.5 to V  
+ 0.5 (2.5 V max.)  
DDQ  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
V
I/O  
V
–0.5 to V + 0.5 (2.5 V max.)  
DDQ  
V
IN  
I
+/–100  
+/–100  
125  
mA dc  
mA dc  
IN  
I
OUT  
o
T
Maximum Junction Temperature  
Storage Temperature  
C
J
T
–55 to 125  
ºC  
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
Unit  
V
Notes  
V
1.95  
DD  
V
V
1.8 V I/O Supply Voltage  
1.7  
1.8  
V
DDQ  
DD  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
25  
70  
85  
°C  
°C  
1
1
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
A
Note:  
The part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted  
are evaluated for worst case in the temperature range marked on the device.  
CMOS I/O DC Input Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Notes  
V
0.65 * V  
V
+ 0.3  
DDQ  
CMOS Input High Voltage  
CMOS Input Low Voltage  
1
1
IH  
DDQ  
V
0.35 * V  
DDQ  
–0.3  
V
IL  
Note: For devices supplied with CMOS input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Rev: 1.04 4/2005  
15/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
= 0 V  
Input Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
Output Capacitance  
pF  
OUT  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Conditions  
V
Input high level  
Input low level  
DDQ  
0 V  
Max. input slew rate  
Input reference level  
Output reference level  
2 V/ns  
V
V
/2  
/2  
DDQ  
DDQ  
AC Test Load Diagram  
DQ  
RQ = 250 (HSTL I/O)  
50Ω  
VT = V /2  
DDQ  
Rev: 1.04 4/2005  
16/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
I
V
= 0 to V  
–2 uA  
2 uA  
IL  
IN  
DDQ  
ZQ, MCH, MCL, EP2, EP3  
Pin Input Current  
I
V
= 0 to V  
–50 uA  
–2 uA  
50 uA  
2 uA  
INM  
IN  
DDQ  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
OL  
V
OUT  
DDQ  
Selectable Impedance Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
V
I
= –4 mA  
= 4 mA  
= –8 mA  
= 8 mA  
V
V
– 0.4 V  
DDQ  
Low Drive Output High Voltage  
Low Drive Output Low Voltage  
High Drive Output High Voltage  
High Drive Output Low Voltage  
1
1
2
2
OHL  
OHL  
V
I
0.4 V  
OLL  
OLL  
V
I
– 0.4 V  
DDQ  
OHH  
OHH  
V
I
0.4 V  
OLH  
OLH  
Notes:  
1. ZQ = 1; High Impedance output driver setting  
2. ZQ = 0; Low Impedance output driver setting  
Rev: 1.04 4/2005  
17/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Operating Currents  
-350  
–40°C  
-333  
–40°C  
-300  
–40°C  
-250  
–40°C  
0°C  
to  
0°C  
to  
0°C  
to  
0°C  
to  
Parameter  
Symbol  
Test Conditions  
to  
to  
to  
to  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
70°C  
+85°C  
IDDP (PL)  
IDDP (PL)  
ISB1 (PL)  
ISB1 (PL)  
ISB2 (PL)  
ISB2 (PL)  
E1 VIL Max.  
tKHKH tKHKH Min.  
All other inputs  
365 mA 375 mA 345 mA 355 mA 320 mA 330 mA 275 mA 285 mA  
x72  
Operating  
Current  
265 mA 275 mA 245 mA 255 mA 225 mA 235 mA 200 mA 210 mA  
x36  
VIL VIN VIH  
E1 VIH Min. or  
tKHKH tKHKH Min.  
All other inputs  
x72  
80 mA  
75 mA  
80 mA  
75 mA  
90 mA  
85 mA  
90 mA  
85 mA  
75 mA  
70 mA  
75 mA  
70 mA  
85 mA  
80 mA  
85 mA  
80 mA  
70 mA  
65 mA  
70 mA  
65 mA  
80 mA  
75 mA  
80 mA  
75 mA  
65 mA  
60 mA  
65 mA  
60 mA  
75 mA  
70 mA  
75 mA  
70 mA  
Chip Disable  
Current  
x36  
VIL VIN VIH  
E2 or E3 False  
tKHKH tKHKH Min.  
All other inputs  
x72  
Bank Deselect  
Current  
x36  
VIL VIN VIH  
Device Deselected  
All inputs  
VSS + 0.10 V  
CMOS  
Deselect  
Current  
IDD3  
45 mA  
55 mA  
45 mA  
55 mA  
45 mA  
55 mA  
45 mA  
55 mA  
VIN  
VDD – 0.10 V  
Rev: 1.04 4/2005  
18/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
AC Electrical Characteristics  
-350  
Min  
-333  
Min  
-300  
Min  
-250  
Min  
Parameter  
Symbol  
Unit Notes  
Max  
Max  
Max  
Max  
Clock Cycle Time  
Clock High Time  
tKHKH  
tKHKL  
2.86  
1.0  
1.0  
0.5  
3.0  
1.2  
1.2  
0.5  
3.3  
1.3  
1.3  
0.5  
4.0  
1.6  
1.6  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
Clock Low Time  
tKLKH  
Clock High to Echo Clock Low-Z  
Clock High to Echo Clock High  
Clock Low to Echo Clock Low  
Clock High to Echo Clock High-Z  
Clock High to Output Low-Z  
Clock High to Output Valid  
Clock High to Output Invalid  
Clock High to Output High-Z  
Echo Clock High to Output Valid  
Echo Clock High to Output Invalid  
Address Valid to Clock High  
Clock High to Address Don’t Care  
Enable Valid to Clock High  
Clock High to Enable Don’t Care  
Write Valid to Clock High  
tKHCX1  
tKHCH  
tKLCL  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.1  
2.1  
2.1  
tKHCZ  
tKHQX1  
tKHQV  
tKHQX  
tKHQZ  
tCHQV  
tCHQX  
tAVKH  
tKHAX  
tEVKH  
tKHEX  
tWVKH  
tKHWX  
tBVKH  
tKHBX  
tDVKH  
tKHDX  
tadvVKH  
tKHadvX  
1, 2  
1
0.5  
0.5  
0.5  
0.5  
0.5  
1.7  
1.8  
1.8  
2.1  
1
0.5  
0.5  
0.5  
1.7  
0.35  
1.8  
0.35  
1.8  
0.38  
2.1  
0.45  
–0.38  
0.7  
0.4  
0.7  
0.4  
0.7  
0.4  
0.7  
0.4  
0.5  
0.4  
0.7  
0.4  
2
–0.35  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
–0.35  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
0.5  
0.4  
0.6  
0.4  
–0.45  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.5  
0.5  
0.8  
0.5  
2
Clock High to Write Don’t Care  
Byte Write Valid to Clock High  
Clock High to Byte Write Don’t Care  
Data In Valid to Clock High  
Clock High to Data In Don’t Care  
ADV Valid to Clock High  
Clock High to ADV Don’t Care  
Notes:  
1. Measured at 100 mV from steady state. Not 100% tested.  
2. Guaranteed by design. Not 100% tested.  
3. For any specific temperature and voltage tKHCZ < tKHCX1.  
Rev: 1.04 4/2005  
19/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Timing Parameter Key—Pipelined Read Cycle Timing  
tKHKH  
tKHKL  
CK  
tKHAX  
tKLKH  
tAVKH  
C
D
A
E
tKHQZ  
tKHQX  
tKHQV  
tKHQX1  
DQ (Data Out)  
QB  
tCHQX  
tCHQV  
tKHCH  
tKHCX1  
tCHCL  
tCLCH  
tKHCZ  
CQ  
= CQ High Z  
Rev: 1.04 4/2005  
20/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Timing Parameter Key—Double Late Write Mode Control and Data In Timing  
CK  
tKHAX  
tAVKH  
A
B
A
C
tnVKH  
tKHnX  
E1, E2, E3,  
W, Bx, ADV  
tDVKH  
tKHDX  
DQ (Data In)  
DA  
Note: tnVKH = tEVKH, tWVKH, tBVKH, etc. and tKHnX = tKHEX, tKHWX, tKHBX, etc.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
Rev: 1.04 4/2005  
21/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
JTAG Port Registers  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.04 4/2005  
22/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
Rev: 1.04 4/2005  
23/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Tap Controller Instruction Set  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
I/O  
Not Used  
Configuration  
ID Code  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
x72  
x36  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.04 4/2005  
24/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Rev: 1.04 4/2005  
25/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
RFU  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
RFU  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.04 4/2005  
26/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
DQ  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
*
50Ω  
30pF  
Input slew rate  
V
/2  
V
V
/2  
Input reference level  
DDQ  
DDQ  
* Distributed Test Jig Capacitance  
/2  
Output reference level  
DDQ  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Unit Notes  
V
0.6 * V  
V
+0.3  
DD  
Test Port Input High Voltage  
V
V
1
1
IHJ  
DD  
V
0.3 * V  
1
Test Port Input Low Voltage  
0.3  
300  
1  
ILJ  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
0.4  
V
OLJ  
V
V
– 100 mV  
DDQ  
V
OHJC  
V
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < V  
+2 V not to exceed 3.6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OHJC  
Rev: 1.04 4/2005  
27/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
TDI  
tTH  
tTS  
tTH  
tTS  
TMS  
TDO  
tTKQ  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
20  
20  
10  
10  
ns  
ns  
ns  
tTH  
ns  
Rev: 1.04 4/2005  
28/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
209 BGA Package Drawing (Package C)  
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array  
C A1  
A
Side View  
D
aaa  
D1  
e
Bottom View  
b  
e
Symbol  
Min  
Typ  
Max  
1.70  
0.60  
0.70  
0.38  
22.1  
Units  
mm  
mm  
mm  
mm  
mm  
Symbol  
Min  
Typ  
18.0 (BSC)  
14.0  
Max  
Units  
mm  
mm  
mm  
mm  
mm  
A
A1  
b  
c
D1  
E
0.40  
0.50  
0.31  
21.9  
0.50  
0.60  
0.36  
22.0  
13.9  
14.1  
E1  
e
10.0 (BSC)  
1.00 (BSC)  
0.15  
D
aaa  
Rev 1.0  
Rev: 1.04 4/2005  
29/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Ordering Information—GSI SigmaRAM  
Speed  
(MHz)  
T
Org  
Part Number  
Type  
I/O  
A
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
256K x 72  
256K x 72  
256K x 72  
GS8170DW36AC-350  
GS8170DW36AC-333  
GS8170DW36AC-300  
GS8170DW36AC-250  
GS8170DW36AC-350I  
GS8170DW36AC-333I  
GS8170DW36AC-300I  
GS8170DW36AC-250I  
GS8170DW72AC-350  
GS8170DW72AC-333  
GS8170DW72AC-300  
GS8170DW72AC-250  
GS8170DW72AC-350I  
GS8170DW72AC-333I  
GS8170DW72AC-300I  
GS8170DW72AC-250I  
GS8170DW36AGC-350  
GS8170DW36AGC-333  
GS8170DW36AGC-300  
GS8170DW36AGC-250  
GS8170DW36AGC-350I  
GS8170DW36AGC-333I  
GS8170DW36AGC-300I  
GS8170DW36AGC-250I  
GS8170DW72AGC-350  
GS8170DW72AGC-333  
GS8170DW72AGC-300  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double Late Write Σ1x1Dp ΣRAM  
Double 5Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
350MHz  
333 MHz  
300 MHz  
250 MHz  
350 MHz  
333 MHz  
300 MHz  
250 MHz  
350MHz  
333 MHz  
300 MHz  
250 MHz  
350 MHz  
333 MHz  
300 MHz  
250 MHz  
350MHz  
333 MHz  
300 MHz  
250 MHz  
350 MHz  
333 MHz  
300 MHz  
250 MHz  
350MHz  
333 MHz  
300 MHz  
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
I
C
C
C
C
I
I
I
I
C
C
C
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS817xx72C-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.04 4/2005  
30/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
Ordering Information—GSI SigmaRAM  
Speed  
(MHz)  
T
Org  
Part Number  
Type  
I/O  
A
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
GS8170DW72AGC-250  
GS8170DW72AGC-350I  
GS8170DW72AGC-333I  
GS8170DW72AGC-300I  
GS8170DW72AGC-250I  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
Pb-Free Double Late Write Σ1x1Dp ΣRAM  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
250 MHz  
350 MHz  
333 MHz  
300 MHz  
250 MHz  
C
I
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS817xx72C-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.04 4/2005  
31/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8170DW36/72AC-350/333/300/250  
18Mb Sync ΣRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
8170DWxxA_r1  
• Updated 350 MHz AC specs  
• Updated format  
8170DWxxA_r1;  
8170DWxxA_r1_01  
8170DWxxA_r1_01;  
8170DWxxA_r1_02  
Format  
Content  
Content  
• Removed Preliminary banner due to qualification of part  
• Corrected JTAG information  
8170DWxxA_r1_02;  
8170DWxxA_r1_03  
• Added Pb-Free information  
8170DWxxA_r1_03;  
8170DWxxA_r1_04  
Rev: 1.04 4/2005  
32/32  
© 2003, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8170DW72AC-300

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AC-300I

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AC-333

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AC-333I

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AC-333IT

Standard SRAM, 256KX72, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DW72AC-350

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AC-350I

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AGC-250

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AGC-250I

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AGC-250IT

Standard SRAM, 256KX72, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, LEAD FREE, BGA-209
GSI

GS8170DW72AGC-300

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI

GS8170DW72AGC-300I

18Mb ヒ1x1Dp CMOS I/O Double Late Write SigmaRAM
GSI