GS840Z18CGT-200IT [GSI]

ZBT SRAM, 256KX18, 6.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100;
GS840Z18CGT-200IT
型号: GS840Z18CGT-200IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 256KX18, 6.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总22页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS840Z18CGT/GS840Z36CGT  
250 MHz–100 MHz  
100-Pin TQFP  
Commercial Temp  
Industrial Temp  
4Mb Pipelined and Flow Through  
Synchronous NBT SRAMs  
3.3 V V  
DD  
2.5 V and 3.3 V V  
DDQ  
Because it is a synchronous device, address, data inputs, and  
Features  
read/ write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• 256K x 18 and 128K x 36 configurations  
• User configurable Pipeline and Flow Through mode  
• NBT (No Bus Turn Around) functionality allows zero wait  
read-write-read bus utilization  
• Fully pin compatible with both pipelined and flow through  
NtRAM™, NoBL™ and ZBT™ SRAMs  
• Pin-compatible with 2Mb, 9Mb and 18Mb devices  
• 3.3 V +10%/–5% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleave Burst mode  
• Byte write operation (9-bit Bytes)  
• 3 chip enable signals for easy depth expansion  
• Clock Control, registered address, data, and control  
• ZZ Pin for automatic power-down  
The GS840Z18/36CGT may be configured by the user to  
operate in Pipeline or Flow Through mode. Operating as a  
pipelined synchronous device, in addition to the rising-edge-  
triggered registers that capture input signals, the device  
incorporates a rising-edge-triggered output register. For read  
cycles, pipelined SRAM output data is temporarily stored by  
the edge triggered output register during the access cycle and  
then released to the output drivers at the next rising edge of  
clock.  
• RoHS-compliant 100-lead TQFP package  
Functional Description  
The GS840Z18/36CGT is a 4Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
The GS840Z18/36CGT is implemented with GSI's high  
performance CMOS technology and is available in a 6/6  
RoHS-compliant, JEDEC-standard 100-pin TQFP package.  
Parameter Synopsis  
–250  
–200  
–166  
–150  
–100  
tCycle  
tKQ  
IDD  
4.0 ns  
2.5 ns  
TBD  
5.5 ns  
3.0 ns  
TBD  
6.0 ns  
3.5 ns  
TBD  
6.7 ns  
3.8 ns  
TBD  
10 ns  
4.5 ns  
TBD  
Pipeline  
3-1-1-1  
Flow  
Through  
2-1-1-1  
tKQ  
tCycle  
IDD  
5.5 ns  
5.5 ns  
TBD  
6.5 ns  
6.5 ns  
TBD  
7.0 ns  
7.0 ns  
TBD  
7.5 ns  
7.5 ns  
TBD  
12 ns  
12 ns  
TBD  
Rev: 1.01 8/2011  
1/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
GS840Z18CGT Pinout (Package T)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
V
V
NC  
DQPA  
DQA  
DQA  
V
V
DQA  
DQA  
V
NC  
V
ZZ  
DQA  
DQA  
V
V
V
DDQ  
DDQ  
V
SS  
SS  
NC  
NC  
DQB  
DQB  
256K x 18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
Top View  
V
DDQ  
DDQ  
DQB  
DQB  
FT  
SS  
V
DD  
NC  
DD  
V
SS  
DQB  
DQB  
V
DDQ  
DDQ  
V
SS  
SS  
DQA  
DQA  
NC  
NC  
V
DQB  
DQB  
DQPB  
NC  
V
SS  
SS  
V
V
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Note:  
Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating.  
Rev: 1.01 8/2011  
2/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
GS840Z36CGT Pinout (Package T)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
DQPB  
DQB  
DQB  
DQPC  
DQC  
DQC  
1
2
3
4
5
6
7
8
9
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
V
DDQ  
DDQ  
V
V
SS  
SS  
DQB  
DQB  
DQB  
DQB  
DQC  
DQC  
DQC  
DQC  
128K x 36  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
Top View  
V
DDQ  
DDQ  
DQB  
DQB  
DQC  
DQC  
FT  
V
SS  
NC  
V
DD  
V
NC  
DD  
ZZ  
DQA  
DQA  
V
SS  
DQD  
DQD  
V
V
DDQ  
DDQ  
V
V
SS  
SS  
DQA  
DQA  
DQA  
DQA  
DQD  
DQD  
DQD  
DQD  
V
V
SS  
SS  
V
V
DDQ  
DDQ  
DQA  
DQA  
DQPA  
DQD  
DQD  
DQPD  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Note:  
Pins marked with NC can be tied to either V or V . These pins can also be left floating.  
DD  
SS  
Rev: 1.01 8/2011  
3/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
100-Pin TQFP Pin Descriptions  
Symbol  
A0, A1  
A
Type  
In  
Description  
Burst Address Inputs; preload the burst counter  
Address Inputs  
In  
CK  
In  
Clock Input Signal  
BA  
In  
Byte Write signal for data inputs DQA1-DQA9; active low  
Byte Write signal for data inputs DQB1-DQB9; active low  
Byte Write signal for data inputs DQC1-DQC9; active low  
Byte Write signal for data inputs DQD1-DQD9; active low  
Write Enable; active low  
BB  
In  
BC  
In  
BD  
In  
W
In  
E1  
In  
Chip Enable; active low  
E2  
In  
Chip Enable; active high; for self decoded depth expansion  
Chip Enable; active low, for self decoded depth expansion  
Output Enable; active low  
E3  
In  
G
In  
ADV  
CKE  
DQA  
DQB  
DQC  
DQD  
ZZ  
In  
Advance / Load—Burst address counter control pin  
Clock Input Buffer Enable; active low  
Byte A Data Input and Output pins  
In  
I/O  
I/O  
I/O  
I/O  
In  
Byte B Data Input and Output pins  
Byte C Data Input and Output pins  
Byte D Data Input and Output pins  
Power down control; active high  
FT  
In  
Pipeline/Flow Through Mode Control; active low  
Linear Burst Order; active low  
LBO  
VDD  
In  
In  
3.3 V power supply  
VSS  
VDDQ  
NC  
In  
In  
Ground  
3.3 V output power supply for noise reduction  
No Connect  
Rev: 1.01 8/2011  
4/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
GS840Z18/36C NBT SRAM Functional Block Diagram  
s p  
n s e S e A m  
s r e i v r D e i t r W  
Rev: 1.01 8/2011  
5/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipelined Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signal W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the Output pins.  
Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The  
Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write cycle  
with no Byte Write inputs active is a no-op cycle. The Pipelined NBT SRAM provides double late write functionality, matching the  
write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising  
edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the  
third rising edge of clock.  
Flow through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use  
of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new  
address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way as well, but differ in that the write pipeline is one cycle shorter as well, preserving  
the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a  
double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode,  
address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising  
edge of clock.  
Rev: 1.01 8/2011  
6/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Synchronous Truth Table  
Operation  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Abort, Begin Burst  
Write Cycle, Continue Burst  
Write Abort, Continue Burst  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Sleep Mode  
Type  
R
Address  
External  
Next  
CK CKE ADV  
W
H
X
H
X
L
Bx E1 E2 E3  
G
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
H
L
DQ  
Q
Notes  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
X
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
H
L
X
X
X
X
L
L
X
L
H
X
H
X
H
H
X
X
X
X
L
L
X
L
B
L
Q
1,10  
2
1,2,10  
3
R
External  
Next  
H
H
X
X
X
X
X
X
X
X
X
X
High-Z  
High-Z  
D
B
H
L
X
L
X
L
W
D
External  
None  
1
L
L
H
L
L
L
High-Z  
D
1,3,10  
B
Next  
H
H
L
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
H
X
X
X
X
B
Next  
H
X
X
X
X
X
X
High-Z 1,2,3,10  
High-Z  
D
None  
D
None  
L
High-Z  
D
None  
L
High-Z  
1
4
D
None  
H
X
X
X
X
X
High-Z  
High-Z  
-
None  
Clock Edge Ignore, Stall  
Current  
L-H  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Deselect  
cycle is executed first.  
2. Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is  
sampled low but no Byte Write pins are active so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write  
cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.01 8/2011  
7/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Pipelined and Flow Through Read-Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram  
Rev: 1.01 8/2011  
8/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
B
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.01 8/2011  
9/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
Current State  
Next State  
Current State and Next State Definition for: Pipelined and Flow Through Read Write Control State Diagram  
Rev: 1.01 8/2011  
10/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
Read to Write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, interleaved burst sequence is selected. See the tables  
below for details.  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
L
Burst Order Control  
LBO  
H
L
Output Register Control  
Power Down Control  
FT  
ZZ  
H or NC  
L or NC  
H
Active  
Standby, IDD = ISB  
Note:  
There is a pull-up device on the FT pin and a pull-down device on the ZZ pin , so this input pin can be unconnected and the chip will operate in  
the default states as specified in the above tables.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
A[1:0]  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
1st address  
2nd address  
3rd address  
4th address  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
10  
11  
00  
00  
11  
10  
11  
00  
01  
11  
00  
01  
00  
01  
10  
10  
01  
00  
Note:  
The burst counter wraps to initial state on the 5th clock.  
Note:  
The burst counter wraps to initial state on the 5th clock.  
Rev: 1.01 8/2011  
11/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull-down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I 2. The duration of  
SB  
Sleep Mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, I 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
SB  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
tKH  
tKC  
tKL  
CK  
ZZ  
tZZR  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal  
found on Pin 14. Not all vendors offer this option, however, most mark Pin 14 as V or V  
on pipelined parts and V on flow  
DD  
DDQ  
SS  
through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Pin 66, a No Connect (NC) on GSI’s GS840Z18/36 NBT SRAM, the Parity Error open drain output on GSI’s GS881Z18/36 NBT  
SRAM, is often marked as a power pin on other vendor’s NBT-compatible SRAMs. Specifically, it is marked V or V on  
DD  
DDQ  
pipelined parts and V on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity feature  
SS  
may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline mode applications or  
tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open. By using the pull-up  
resistor, rather than tying the pin to one of the power rails, users interested in upgrading to GSI’s ByteSafe NBT SRAMs  
(GS881Z18/36), featuring Parity Error detection and JTAG Boundary Scan, will be ready for connection to the active low, open  
drain Parity Error output driver at Pin 66 on GSI’s TQFP ByteSafe RAMs.  
Rev: 1.01 8/2011  
12/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
VDD  
VDDQ  
VI/O  
Description  
Value  
Unit  
V
Voltage on VDD Pins  
Voltage in VDDQ Pins  
0.5 to 4.6  
0.5 to 4.6  
V
0.5 to VDDQ +0.5 (4.6 V max.)  
0.5 to VDD +0.5 (4.6 V max.)  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
VIN  
V
IIN  
+/20  
+/20  
mA  
mA  
W
IOUT  
PD  
1.5  
oC  
oC  
TSTG  
55 to 125  
55 to 125  
TBIAS  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Power Supply Voltage Ranges  
Parameter  
Symbol  
VDD3  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
3.3 V Supply Voltage  
VDD2  
2.5 V Supply Voltage  
2.3  
2.5  
2.7  
V
3.3 V VDDQ I/O Supply Voltage  
2.5 V VDDQ I/O Supply Voltage  
VDDQ3  
VDDQ2  
3.0  
3.3  
3.6  
V
2.3  
2.5  
2.7  
V
V
Range Logic Levels  
DD3  
Parameter  
Symbol  
VIH  
Min.  
2.0  
Typ.  
Max.  
Unit  
V
VDD + 0.3  
Input High Voltage  
Input Low Voltage  
VIL  
0.3  
0.8  
V
Note:  
(max) is voltage on V  
V
pins plus 0.3 V.  
DDQ  
IHQ  
Rev: 1.01 8/2011  
13/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
V
Range Logic Levels  
DD2  
Parameter  
Symbol  
VIH  
Min.  
Typ.  
Max.  
Unit  
V
0.6*VDD  
VDD + 0.3  
0.3*VDD  
Input High Voltage  
Input Low Voltage  
VIL  
0.3  
V
Note:  
(max) is voltage on V  
V
pins plus 0.3 V.  
DDQ  
IHQ  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Junction Temperature  
(Commercial Range Versions)  
TJ  
0
25  
25  
85  
C  
C  
Junction Temperature  
(Industrial Range Versions)*  
TJ  
–40  
100  
Note:  
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications  
quoted are evaluated for worst case in the temperature range marked on the device.  
Thermal Impedance  
Test PCB  
Substrate  
JA (C°/W)  
Airflow = 0 m/s  
JA (C°/W)  
Airflow = 1 m/s  
JA (C°/W)  
Airflow = 2 m/s  
Package  
JB (C°/W)  
JC (C°/W)  
100 TQFP  
4-layer  
28.3  
27.2  
25.4  
7.1  
Notes:  
1. Thermal Impedance data is based on a number of samples from mulitple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to  
the PCB can result in cooling or heating of the RAM depending on PCB temperature.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
2.0 V  
SS  
20% tKC  
V
IL  
Note:  
Input Under/overshoot voltage must be 2 V > Vi < V +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
DDn  
Rev: 1.01 8/2011  
14/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 2.5 V)  
A
DD  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
Input Capacitance  
4
6
5
7
CI/O  
VOUT = 0 V  
Input/Output Capacitance  
pF  
Note:  
These parameters are sample tested.  
AC Test Conditions  
Parameter  
Conditions  
VDD – 0.2 V  
Input high level  
Input low level  
0.2 V  
1 V/ns  
VDD/2  
Input slew rate  
Input reference level  
VDDQ/2  
Output reference level  
Output load  
Fig. 1  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Device is deselected as defined by the Truth Table.  
Output Load 1  
DQ  
*
50  
30pF  
V
DDQ/2  
* Distributed Test Jig Capacitance  
Rev: 1.01 8/2011  
15/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
1 uA  
1 uA  
VDD VIN VIH  
0 V VIN VIH  
1 uA  
1 uA  
1 uA  
100 uA  
IIN1  
ZZ Input Current  
FT Input Current  
VDD VIN VIL  
0 V VIN VIL  
100 uA  
1 uA  
1 uA  
1 uA  
IIN2  
IOL  
Output Disable, VOUT = 0 to VDD  
IOH = 8 mA, VDDQ = 2.375 V  
IOH = 8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output Leakage Current  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1 uA  
1.7 V  
2.4 V  
1 uA  
VOH2  
VOH3  
VOL  
0.4 V  
Operating Currents  
-250  
-200  
-166  
-150  
-100  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
Parameter Test Conditions  
Mode  
Symbol  
70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C  
IDD  
195  
30  
215  
30  
170  
25  
190  
25  
160  
25  
180  
25  
140  
20  
160  
20  
120  
15  
140  
15  
Pipeline  
mA  
mA  
mA  
mA  
IDDQ  
(x32/  
x36)  
IDD  
Flow  
Through  
155  
25  
175  
25  
140  
20  
160  
20  
135  
20  
155  
20  
130  
15  
150  
15  
110  
15  
130  
15  
Device Selected;  
IDDQ  
All other inputs  
VIH or VIL  
Operating  
Current  
IDD  
180  
15  
200  
15  
155  
15  
175  
15  
140  
10  
160  
10  
130  
10  
150  
10  
110  
10  
130  
10  
Pipeline  
Output open  
IDDQ  
(x18)  
IDD  
Flow  
Through  
145  
15  
165  
15  
130  
10  
150  
10  
125  
15  
145  
15  
120  
8
140  
8
110  
10  
130  
10  
IDDQ  
ISB  
ISB  
IDD  
IDD  
Pipeline  
25  
25  
65  
65  
45  
45  
85  
85  
25  
25  
65  
65  
45  
45  
85  
85  
25  
25  
65  
65  
45  
45  
85  
85  
25  
25  
60  
60  
45  
45  
80  
80  
25  
25  
60  
60  
45  
45  
80  
80  
mA  
mA  
mA  
mA  
Standby  
Current  
ZZ VDD – 0.2 V  
Flow  
Through  
Pipeline  
Device Deselected;  
All other inputs  
VIH or VIL  
Deselect  
Current  
Flow  
Through  
Rev: 1.01 8/2011  
16/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
AC Electrical Characteristics  
-250  
-200  
-166  
-150  
-100  
Parameter  
Symbol  
Min  
4.0  
Max  
Min  
5.5  
Max  
Min  
6.0  
Max  
Min Max Min Max  
Clock Cycle Time  
tKC  
tKQ  
6.7  
3.8  
10  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock to Output Valid  
2.5  
3.0  
3.5  
Clock to Output Invalid  
Pipeline  
tKQX  
1.5  
1.5  
1.2  
0.2  
5.5  
1.5  
1.5  
1.4  
0.4  
6.5  
1.5  
1.5  
1.5  
0.5  
7.0  
1.5  
1.5  
1.5  
0.5  
7.5  
1.5  
1.5  
2.0  
0.5  
12.0  
tLZ1  
tS  
Clock to Output in Low-Z  
Setup time  
Hold time  
tH  
Clock Cycle Time  
Clock to Output Valid  
tKC  
tKQ  
tKQX  
5.5  
6.5  
7.0  
7.5  
12.0 ns  
Clock to Output Invalid  
2.0  
2.0  
1.5  
0.5  
1.3  
1.5  
1.5  
2.0  
2.0  
1.5  
0.5  
1.3  
1.5  
1.5  
2.0  
2.0  
1.5  
0.5  
1.3  
1.5  
1.5  
2.0  
2.0  
1.5  
0.5  
1.3  
1.5  
1.5  
2.0  
2.0  
2.0  
0.5  
1.3  
1.5  
1.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Flow  
Through  
tLZ1  
tS  
Clock to Output in Low-Z  
Setup time  
Hold time  
tH  
Clock HIGH Time  
Clock LOW Time  
Clock to Output in High-Z  
G to Output Valid  
G to output in Low-Z  
tKH  
tKL  
tHZ1  
tOE  
2.5  
2.5  
3.0  
3.0  
3.0  
3.5  
3.0  
3.8  
5
tOLZ1  
tOHZ1  
tZZS2  
0
0
0
0
0
G to output in High-Z  
ZZ setup time  
ZZ hold time  
5
2.5  
5
3.0  
5
3.0  
5
3.0  
5
5
ns  
ns  
ns  
ns  
tZZH2  
tZZR  
1
1
1
1
1
ZZ recovery  
20  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.01 8/2011  
17/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Pipeline Mode Timing  
Write A  
Read B  
Suspend  
tKH  
Read C  
tKC  
Write D  
Write No-op Read E  
Deselect  
tKL  
CK  
A
tH  
tH  
tH  
tH  
tH  
tH  
tS  
A
B
C
D
E
tS  
tS  
tS  
tS  
tS  
CKE  
E*  
ADV  
W
tH  
tS  
Bn  
tH  
tLZ  
tHZ  
tS  
tKQ  
tKQX  
D(A)  
Q(B)  
Q(C)  
D(D)  
Q(E)  
DQ  
Rev: 1.01 8/2011  
18/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Flow Through Mode Timing  
Write A  
Write B  
Write B+1 Read C  
tKL  
Cont  
Read D  
Write E  
Read F  
Write G  
tKH  
tKC  
CK  
CKE  
E
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
ADV  
W
Bn  
A0–An  
A
B
C
D
E
F
G
tKQ  
tLZ  
tH  
tKQ  
tLZ  
D(B+1)  
tKQX  
tS  
D(A)  
tHZ  
Q(D)  
tKQX  
D(G)  
DQ  
D(B)  
Q(C)  
D(E)  
Q(F)  
tOLZ  
tOE  
tOHZ  
G
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.01 8/2011  
19/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
TQFP Package Drawing (Package T)  
L
c
L1  
Symbol  
Description  
Standoff  
Min. Nom. Max  
A1  
A2  
b
0.05  
1.35  
0.20  
0.09  
0.10  
1.40  
0.30  
0.15  
1.45  
0.40  
0.20  
22.1  
20.1  
16.1  
14.1  
Body Thickness  
Lead Width  
c
Lead Thickness  
D
Terminal Dimension 21.9  
Package Body 19.9  
Terminal Dimension 15.9  
22.0  
20.0  
16.0  
14.0  
0.65  
0.60  
1.00  
e
D1  
E
b
E1  
e
Package Body  
Lead Pitch  
13.9  
L
Foot Length  
Lead Length  
Coplanarity  
Lead Angle  
0.45  
0.75  
L1  
Y
A1  
A2  
E1  
E
0.10  
7  
0  
Notes:  
1. All dimensions are in millimeters (mm).  
2. Package width and length do not include mold protrusion.  
BPR 1999.05.18  
Rev: 1.01 8/2011  
20/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
Ordering Information—GSI NBT Synchronous SRAMs  
2
Speed  
3
1
Org  
Type  
Package  
T
Part Number  
J
(MHz/ns)  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
GS840Z18CGT-250  
GS840Z18CGT-200  
GS840Z18CGT-166  
GS840Z18CGT-150  
GS840Z18CGT-100  
GS840Z36CGT-250  
GS840Z36CGT-200  
GS840Z36CGT-166  
GS840Z36CGT-150  
GS840Z36CGT-100  
GS840Z18CGT-250I  
GS840Z18CGT-200I  
GS840Z18CGT-166I  
GS840Z18CGT-150I  
GS840Z18CGT-100I  
GS840Z36CGT-250I  
GS840Z36CGT-200I  
GS840Z36CGT-166I  
GS840Z36CGT-150I  
GS840Z36CGT-100I  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
RoHS-compliant TQFP  
250/5.5  
200/6.5  
166/7.0  
150/7.5  
100/12  
250/5.5  
200/6.5  
166/7.0  
150/7.5  
100/12  
250/5.5  
200/6.5  
166/7.0  
150/7.5  
100/12  
250/5.5  
200/6.5  
166/7.0  
150/7.5  
100/12  
C
C
C
C
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS840Z36CGT-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. C = Commercial Temperature Range. I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are  
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.01 8/2011  
21/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS840Z18CGT/GS840Z36CGT  
4Mb Synchronous NBT Datasheet Revision History  
Types of Changes  
File Name  
Revision  
Format or Content  
• Creation of new datasheet  
840ZxxC_r1  
• Updated Operating Currents table  
840ZxxC_r1_01  
Content  
Rev: 1.01 8/2011  
22/22  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS840Z18CGT-200T

ZBT SRAM, 256KX18, 6.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z18CGT-250T

ZBT SRAM, 256KX18, 5.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36AGT-100

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI

GS840Z36AGT-100I

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI

GS840Z36AGT-100T

ZBT SRAM, 128KX36, 12ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36AGT-150

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI

GS840Z36AGT-150I

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI

GS840Z36AGT-166

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI

GS840Z36AGT-166I

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI

GS840Z36AGT-166IT

ZBT SRAM, 128KX36, 8.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36AGT-166T

ZBT SRAM, 128KX36, 8.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36AGT-180

4Mb Pipelined and Flow Through Synchronous NBT SRAMs
GSI