GS8330LW72GC-200IT [GSI]

Late-Write SRAM, 512KX72, 2.25ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209;
GS8330LW72GC-200IT
型号: GS8330LW72GC-200IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Late-Write SRAM, 512KX72, 2.25ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209

静态存储器 内存集成电路
文件: 总30页 (文件大小:580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS8330LW36/72C-250/200  
209-Bump BGA  
Commercial Temp  
Industrial Temp  
200 MHz–250 MHz  
36Mb Σ1x1Lp CMOS I/O  
1.8 V V  
DD  
1.8 V I/O  
Late Write SigmaRAM™  
Features  
• Late Write mode, Pipelined Read mode  
• JEDEC-standard SigmaRAMpinout and package  
• 1.8 V +150/–100 mV core power supply  
• 1.8 V CMOS Interface  
• ZQ controlled user-selectable output drive strength  
• Dual Cycle Deselect  
• Burst Read and Write option  
• Fully coherent read and write pipelines  
• Echo Clock outputs track data output drivers  
• Byte write operation (9-bit bytes)  
• 2 user-programmable chip enable inputs  
• IEEE 1149.1 JTAG-compliant Serial Boundary Scan  
• 209-bump, 14 mm x 22 mm, 1 mm bump pitch BGA package  
• Pin-compatible with future 72Mb and 144Mb devices  
Bottom View  
209-Bump, 14 mm x 22 mm BGA  
1 mm Bump Pitch, 11 x 19 Bump Array  
Key Fast Bin Specs  
Cycle Time  
Symbol  
tKHKH  
tKHQV  
-250  
4.0 ns  
2.1 ns  
Access Time  
Functional Description  
Because SigmaRAMs are synchronous devices, address data  
inputs and read/write control inputs are captured on the rising  
edge of the input clock. Write cycles are internally self-timed  
and initiated by the rising edge of the clock input. This feature  
eliminates complex off-chip write pulse generation required by  
asynchronous SRAMs and simplifies input signal timing.  
ΣRAMs support pipelined reads utilizing a rising-edge-  
triggered output register. They also utilize a Dual Cycle  
Deselect (DCD) output deselect protocol.  
SigmaRAM Family Overview  
GS8330LW36/72 SigmaRAMs are built in compliance with  
the SigmaRAM pinout standard for synchronous SRAMs.  
They are 37,748,736-bit (36Mb) SRAMs. This family of wide,  
very low voltage CMOS I/O SRAMs is designed to operate at  
the speeds needed to implement economical high performance  
networking systems.  
ΣRAMs are offered in a number of configurations including  
Late Write, Double Late Write, and Double Data Rate (DDR).  
The logical differences between the protocols employed by  
these RAMs mainly involve various approaches to write  
cueing and data transfer rates. The ΣRAMfamily standard  
allows a user to implement the interface protocol best suited to  
the task at hand.  
ΣRAMs are implemented with high performance CMOS  
technology and are packaged in a 209-bump BGA.  
Rev: 1.00 6/2003  
1/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
SigmaRAM Pinouts  
512K x 72 Common I/O—Top View  
1
2
3
4
5
A
6
ADV  
W
7
A
8
9
A
10  
11  
A
B
C
DQg  
DQg  
DQg  
DQg  
DQg  
DQg  
A
E2  
Bg  
Bd  
E3  
Bb  
Be  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
Bc  
Bh  
NC  
A
Bf  
Ba  
NC  
E1  
NC  
(144M)  
D
E
F
DQg  
DQg  
DQc  
DQc  
DQc  
DQc  
CQ2  
DQh  
DQh  
DQh  
DQh  
DQd  
DQd  
DQd  
DQg  
DQc  
DQc  
DQc  
DQc  
DQc  
CQ2  
DQh  
DQh  
DQh  
DQh  
DQh  
DQd  
DQd  
V
NC  
NC  
MCL  
NC  
NC  
V
DQb  
DQf  
DQf  
DQf  
DQf  
DQf  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQa  
DQe  
DQe  
DQb  
DQb  
DQf  
DQf  
DQf  
DQf  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQe  
DQe  
DQe  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
V
V
V
ZQ  
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
G
H
J
V
V
EP2  
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
V
V
V
EP3  
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
V
MCL  
MCL  
MCH  
MCH  
MCH  
MCL  
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
K
L
CK  
NC  
V
V
NC  
NC  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DD  
DD  
DDQ  
M
N
P
R
T
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
V
NC  
A
NC  
MCL  
A
NC  
A
NC  
A
V
SS  
SS  
U
NC  
NC  
NC  
(72M)  
V
DQd  
DQd  
DQd  
DQd  
A
A
A
A
A1  
A0  
A
A
A
A
DQe  
DQe  
DQe  
DQe  
W
• 2002.06  
TMS  
TDI  
TDO  
TCK  
2
11 x 19 Bump BGA—14 x 22 mm Body—1 mm Bump Pitch  
Note:  
Users of CMOS I/O SigmaRAMs may wish to connect “NC, V ” and the “NC, CK” pins to V  
(i.e., V  
/2) to  
DDQ  
REF  
REF  
allow alternate use of future HSTL I/O SigmaRAMs.  
Rev: 1.00 6/2003  
2/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
1M x 36 Common I/O—Top View  
1
2
3
4
5
A
A
6
ADV  
W
7
A
8
9
10  
11  
A
B
C
NC  
NC  
NC  
NC  
NC  
NC  
A
E2  
NC  
Bd  
E3  
Bb  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
Bc  
NC  
A
NC  
Ba  
NC  
E1  
NC  
(144M)  
D
E
F
NC  
NC  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
CQ2  
NC  
V
NC  
NC  
MCL  
NC  
NC  
V
DQb  
NC  
DQb  
DQb  
NC  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
DQc  
DQc  
DQc  
DQc  
CQ2  
NC  
V
V
V
ZQ  
V
V
V
NC  
SS  
SS  
SS  
DD  
SS  
DD  
SS  
SS  
G
H
J
V
V
EP2  
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
EP3  
V
V
V
NC  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
MCL  
MCL  
MCH  
MCH  
MCH  
MCL  
V
V
NC  
NC  
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
K
L
CK  
NC  
V
V
NC  
NC  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQa  
NC  
CQ1  
DQa  
DQa  
DQa  
DQa  
NC  
SS  
SS  
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DD  
DD  
DDQ  
M
N
P
R
T
NC  
NC  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
NC  
NC  
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DDQ  
DDQ  
NC  
NC  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
V
V
DDQ  
DDQ  
DD  
DD  
DD  
DDQ  
DDQ  
DQd  
DQd  
V
NC  
A
NC  
MCL  
A
NC  
A
NC  
A
V
NC  
SS  
SS  
U
NC  
NC  
NC  
NC  
NC  
(72M)  
V
DQd  
DQd  
DQd  
DQd  
A
A
A
A
A1  
A0  
A
A
A
A
NC  
NC  
NC  
NC  
W
• 2002.06  
TMS  
TDI  
TDO  
TCK  
2
11 x 19 Bump BGA—14 x 22 mm Body—1 mm Bump Pitch  
Note:  
Users of CMOS I/O SigmaRAMs may wish to connect “NC, V ” and the “NC, CK” pins to V  
(i.e., V  
/2) to  
DDQ  
REF  
REF  
allow alternate use of future HSTL I/O SigmaRAMs.  
Rev: 1.00 6/2003  
3/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Pin Description Table  
Symbol  
Description  
Address  
Type  
Input  
Comments  
A
ADV  
Bx  
Active High  
Advance  
Input  
Byte Write Enable  
Write Enable  
Chip Enable  
Chip Enable  
Input  
Active Low  
W
Input  
Active Low  
E1  
Input  
Active Low  
E2 & E3  
Input  
Programmable Active High or Low  
To be tied directly to V , V  
or V  
SS  
EP2 & EP3  
CK  
Chip Enable Program Pin  
Clock  
Mode Input  
Input  
DD DDQ  
Active High  
CQ, CQ  
DQ  
Echo Clock  
Output  
Input/Output  
Three State - Deselect via E2 or E3 False  
Data I/O  
Three State  
Active High  
MCH  
MCL  
Must Connect High  
Must Connect Low  
Input  
Input  
To be tied directly to V or V  
DD  
DDQ  
Active Low  
To be tied directly to V  
SS  
Low = Low Impedance [High Drive]  
High = High Impedance [Low Drive]  
ZQ  
Output Impedance Control  
Mode Input  
To be tied directly to V  
or V  
DDQ  
SS  
TCK  
TDI  
Test Clock  
Test Data In  
Input  
Input  
Output  
Input  
Active High  
TDO  
TMS  
NC  
Test Data Out  
Test Mode Select  
No Connect  
Not connected to die or any other pin  
V
Core Power Supply  
Input  
1.8 V Nominal  
1.8 V Nominal  
DD  
V
Output Driver Power Supply  
Ground  
Input  
Input  
DDQ  
V
SS  
Operation Control  
All address, data and control inputs (with the exception of EP2, EP3, ZQ, and the mode pins, L6, M6, and J6) are synchronized to  
rising clock edges. Data in is captured on both rising and falling edges of CK. Read and write operations must be initiated with the  
Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the  
Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable inputs will deactivate the device. It should be noted  
that ONLY deactivation of the RAM via E2 and/or E3 deactivates the Echo Clocks, CQ1–CQ2.  
Rev: 1.00 6/2003  
4/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Read Operations  
Pipelined Read  
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: All three chip enables (E1, E2,  
and E3) are active, the write enable input signal (W) is deasserted high, and ADV is asserted low. The address presented to the  
address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines  
that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge  
of clock the read data is allowed to propagate through the output register and onto the output pins.  
Single Data Rate Pipelined Read  
Read  
Deselect  
Read  
Read  
Read  
CK  
Address  
ADV  
/E1  
A
XX  
C
D
E
F
/W  
DQ  
QA  
QC  
QD  
CQ  
Key  
Hi-Z  
Access  
Write Operations  
Write operation occurs when the following conditions are satisfied at the rising edge of clock: All three chip enables (E1, E2, and  
E3) are active, the write enable input signal (W) is asserted low, and ADV is asserted low.  
Rev: 1.00 6/2003  
5/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Late Write  
In Late Write mode the RAM requires Data In one rising clock edge later than the edge used to load Address and Control. Late  
Write protocol has been employed on SRAMs designed for RISC processor L2 cache applications and in Flow Through mode NBT  
SRAMs.  
SigmaRAM Late Write with Pipelined Read  
Read  
Deselect  
Write  
Read  
Read  
CK  
Address  
ADV  
/E1  
A
XX  
C
D
E
F
/W  
DQ  
QA  
DC  
QD  
CQ  
Key  
Hi-Z  
Access  
Byte Write Control  
The Byte Write Enable inputs (Bx) determine which bytes will be written. Any combination of Byte Write Enable control pins,  
including all or none, may be activated. A Write Cycle with no Byte Write inputs active is a write abort cycle.  
Example of x36 Byte Write Truth Table  
Function  
Read  
W
H
L
Ba  
X
Bb  
X
Bc  
X
Bd  
X
Write Byte A  
Write Byte B  
Write Byte C  
Write Byte D  
Write all Bytes  
Write Abort  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Rev: 1.00 6/2003  
6/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Two Byte Write Control Example with Late Write SigmaRAM  
Write  
Write  
Write  
Non-Write  
Write  
CK  
Address  
ADV  
/E1  
A
B
C
D
E
F
ADV  
/BA  
/BB  
DA  
DA  
DB  
DE  
DQA0-DQA8  
DC  
DQB0-DQB8  
CQ  
Special Functions  
Burst Cycles  
SRAMs provide an on-chip burst address generator that can be utilized, if desired, to simplify burst read or write implementations.  
The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter  
generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM  
by driving the ADV pin low, into Load mode.  
Rev: 1.00 6/2003  
7/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
SigmaRAM Pipelined Burst Reads with Counter Wrap-around  
Read  
Continue  
Continue  
Continue  
Continue  
CK  
External  
Address  
A2  
A2  
XX  
A3  
XX  
A0  
XX  
A1  
XX  
A2  
Internal  
Address  
Counter Wraps  
ADV  
/E1  
/W  
DQ  
CQ  
QA2  
QA3  
QA0  
QA1  
Rev: 1.00 6/2003  
8/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
SigmaRAM Late Write SRAM Burst Writes with Counter Wrap-around  
Write  
Continue  
Continue  
Continue  
Continue  
CK  
Address  
A2  
A2  
XX  
A3  
XX  
A0  
XX  
A1  
XX  
A2  
XX  
Internal  
Addres  
ADV  
/E1  
Counter Wraps  
/W  
ADV  
DQ  
D2  
D3  
D0  
D1  
D2  
Burst Order  
The burst address counter wraps around to its initial state after four internal addresses (the loaded address and three more) have  
been accessed. SigmaRAMs always count in linear burst order.  
Linear Burst Order  
A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Note: The burst counter wraps to initial state on the 5th rising edge of clock.  
Echo Clock  
SRAMs feature Echo Clocks, CQ1, CQ2, CQ1, and CQ2 that track the performance of the output drivers. The Echo Clocks are  
delayed copies of the main RAM clock, CK. Echo Clocks are designed to track changes in output driver delays due to variance in  
die temperature and supply voltage. The Echo Clocks are designed to fire with the rest of the data output drivers. SigmaRAMs  
provide both in-phase, or true, Echo Clock outputs (CQ1 and CQ2) and inverted Echo Clock outputs (CQ1 and CQ2).  
Rev: 1.00 6/2003  
9/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of  
Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via E1 does not deactivate the  
Echo Clocks.  
Programmable Enables  
ΣRAMs feature two user-programmable chip enable inputs, E2 and E3. The sense of the inputs, whether they function as active  
low or active high inputs, is determined by the state of the programming inputs, EP2 and EP3. For example, if EP2 is held at V  
,
DD  
E2 functions as an active high enable. If EP2 is held to V , E2 functions as an active low chip enable input.  
SS  
Programmability of E2 and E3 allows four banks of depth expansion to be accomplished with no additional logic. By programming  
the enable inputs of four SRAMs in binary sequence (00, 01, 10, 11) and driving the enable inputs with two address inputs, four  
SRAMs can be made to look like one larger RAM to the system.  
Example Four Bank Depth Expansion Schematic—Σ1x1Lp  
A –A  
0
n
E1  
CK  
W
DQ –DQ  
0
n
Bank 0  
Bank 3  
Bank 1  
Bank 2  
A
A –A  
A –A  
A –A  
A –A  
0
n – 2  
n – 1  
0
n – 2  
n – 1  
0
n – 2  
0
n – 2  
n – 1  
A
A
A
A
A
A
A
n – 1  
E3  
E2  
E1  
CK  
E3  
E2  
E1  
CK  
E3  
E3  
A
A
A
A
n
n
n
n
E2  
E2  
E1  
E1  
CK  
CK  
EP3  
EP2  
1
0
EP3  
EP2  
1
1
EP3  
EP2  
0
0
EP3  
0
1
W
W
W
W
DQ  
CQ  
DQ  
CQ  
DQ  
CQ  
DQ  
CQ  
EP2  
CQ  
Bank Enable Truth Table  
EP2  
EP3  
E2  
E3  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
V
V
V
Active Low  
Active Low  
Active High  
Active High  
Active Low  
Active High  
Active Low  
Active High  
SS  
SS  
DD  
DD  
SS  
DD  
V
V
V
V
SS  
DD  
V
Rev: 1.00 6/2003  
10/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Echo Clock Control in Two Banks of SigmaRAMs  
Read  
Read  
Read  
Read  
Read  
CK  
Address  
A
B
C
D
E
F
ADV  
/E1  
/E2 Bank 1  
E2 Bank 2  
DQ  
Bank 1  
QA  
QC  
CQ  
Bank 1  
CQ1 + CQ2  
CQ  
Bank 2  
DQ  
Bank 2  
QB  
QD  
Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.  
It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of  
Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via E1 does not deactivate the  
Echo Clocks.  
In some applications it may be appropriate to pause between banks; to deselect both RAMs with E1 before resuming read  
operations. An E1 deselect at a bank switch will allow at least one clock to be issued from the new bank before the first read cycle  
in the bank. Although the following drawing illustrates a E1 read pause upon switching from Bank 1 to Bank 2, a write to Bank 2  
would have the same effect, causing the RAM in Bank 2 to issue at least one clock before it is needed.  
Rev: 1.00 6/2003  
11/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
.
Pipelined Read Bank Switch with E1 Deselect  
Read  
No Op  
Read  
Read  
Read  
CK  
Address  
A
XX  
C
D
E
F
ADV  
/E1  
/E2 Bank 1  
E2 Bank 2  
DQ  
Bank 1  
QA  
CQ  
Bank 1  
CQ1 + CQ2  
CQ  
Bank 2  
DQ  
Bank 2  
QC  
QD  
Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.  
CMOS Output Driver Impedance Control  
CMOS I/O SigmaRAMs are supplied with selectable (high or low) impedance output drivers. The ZQ pin allows selection between  
SRAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ high) point-to-point  
applications.  
Rev: 1.00 6/2003  
12/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Late Write, Pipelined Read Truth Table  
E1  
E
ADV  
W
B
DQ/CQ  
DQ/CQ  
(t  
Previous  
Operation  
CK  
Current Operation  
(t ) (t ) (t ) (t ) (t )  
(t )  
)
n+1  
n
n
n
n
n
n
01  
01  
01  
01  
X
F
0
X
X
X
Bank Deselect  
X
Bank Deselect  
Bank Deselect (Continue)  
Deselect  
***/***  
Hi-Z/Hi-Z  
***/***  
Hi-Z/Hi-Z  
Hi-Z/Hi-Z  
Hi-Z/CQ  
Hi-Z/CQ  
X
1
X
T
X
1
0
1
X
X
X
X
X
X
X
Deselect  
Deselect (Continue)  
Hi-Z/CQ  
Write  
01  
01  
01  
0
0
T
T
X
X
0
0
1
1
0
0
T
F
T
F
X
Loads new address  
Stores DQx if Bx = 0  
***/***  
***/***  
D1/CQ  
Hi-Z/CQ  
Dn/CQ  
Write (Abort)  
Loads new address  
No data stored  
X
Write Continue  
Increments address by 1  
Stores DQx if Bx = 0  
X
X
X
X
Write  
Write  
Dn-1/CQ  
Dn-1/CQ  
Write Continue (Abort)  
Increments address by 1  
No data stored  
01  
01  
Hi-Z/CQ  
Read  
Loads new address  
0
T
X
0
1
1
X
X
X
***/***  
Q1/CQ  
Qn/CQ  
Read Continue  
Increments address by 1  
01  
X
X
Read  
Qn-1/CQ  
Notes:  
1. If E2 = EP2 and E3 = EP3, then E = “T” else E = “F”.  
2. If one or more Bx = 0, then B = “T” else B = “F”.  
3. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
4. “***” indicates that the DQ input requirement / output state and CQ output state are determined by the previous operation.  
5. DQs are tristated in response to Bank Deselect, Deselect, and Write commands, one full cycle after the command is sampled.  
6. CQs are tristated in response to Bank Deselect commands only, one full cycle after the command is sampled.  
7. Up to three (3) Continue operations may be initiated after a Read or Write operation is initiated to burst transfer up to four (4) distinct pieces  
of data per single external address input. If a fourth (4th) Continue operation is initiated, the internal address wraps back to the initial exter-  
nal (base) address.  
Rev: 1.00 6/2003  
13/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Common I/O State Diagram  
X,F,0,X or X,X,1,X  
Bank  
Deselect  
0,T,0,1  
0,T,0,0  
1,T,0,X  
X,F,0,X  
Deselect  
0,T,0,1  
0,T,0,0  
1,T,0,X or X,X,1,X  
1,T,0,X  
1,T,0,X  
0,T,0,0  
0,T,0,1  
Read  
Write  
X,F,0,X  
X,F,0,X  
0,T,0,1  
X,X,1,X  
X,X,1,X  
0,T,0,0  
0,T,0,0  
0,T,0,1  
1,T,0,X  
X,F,0,X  
0,T,0,0 0,T,0,1  
1,T,0,X  
X,F,0,X  
Read  
Continue  
Write  
Continue  
X,X,1,X  
X,X,1,X  
n
n+1  
n+2  
n+3  
Key  
Input Command Code  
Clock (CK)  
ƒ
Transition  
Current State (n)  
Next State (n + 1)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State & Next State Definition for Read/Write Control State Diagram  
Notes:  
1. The notation “X,X,X,X” controlling the state transitions above indicate the states of inputs E1, E, ADV, and W respectively.  
2. If (E2 = EP2 and E3 = EP3) then E = “T” else E = “F”.  
3. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
Rev: 1.00 6/2003  
14/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
Voltage on V Pins  
–0.5 to 2.5  
V
V
DD  
DD  
V
Voltage in V  
Pins  
–0.5 to V  
DDQ  
DDQ  
DD  
V
–0.5 to V  
+ 0.5 (2.5 V max.)  
DDQ  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
V
I/O  
V
–0.5 to V + 0.5 (2.5 V max.)  
DDQ  
V
IN  
I
+/–100  
+/–100  
125  
mA dc  
mA dc  
IN  
I
OUT  
o
T
Maximum Junction Temperature  
Storage Temperature  
C
J
T
–55 to 125  
ºC  
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating  
Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
Unit  
V
Notes  
V
1.95  
DD  
V
V
1.8 V I/O Supply Voltage  
1.7  
1.8  
V
DDQ  
DD  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
25  
70  
85  
°C  
°C  
1
1
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
A
Note:  
The part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
CMOS I/O DC Input Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Notes  
V
0.65 * V  
V
+ 0.3  
DDQ  
CMOS Input High Voltage  
CMOS Input Low Voltage  
1
1
IH  
DDQ  
V
0.35 * V  
DDQ  
–0.3  
V
IL  
Note: For devices supplied with CMOS input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Rev: 1.00 6/2003  
15/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 1.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
= 0 V  
Input Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
Output Capacitance  
pF  
OUT  
Note: This parameter is sample tested.  
Package Thermal Characteristics  
Rating  
Layer Board  
Symbol  
Max  
TBD  
TBD  
TBD  
Unit  
Notes  
1,2  
R
R
R
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
single  
four  
°C/W  
°C/W  
°C/W  
ΘJA  
ΘJA  
ΘJC  
1,2  
Junction to Case (TOP)  
Notes:  
n/a  
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
AC Test Conditions  
Parameter  
Conditions  
V
Input high level  
Input low level  
DDQ  
0 V  
Max. input slew rate  
Input reference level  
2 V/ns  
V
V
/2  
/2  
DDQ  
DDQ  
Output reference level  
Rev: 1.00 6/2003  
16/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
AC Test Load Diagram  
DQ  
RQ = 250 (HSTL I/O)  
50Ω  
VT = V /2  
DDQ  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
I
V
= 0 to V  
–2 uA  
2 uA  
IL  
IN  
DDQ  
ZQ, MCH, MCL, EP2, EP3  
Pin Input Current  
I
V
= 0 to V  
–50 uA  
–2 uA  
50 uA  
2 uA  
INM  
IN  
DDQ  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
OL  
V
OUT  
DDQ  
Selectable Impedance Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
V
I
= –4 mA  
= 4 mA  
= –8 mA  
= 8 mA  
V
V
– 0.4 V  
DDQ  
Low Drive Output High Voltage  
Low Drive Output Low Voltage  
High Drive Output High Voltage  
High Drive Output Low Voltage  
1
1
2
2
OHL  
OHL  
V
I
0.4 V  
OLL  
OLL  
V
I
– 0.4 V  
DDQ  
OHH  
OHH  
V
I
0.4 V  
OLH  
OLH  
Notes:  
1. ZQ = 1; High Impedance output driver setting  
2. ZQ = 0; Low Impedance output driver setting  
Rev: 1.00 6/2003  
17/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Operating Currents  
-250  
-200  
Parameter  
Symbol  
DDP (PL)  
IDDP (PL)  
SB (PL)  
ISB1 (PL)  
Test Conditions  
0°C  
to 70°C  
–40°C  
to +85°C  
0°C  
to 70°C  
–40°C  
to +85°C  
I
E1 VIL Max.  
x72  
x36  
x72  
x36  
x72  
x36  
380 mA  
300 mA  
60 mA  
60 mA  
60 mA  
60 mA  
400 mA  
320 mA  
80 mA  
80 mA  
80 mA  
80 mA  
320 mA  
255 mA  
60 mA  
60 mA  
60 mA  
60 mA  
340 mA  
275 mA  
80 mA  
80 mA  
80 mA  
80 mA  
Operating  
Current  
tKHKH tKHKH Min.  
All other inputs  
VIL VIN VIH  
I
E1 VIH Min. or  
Chip Disable  
Current  
tKHKH tKHKH Min.  
All other inputs  
VIL VIN VIH  
I
I
SB2 (PL)  
SB2 (PL)  
E2 or E3 False  
tKHKH tKHKH Min.  
All other inputs  
Bank Deselect  
Current  
VIL VIN VIH  
Device Deselected  
All inputs  
CMOS  
Deselect  
Current  
V
SS + 0.10 V  
VIN  
DD – 0.10 V  
IDD3  
100 mA  
115 mA  
90 mA  
105 mA  
V
Rev: 1.00 6/2003  
18/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
AC Electrical Characteristics  
-250  
-200  
Parameter  
Symbol  
Unit  
Notes  
Min  
4.0  
1.6  
1.6  
0.5  
Max  
Min  
5.0  
1.8  
1.8  
0.5  
Max  
Clock Cycle Time  
Clock High Time  
tKHKH  
tKHKL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
Clock Low Time  
tKLKH  
Clock High to Echo Clock Low-Z  
Clock High to Echo Clock High  
Clock Low to Echo Clock Low  
Clock High to Echo Clock High-Z  
Clock High to Output Low-Z  
Clock High to Output Valid  
Clock High to Output Invalid  
Clock High to Output High-Z  
Echo Clock High to Output Valid  
Echo Clock High to Output Invalid  
Address Valid to Clock High  
Clock High to Address Don’t Care  
Enable Valid to Clock High  
Clock High to Enable Don’t Care  
Write Valid to Clock High  
tKHCX1  
tKHCH  
tKLCL  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
tKHCZ  
tKHQX1  
tKHQV  
tKHQX  
tKHQZ  
tCHQV  
tCHQX  
tAVKH  
tKHAX  
tEVKH  
tKHEX  
tWVKH  
tKHWX  
tBVKH  
tKHBX  
tDVKH  
tKHDX  
tadvVKH  
tKHadvX  
1, 2  
1
0.5  
0.5  
2.1  
2.25  
1
0.5  
0.5  
2.1  
0.45  
2.1  
0.5  
2
–0.45  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.5  
0.5  
0.8  
0.5  
–0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
0.8  
0.5  
2
Clock High to Write Don’t Care  
Byte Write Valid to Clock High  
Clock High to Byte Write Don’t Care  
Data In Valid to Clock High  
Clock High to Data In Don’t Care  
ADV Valid to Clock High  
Clock High to ADV Don’t Care  
Notes:  
1. Measured at 100 mV from steady state. Not 100% tested.  
2. Guaranteed by design. Not 100% tested.  
3. For any specific temperature and voltage tKHCZ < tKHCX1.  
Rev: 1.00 6/2003  
19/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Timing Parameter Key—Pipelined Read Cycle Timing  
tKHKH  
tKHKL  
CK  
tKHAX  
tKLKH  
tAVKH  
C
D
A
E
tKHQZ  
tKHQX  
tKHQV  
tKHQX1  
DQ (Data Out)  
QB  
tCHQX  
tCHQV  
tKHCH  
tKHCX1  
tCHCL  
tCLCH  
tKHCZ  
CQ  
= CQ High Z  
Rev: 1.00 6/2003  
20/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Timing Parameter Key—Late Write Mode Control and Data In Timing  
CK  
tKHAX  
tAVKH  
A
B
A
C
tnVKH  
tKHnX  
E1, E2, E3,  
W, Bx, ADV  
tDVKH  
tKHDX  
DQ (Data In)  
DA  
DB  
Note: tnVKH = tEVKH, tWVKH, tBVKH, etc. and tKHnX = tKHEX, tKHWX, tKHBX, etc.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V The JTAG output drivers  
DD  
are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to  
V
. TDO should be left unconnected.  
DDI  
Rev: 1.00 6/2003  
21/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the state  
In of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction  
Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same  
result as a logic one input level.  
Test Data In  
Output that is active depending on the state of the TAP state machine. Output changes in response  
to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO  
Test Data Out  
Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held  
high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP registers are serial shift registers that capture serial input data on the  
rising edge of TCK and push serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.00 6/2003  
22/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
1
x72  
x36  
x18  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads. This device will not  
perform INTEST but can perform the preload portion of the SAMPLE/PRELOAD command.  
Rev: 1.00 6/2003  
23/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
When the TAP controller is placed in Capture-IR state, the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state, the Instruction Register is placed between TDI and TDO. In this state the  
desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all  
instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP  
instruction set for this device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
0
Select IR  
0
0
1
1
1
1
Capture DR  
0
Capture IR  
0
Shift DR  
1
Shift IR  
1
0
0
Exit1 DR  
0
Exit1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
0
0
Exit2 DR  
1
Exit2 IR  
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register, the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Some Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified  
in the BSDL file. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O  
ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAP’s input  
data capture set-up plus hold time (tTS plus tTH ). The RAM’s clock inputs need not be paused for any other TAP operation except capturing  
Rev: 1.00 6/2003  
24/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the Boundary Scan Register  
between the TDI and TDO pins. The Update-DR controller state transfers the contents of boundary scan cells into the holding register of  
each cell associated with an output pin on the RAM.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The  
EXTEST command does not block or override the RAM’s input pins (except CK); therefore, the RAM’s internal state is still determined by its  
input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK  
when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,  
the state of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are sampled  
and transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state. Boundary Scan Register con-  
tents may then be shifted serially through the register using the Shift-DR command or the controller can be skipped to the Update-DR com-  
mand. When the controller is placed in the Update-DR state, a RAM that has a fully compliant EXTEST function drives out the value of the  
Boundary Scan Register location associated with which each output pin.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z/PRELOAD  
The SAMPLE-Z instruction operates exactly like SAMPLE/PRELOAD except that loading the SAMPLE-Z instruction forces all the RAM’s  
output drivers, except TDO, to an inactive drive state (high-Z).  
RFU  
These instructions are reserved for future use.  
Rev: 1.00 6/2003  
25/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
Description  
Notes  
1
000 Places the Boundary Scan Register between TDI and TDO.  
001 Preloads ID Register and places it between TDI and TDO.  
IDCODE  
1, 2  
SAMPLE-Z/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all Data and Clock output drivers to High-Z.  
010  
1
1
1
Private  
011 Private instruction.  
SAMPLE/  
PRELOAD  
100 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Private  
Private  
101 Private instruction.  
1
1
1
110 Private instruction.  
BYPASS  
111 Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in Test-Logic-Reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Unit  
V
Notes  
V
0.65 * V  
V +0.3  
DD  
Test Port Input High Voltage  
1
1
IHT  
DD  
V
0.35 * V  
Test Port Input Low Voltage  
–0.3  
–2  
V
ILT  
DD  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
2
2
uA  
uA  
uA  
V
2
INTH  
I
–50  
–2  
3
INTL  
I
2
4
OLT  
V
V
– 100 mV  
5, 6  
7
OHT  
DD  
V
100 mV  
V
OLT  
Notes:  
1. Input Under/overshoot voltage must be –1 V < Vi < V + 1 V with a pulse width not to exceed 20% tTKC.  
DD  
2.  
V
V V  
DD  
IN  
IN  
IL  
3. 0 V V V  
4. Output Disable, V  
IL  
= 0 to V  
DDI  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
I
I
= –100 uA  
= +100 uA  
OH  
OL  
Rev: 1.00 6/2003  
26/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
V
– 200 mV  
Input high level  
Input low level  
DD  
DQ  
200 mV  
1 V/ns  
Input slew rate  
50Ω  
V
/2  
Input reference level  
DD  
V = V /2  
T
DDQ  
V
/2  
Output reference level  
DDQ  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKL  
tTKH  
tTKC  
TCK  
tTS  
tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
Min  
50  
20  
20  
5
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
10  
ns  
ns  
ns  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
tTS  
ns  
tTH  
5
ns  
Rev: 1.00 6/2003  
27/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Package Dimensions—209-Bump BGA  
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array  
A1  
A2  
A
Side View  
D
ddd  
D1  
e
Bottom View  
b
e
Symbol  
Min.  
Typ.  
Max.  
Units  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
A
A1  
A2  
b
0.40  
0.31  
0.50  
21.9  
0.50  
0.60  
0.38  
0.70  
22.1  
0.36  
0.60  
D
22.0  
D1  
E
18.0 (BSC)  
14.0  
13.9  
14.1  
E1  
e
10.0 (BSC)  
1.00 (BSC)  
0.15  
ddd  
Rev 1.2  
Rev: 1.00 6/2003  
28/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
Ordering Information—GSI SigmaRAM  
Speed  
(MHz)  
T
Org  
Part Number  
Type  
I/O  
A
1M x 36  
1M x 36  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
250 MHz  
200 MHz  
250 MHz  
200 MHz  
250 MHz  
200 MHz  
250 MHz  
200 MHz  
C
GS8330LW36C-250  
GS8330LW36C-200  
GS8330LW36C-250I  
GS8330LW36C-200I  
GS8330LW72C-250  
GS8330LW72C-200  
GS8330LW72C-250I  
GS8330LW72C-200I  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
Late Write Σ1x1Lp ΣRAM  
C
I
1M x 36  
1M x 36  
I
512K x 72  
512K x 72  
512K x 72  
512K x 72  
C
C
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS833xx72C-200T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.00 6/2003  
29/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
Preliminary  
GS8330LW36/72C-250/200  
36Mb Sync ΣRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
8330LWxx_r1  
Rev: 1.00 6/2003  
30/30  
© 2003, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  

相关型号:

GS8330LW72GC-200T

Late-Write SRAM, 512KX72, 2.25ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8330LW72GC-250

Late-Write SRAM, 512KX72, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8330LW72GC-250I

Late-Write SRAM, 512KX72, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8330LW72GC-250IT

Late-Write SRAM, 512KX72, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8342D06

36Mb SigmaQuad-II Burst of 4 SRAM
GSI

GS8342D06BD-350I

36Mb SigmaQuad-IITM Burst of 4 SRAM
GSI

GS8342D06BD-450

JEDEC-standard pinout and package
GSI

GS8342D06BD-500I

JEDEC-standard pinout and package
GSI

GS8342D06BD-550I

2.5 Clock Latency
GSI

GS8342D06BGD-350

JEDEC-standard pinout and package
GSI

GS8342D06BGD-350I

JEDEC-standard pinout and package
GSI

GS8342D06BGD-400

JEDEC-standard pinout and package
GSI