GS840Z36AT-188IT [GSI]

SRAM;
GS840Z36AT-188IT
型号: GS840Z36AT-188IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

SRAM

静态存储器
文件: 总25页 (文件大小:708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS840Z18/36AT-180/166/150/100  
100-Pin TQFP  
Commercial Temp  
Industrial Temp  
180 MHz–100 MHz  
3.3 V VDD  
2.5 V and 3.3 V VDDQ  
4Mb Pipelined and Flow Through  
Synchronous NBT SRAMs  
Features  
Functional Description  
The GS840Z18/36AT is a 4Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
• 256K x 18 and 128K x 36 configurations  
• User configurable Pipeline and Flow Through mode  
• NBT (No Bus Turn Around) functionality allows zero wait  
read-write-read bus utilization  
• Fully pin compatible with both pipelined and flow through  
NtRAM™, NoBL™ and ZBT™ SRAMs  
• Pin-compatible with 2M, 8M and 16M devices  
• 3.3 V +10%/–5% core power supply  
Because it is a synchronous device, address, data inputs, and  
read/ write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleave Burst mode  
• Byte write operation (9-bit Bytes)  
• 3 chip enable signals for easy depth expansion  
• Clock Control, registered address, data, and control  
• ZZ Pin for automatic power-down  
• JEDEC-standard 100-lead TQFP package  
–180  
–166  
–150  
–100  
tCycle  
tKQ  
IDD  
5.5 ns  
3.2 ns  
6.0 ns  
3.5 ns  
6.6 ns  
3.8 ns  
10 ns  
4.5 ns  
190 mA  
Pipeline  
3-1-1-1  
The GS840Z18/36AT may be configured by the user to  
operate in Pipeline or Flow Through mode. Operating as a  
pipelined synchronous device, in addition to the rising-edge-  
triggered registers that capture input signals, the device  
incorporates a rising-edge-triggered output register. For read  
cycles, pipelined SRAM output data is temporarily stored by  
the edge triggered output register during the access cycle and  
then released to the output drivers at the next rising edge of  
clock.  
335 mA 310 mA 280 mA  
Flow  
Through tCycle  
2-1-1-1 IDD  
tKQ  
8 ns  
9.1 ns  
8.5 ns  
10 ns  
10 ns  
12 ns  
12 ns  
15 ns  
135 mA  
210 mA 190 mA 165 mA  
The GS840Z18/36AT is implemented with GSI's high  
performance CMOS technology and is available in a JEDEC-  
standard 100-pin TQFP package.  
Flow Through and Pipelined NBT SRAM Back-to-Back Read/Write Cycles  
Clock  
Address  
A
R
B
C
R
D
E
R
F
Read/Write  
W
W
W
Flow Through  
Data I/O  
Q
D
Q
D
D
Q
E
A
B
C
D
Pipelined  
Data I/O  
Q
Q
D
Q
E
A
B
C
D
Rev: 1.02 11/2002  
1/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
Preliminary  
GS840Z18/36AT-180/166/150/100  
GS840Z18AT Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A17  
NC  
NC  
V
SS  
NC  
DQA9  
DQA8  
DQA7  
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
V
4
DDQ  
DDQ  
V
V
5
SS  
NC  
NC  
6
7
8
DQB1  
DQB2  
9
256K x 18  
Top View  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
DDQ  
SS  
V
V
DDQ  
DQA6  
DQB3  
DQB4  
FT  
DQA5  
V
SS  
NC  
V
V
DD  
DD  
SS  
V
DD  
ZZ  
V
DQA4  
DQA3  
DQB5  
DQB6  
V
V
V
DDQ  
DDQ  
SS  
V
SS  
DQA2  
DQA1  
NC  
DQB7  
DQB8  
DQB9  
NC  
NC  
V
V
V
SS  
DDQ  
SS  
V
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.02 11/2002  
2/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
GS840Z36AT Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
DQB9  
DQB8  
DQB7  
DQC9  
DQC8  
DQC7  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
V
V
4
DDQ  
DDQ  
SS  
V
V
5
SS  
DQB6  
DQB5  
DQB4  
DQB3  
DQC6  
DQC5  
DQC4  
DQC3  
6
7
8
9
128K x 36  
Top View  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
DDQ  
SS  
V
V
DDQ  
DQB2  
DQC2  
DQC1  
FT  
DQB1  
V
SS  
NC  
V
V
DD  
DD  
SS  
V
DD  
ZZ  
V
DQA1  
DQA2  
DQD1  
DQD2  
DDQ  
V
V
V
DDQ  
SS  
V
SS  
DQA3  
DQA4  
DQA5  
DQA6  
DQD3  
DQD4  
DQD5  
DQD6  
V
V
V
SS  
DDQ  
SS  
V
DDQ  
DQA7  
DQA8  
DQA9  
DQD7  
DQD8  
DQD9  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.02 11/2002  
3/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
100-Pin TQFP Pin Descriptions  
Symbol  
Type  
In  
Description  
A0, A1  
Burst Address Inputs; preload the burst counter  
Address Inputs  
A2–A17  
In  
CK  
In  
Clock Input Signal  
BA  
In  
Byte Write signal for data inputs DQA1-DQA9; active low  
Byte Write signal for data inputs DQB1-DQB9; active low  
Byte Write signal for data inputs DQC1-DQC9; active low  
Byte Write signal for data inputs DQD1-DQD9; active low  
Write Enable; active low  
BB  
In  
BC  
In  
BD  
In  
W
In  
E1  
In  
Chip Enable; active low  
E2  
E3  
In  
Chip Enable; active high; for self decoded depth expansion  
Chip Enable; active low, for self decoded depth expansion  
Output Enable; active low  
In  
G
In  
ADV  
In  
Advance / Load—Burst address counter control pin  
Clock Input Buffer Enable; active low  
Byte A Data Input and Output pins  
CKE  
In  
DQA1–DQA9  
DQB1–DQB9  
DQC1–DQC9  
DQD1–DQD9  
ZZ  
I/O  
I/O  
I/O  
I/O  
In  
Byte B Data Input and Output pins  
Byte C Data Input and Output pins  
Byte D Data Input and Output pins  
Power down control; active high  
FT  
In  
Pipeline/Flow Through Mode Control; active low  
Linear Burst Order; active low  
LBO  
In  
V
In  
3.3 V power supply  
DD  
V
In  
In  
Ground  
3.3 V output power supply for noise reduction  
No Connect  
SS  
V
DDQ  
NC  
Rev: 1.02 11/2002  
4/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
GS840Z18/36A NBT SRAM Functional Block Diagram  
n s e e S A m p s  
i t r e W D r i v e r  
s
Rev: 1.02 11/2002  
5/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipelined Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signal W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the Output pins.  
Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The  
Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write cycle  
with no Byte Write inputs active is a no-op cycle. The Pipelined NBT SRAM provides double late write functionality, matching the  
write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising  
edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the  
third rising edge of clock.  
Flow through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use  
of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new  
address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way as well, but differ in that the write pipeline is one cycle shorter as well, preserving  
the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a  
double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode,  
address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising  
edge of clock.  
Rev: 1.02 11/2002  
6/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Synchronous Truth Table  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs; a Deselect continue cycle can only be entered into if a Deselect  
cycle is executed first  
2. Dummy read and write abort can be considered NOPs because the SRAM performs no operation. A write abort occurs when the W pin is  
sampled low, but no byte write pins are active, so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write  
cycles.  
4. If CKE high occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE high occurs during a write cycle, the bus will  
remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are low  
6. All inputs, except G and ZZ, must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.02 11/2002  
7/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Pipelined and Flow Through Read-Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram  
Rev: 1.02 11/2002  
8/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
B
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.02 11/2002  
9/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
Current State  
Next State  
Current State and Next State Definition for: Pipelined and Flow Through Read Write Control State Diagram  
Rev: 1.02 11/2002  
10/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
Read to Write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, interleaved burst sequence is selected. See the tables  
below for details.  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
L
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
Burst Order Control  
LBO  
H or NC  
L
Output Register Control  
Power Down Control  
FT  
ZZ  
H or NC  
L or NC  
H
Active  
Standby, I = I  
DD SB  
Note:  
There is a are pull-up devices on the LBO and FT pins and a pull down device on the ZZ pin, so those input pins can be unconnected and the chip  
will operate in the default states as specified in the above table.  
Enable / Disable Parity I/O Pins  
This SRAM allows the user to configure the device to operate in Parity I/O active (x18 or x36) or in Parity I/O inactive (x16 or x32) mode. Holding  
the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM. Tying PE high deactivates the 9th I/O of each byte, although  
the bit in each byte of the memory array remains active to store and recall parity bits generated and read into the ByteSafe parity circuits.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Rev: 1.02 11/2002  
11/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull-down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I 2. The duration of  
SB  
Sleep Mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, I 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
SB  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal found  
on Pin 14. Not all vendors offer this option, however, most mark Pin 14 as V or V  
on pipelined parts and V on flow  
SS  
DD  
DDQ  
through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Pin 66, a No Connect (NC) on GSI’s GS840Z18/36A NBT SRAM, the Parity Error open drain output on GSI’s GS881Z18/36 NBT  
SRAM, is often marked as a power pin on other vendor’s NBT-compatible SRAMs. Specifically, it is marked V or V on  
DD  
DDQ  
pipelined parts and V on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity feature  
SS  
may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline mode applications or  
tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open. By using the pull-up  
resistor, rather than tying the pin to one of the power rails, users interested in upgrading to GSI’s ByteSafe NBT SRAMs  
(GS881Z18/36), featuring Parity Error detection and JTAG Boundary Scan, will be ready for connection to the active low, open  
drain Parity Error output driver at Pin 66 on GSI’s TQFP ByteSafe RAMs.  
Rev: 1.02 11/2002  
12/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
V
Voltage on V Pins  
–0.5 to 4.6  
DD  
DD  
V
Voltage in V  
Pins  
–0.5 to V  
V
DDQ  
DDQ  
DD  
V
Voltage on Clock Input Pin  
Voltage on I/O Pins  
–0.5 to 6  
V
CK  
V
–0.5 to V  
+0.5 (4.6 V max.)  
DDQ  
V
I/O  
V
–0.5 to V +0.5 (4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
IN  
DD  
I
+/–20  
+/–20  
mA  
mA  
W
IN  
I
OUT  
P
1.5  
D
o
T
–55 to 125  
–55 to 125  
C
STG  
o
T
Temperature Under Bias  
C
BIAS  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended  
period of time, may affect reliability of this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
Min.  
3.135  
2.375  
1.7  
Typ.  
3.3  
2.5  
Max.  
Unit  
V
Notes  
V
3.6  
DD  
V
V
I/O Supply Voltage  
V
1
2
2
3
3
DDQ  
DD  
V
V
+0.3  
DD  
Input High Voltage  
V
IH  
V
Input Low Voltage  
–0.3  
0
0.8  
V
IL  
T
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
70  
85  
°C  
°C  
A
T
–40  
25  
A
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 2.75 V V  
2.375 V  
DDQ  
(i.e., 2.5 V I/O) and 3.6 V V  
3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case.  
DDQ  
2. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of  
Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
4. Input Under/overshoot voltage must be –2 V > Vi < V +2 V with a pulse width not to exceed 20% tKC.  
DD  
Rev: 1.02 11/2002  
13/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
– 2.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 3.3 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
= 0 V  
Input/Output Capacitance  
pF  
I/O  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
Max  
40  
Unit  
Notes  
1,2  
R
R
R
single  
four  
°C/W  
°C/W  
°C/W  
ΘJA  
ΘJA  
ΘJC  
24  
1,2  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient.  
Temperature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.02 11/2002  
14/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for t , t , t and t  
LZ HZ OLZ  
OHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225Ω  
DQ  
*
50Ω  
VT = 1.25 V  
30pF  
*
225Ω  
5pF  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
–1 uA  
1 uA  
IL  
V
V V  
IN  
–1 uA  
–1 uA  
1 uA  
300 uA  
DD  
IH  
IH  
I
ZZ Input Current  
INZZ  
0 V V V  
IN  
V
V V  
IN  
–300 uA  
–1 uA  
1 uA  
1 uA  
DD  
IL  
IL  
I
Mode Pin Input Current  
Output Leakage Current  
INM  
0 V V V  
IN  
Output Disable,  
V
I
–1 uA  
1 uA  
OL  
= 0 to V  
OUT  
DD  
V
I
I
= –8 mA, V  
= –8 mA, V  
= 2.375 V  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1.7 V  
2.4 V  
OH  
OH  
OH  
DDQ  
DDQ  
V
= 3.135 V  
OH  
V
I
= 8 mA  
OL  
0.4 V  
OL  
Rev: 1.02 11/2002  
15/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Operating Currents  
-180  
-166  
-150  
-100  
Parameter Test Conditions Symbol  
Unit  
0 to  
–40 to  
0 to  
–40 to  
0 to  
–40 to  
0 to  
–40 to  
70°C  
85°C  
70°C  
85°C  
70°C  
85°C  
70°C  
85°C  
IDD  
Pipeline  
Device Selected;  
All other inputs  
VIH or VIL  
335  
210  
20  
345  
310  
190  
20  
320  
280  
165  
20  
290  
190  
135  
20  
200  
mA  
mA  
mA  
mA  
mA  
mA  
Operating  
Current  
IDD  
Flow-Thru  
220  
30  
200  
30  
175  
30  
145  
30  
Output open  
ISB  
Pipeline  
ZZ VDD –  
Standby  
Current  
0.2 V  
ISB  
Flow-Thru  
20  
30  
20  
30  
20  
30  
20  
30  
IDD  
Pipeline  
55  
65  
50  
60  
50  
60  
40  
50  
Device Deselected;  
All other inputs  
VIH or VIL  
Deselect  
Current  
IDD  
Flow-Thru  
40  
50  
40  
50  
35  
45  
35  
45  
Rev: 1.02 11/2002  
16/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
AC Electrical Characteristics  
-180  
-166  
-150  
-100  
Parameter  
Symbol  
Unit  
Min  
5.5  
Max  
Min  
6.0  
Max  
Min  
6.7  
Max  
Min  
10  
Max  
Clock Cycle Time  
tKC  
tKQ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock to Output Valid  
3.2  
3.5  
3.8  
4.5  
Pipeline  
Clock to Output Invalid  
tKQX  
1.5  
1.5  
9.1  
1.5  
1.5  
10.0  
1.5  
1.5  
12.0  
1.5  
1.5  
15.0  
1
Clock to Output in Low-Z  
Clock Cycle Time  
tLZ  
tKC  
tKQ  
Clock to Output Valid  
8.0  
8.5  
10.0  
12.0  
Flow  
Through  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQX  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
1
tLZ  
tKH  
tKL  
Clock LOW Time  
1
Clock to Output in High-Z  
G to Output Valid  
3.2  
3.2  
3.5  
3.5  
3.8  
3.8  
5
tHZ  
tOE  
5
1
G to output in Low-Z  
0
0
0
0
tOLZ  
1
G to output in High-Z  
Setup time  
1.5  
0.5  
5
3.2  
1.5  
0.5  
5
3.5  
1.5  
0.5  
5
3.8  
2.0  
0.5  
5
5
ns  
ns  
ns  
ns  
tOHZ  
tS  
tH  
Hold time  
2
ZZ setup time  
tZZS  
2
ZZ hold time  
ZZ recovery  
1
1
1
1
ns  
ns  
tZZH  
tZZR  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested  
2. ZZ is an asynchronous signal. However, In order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.02 11/2002  
17/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Pipeline Mode Read/Write Cycle Timing  
1
2
3
4
5
6
7
8
9
10  
CK  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL tKC  
CKE  
E*  
ADV  
W
Bn  
tH  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0–An  
tKQ  
tHZ  
tOE  
tKQX  
tLZ  
D
Q
DQA–DQD  
Q(A3)  
Q(A4)  
Q(A6)  
D(A2)  
D(A1)  
D(A5)  
(A2+1)  
(A4+1)  
tKQX  
tH  
tS  
tOHZ  
tOLZ  
G
Write  
Write  
BURST Read  
Q(A3)  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
DESELECT  
Write  
Write  
D(A5)  
D(A2) Write  
Q(A6)  
COMMAND  
D(A1)  
D(A7)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E = 1 or E = 0 or E = 1  
1
2
3
Rev: 1.02 11/2002  
18/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Pipeline Mode No-Op, Stall and Deselect Timing  
2
8
4
3
5
6
10  
7
9
1
CK  
tH  
tH  
tH  
tS  
tS  
tS  
CKE  
E*  
ADV  
tS  
tH  
W
Bn  
A0–An  
DQ  
A1  
A2  
A3  
A4  
A5  
tHZ  
Q(A2)  
D(A1)  
Q(A3)  
D(A4)  
Q(A5)  
tKQX  
NOP  
Read  
STALL Read  
Q(A3)  
Write  
STALL  
Read  
CONTINUE  
DESELECT  
Write  
DESELECT  
Q(A2)  
D(A4)  
Q(A5)  
D(A1)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E = 1 or E = 0 or E = 1  
1
2
3
Rev: 1.02 11/2002  
19/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Flow Through Mode Read/Write Cycle Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
CKE  
E*  
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL  
tKC  
ADV  
W
Bn  
A7  
A0–An  
DQ  
A1  
A2  
A3  
A4  
A5  
A6  
tKQ  
tHZ  
tOE  
tKQX  
tLZ  
D
Q
Q(A3)  
Q(A4)  
Q(A6)  
D(A2)  
D(A1)  
D(A5)  
(A2+1)  
(A4+1)  
tKQX  
tOHZ  
tH  
tS  
tOLZ  
G
Write  
D(A5)  
Write  
BURST Read  
Read  
BURST  
Read  
DESELECT  
Write  
Write  
COMMAND  
D(A2)  
Write  
Q(A3)  
Q(A4) Read  
Q(A4+1)  
Q(A6)  
D(A1)  
D(A7)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E = 1 or E = 0 or E = 1  
1
2
3
Rev: 1.02 11/2002  
20/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Flow Through Mode No-Op, Stall and Deselect Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
tH  
tS  
tS  
tS  
CKE  
E*  
tH  
tH  
ADV  
W
Bn  
A1  
A2  
A3  
A4  
A5  
A0–An  
DQ  
tHZ  
Q(A2)  
D(A1)  
Q(A5)  
Q(A3)  
D(A4)  
NOP  
tKQX  
Read  
STALL Read  
Q(A3)  
Write  
STALL  
Read  
CONTINUE  
DESELECT  
DESELECT  
Write  
COMMAND  
Q(A2)  
D(A4)  
Q(A5)  
D(A1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E = 1 or E = 0 or E = 1  
1
2
3
Rev: 1.02 11/2002  
21/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Output Driver Characteristics  
TBD  
Rev: 1.02 11/2002  
22/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
TQFP Package Drawing  
θ
L
c
L1  
Symbol  
Description  
Standoff  
Min. Nom. Max  
A1  
A2  
b
0.05  
1.35  
0.20  
0.09  
0.10  
1.40  
0.30  
0.15  
1.45  
0.40  
0.20  
22.1  
20.1  
16.1  
14.1  
Body Thickness  
Lead Width  
c
Lead Thickness  
D
Terminal Dimension 21.9  
Package Body 19.9  
Terminal Dimension 15.9  
22.0  
20.0  
16.0  
14.0  
0.65  
0.60  
1.00  
e
D1  
E
b
E1  
e
Package Body  
Lead Pitch  
13.9  
L
Foot Length  
Lead Length  
Coplanarity  
Lead Angle  
0.45  
0.75  
L1  
Y
A1  
A2  
E1  
E
0.10  
7°  
θ
0°  
Notes:  
1. All dimensions are in millimeters (mm).  
2. Package width and length do not include mold protrusion.  
BPR 1999.05.18  
Rev: 1.02 11/2002  
23/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
Ordering Information—GSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
Notes:  
GS840Z18AT-180  
GS840Z18AT-166  
GS840Z18AT-150  
GS840Z18AT-100  
GS840Z36AT-180  
GS840Z36AT-166  
GS840Z36AT-150  
GS840Z36AT-100  
GS840Z18AT-180I  
GS840Z18AT-166I  
GS840Z18AT-150I  
GS840Z18AT-100I  
GS840Z36AT-180I  
GS840Z36AT-166I  
GS840Z36AT-150I  
GS840Z36AT-100I  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
180/8  
166/8.5  
150/10  
100/12  
180/8  
C
C
C
C
C
C
C
C
I
166/8.5  
150/10  
100/12  
180/8  
166/8.5  
150/10  
100/12  
180/8  
I
I
I
I
166/8.5  
150/10  
100/12  
I
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS840Z36AT-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some  
of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.02 11/2002  
24/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS840Z18/36AT-180/166/150/100  
4Mb Synchronous NBT Datasheet Revision History  
Types of Changes  
Format or Content  
DS/DateRev. Code: Old;  
Page /Revisions/Reason  
New  
• Creation of new datasheet  
840Z18A_r1  
• Updated power numbers in table on page 1 and Operating  
Currents table  
840Z18A_r1;  
Content  
Content  
840Z18A_r1_01  
• Removed 200 MHz speed bin from entire document  
• Removed pin locations from pin description table  
840Z18A_r1_01;  
840Z18A_r1_02  
Rev: 1.02 11/2002  
25/25  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  

相关型号:

GS840Z36CGT-100I

ZBT SRAM, 128KX36, 12ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-100IT

ZBT SRAM, 128KX36, 12ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-150I

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-150IT

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-166I

ZBT SRAM, 128KX36, 7ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-166IT

ZBT SRAM, 128KX36, 7ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-200IT

ZBT SRAM, 128KX36, 6.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-200T

ZBT SRAM, 128KX36, 6.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS840Z36CGT-250IT

ZBT SRAM, 128KX36, 5.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS84118AB-100

256K x 18 Sync Cache Tag
GSI

GS84118AB-100I

256K x 18 Sync Cache Tag
GSI

GS84118AB-100IT

Cache Tag SRAM, 256KX18, 12ns, CMOS, PBGA119, FBGA-119
GSI