GS841Z36AT-200IT [GSI]

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, TQFP-100;
GS841Z36AT-200IT
型号: GS841Z36AT-200IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, TQFP-100

静态存储器
文件: 总30页 (文件大小:955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
100-Pin TQFP  
Commercial Temp  
Industrial Temp  
4Mb Pipelined and Flow Through 200 MHz–100 MHz  
3.3 V V  
DD  
Synchronous NBT SRAMs  
2.5 V and 3.3 V V  
DDQ  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
Features  
• 256K x 18 and 128K x 36 configurations  
• User-configurable Pipelined and Flow Through mode  
• NBT (No Bus Turn Around) functionality allows zero wait  
• Fully pin-compatible with both pipelined and flow through  
NtRAM™, NoBL™ and ZBT™ SRAMs  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• 3.3 V +10%/–5% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleave Burst mode  
• Byte write operation (9-bit Bytes)  
• 3 chip enable signals for easy depth expansion  
• Clock Control, registered, address, data, and control  
• ZZ Pin for automatic power-down  
Because it is a synchronous device, address, data inputs, and  
read/ write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
Sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
The GS841Z18/36AT may be configured by the user to  
operate in Pipeline or Flow Through mode. Operating as a  
pipelined synchronous device, in addition to the rising-edge-  
triggered registers that capture input signals, the device  
incorporates a rising-edge-triggered output register. For read  
cycles, pipelined SRAM output data is temporarily stored by  
the edge-triggered output register during the access cycle and  
then released to the output drivers at the next rising edge of  
clock.  
• JEDEC-standard 100-lead TQFP package  
–200  
–180  
–166  
–150  
–100  
tCycle 5.0 ns 5.5 ns 6.0 ns 6.6 ns  
10 ns  
4.5 ns  
Pipeline  
3-1-1-1  
tKQ  
IDD  
3.0 ns 3.2 ns 3.5 ns 3.8 ns  
205 mA 185 mA 170 mA 155 mA 105 mA  
Flow  
tKQ  
7.5 ns  
8 ns  
8.5 ns  
10 ns  
12 ns  
12 ns  
15 ns  
Through tCycle 8.8 ns 9.1 ns 10 ns  
2-1-1-1  
IDD  
115 mA 115 mA 105 mA 100 mA 80 mA  
The GS841Z18/36AT is implemented with GSI's high  
performance CMOS technology and is available in a JEDEC-  
Standard 100-pin TQFP package.  
Functional Description  
The GS841Z18/36AT is an 4Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
late write SRAMs, allow utilization of all available bus  
Flow Through and Pipelined NBT SRAM Back-to-Back Read/Write Cycles  
Clock  
Address  
A
R
B
C
R
D
E
R
F
Read/Write  
W
W
W
Flow Through  
Data I/O  
QA  
DB  
QC  
DD  
QE  
DD  
Pipelined  
Data I/O  
QA  
DB  
QC  
QE  
Rev: 1.00 10/2001  
1/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
GS841Z18AT Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A17  
NC  
NC  
VDDQ  
VSS  
NC  
DQA9  
DQA8  
DQA7  
VSS  
VDDQ  
DQA6  
DQA5  
VSS  
NC  
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
VDDQ  
4
VSS  
NC  
NC  
DQB1  
DQB2  
VSS  
VDDQ  
DQB3  
DQB4  
FT  
VDD  
NC  
VSS  
DQB5  
DQB6  
VDDQ  
5
6
7
8
9
256K x 18  
Top View  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
DQA4  
DQA3  
VDDQ  
VSS  
DQA2  
DQA1  
NC  
VSS  
DQB7  
DQB8  
DQB9  
NC  
VSS  
VDDQ  
NC  
NC  
VSS  
VDDQ  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.00 10/2001  
2/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
GS841Z36AT Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
DQB9  
DQB8  
DQB7  
VDDQ  
VSS  
DQB6  
DQB5  
DQB4  
DQB3  
VSS  
VDDQ  
DQB2  
DQB1  
VSS  
NC  
VDD  
DQC9  
DQC8  
DQC7  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
VDDQ  
4
VSS  
DQC6  
DQC5  
DQC4  
DQC3  
VSS  
VDDQ  
DQC2  
DQC1  
FT  
VDD  
NC  
VSS  
DQD1  
DQD2  
VDDQ  
5
6
7
8
9
128K x 36  
Top View  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
ZZ  
DQA1  
DQA2  
VDDQ  
VSS  
DQA3  
DQA4  
DQA5  
DQA6  
VSS  
VDDQ  
DQA7  
DQA8  
DQA9  
VSS  
DQD3  
DQD4  
DQD5  
DQD6  
VSS  
VDDQ  
DQD7  
DQD8  
DQD9  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.00 10/2001  
3/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
100-Pin TQFP Pin Descriptions  
Typ  
e
Pin Location  
Symbol  
Description  
37, 36  
A0, A1  
In  
Burst Address Inputs—Preload the burst counter  
35, 34, 33, 32, 100, 99, 82, 81,  
50, 49, 48, 47, 46, 45, 44  
A2–A16  
In  
Address Inputs  
80  
89  
93  
94  
95  
96  
88  
98  
97  
92  
86  
85  
87  
A17  
CK  
BA  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
In  
I/O  
I/O  
Address Input (x18 Version Only)  
Clock Input Signal  
Byte Write signal for data inputs DQA1–DQA9; active low  
Byte Write signal for data inputs DQB1–DQB9; active low  
Byte Write signal for data inputs DQC1–DQC9; active low (x36 Version Only)  
Byte Write signal for data inputs DQD1–DQD9; active low (x36 Version Only)  
Write Enable; active low  
BB  
BC  
BD  
W
E1  
Chip Enable; active low  
E2  
Chip Enable; active low; for self decoded depth expansion  
Chip Enable; active low; for self decoded depth expansion  
Output Enable; active low  
E3  
G
ADV  
CKE  
Advance / Load—Burst address counter control pin  
Clock Input Buffer Enable; active low  
58, 59, 62,63, 68, 69, 72, 73, 74 DQA1–DQA9  
Byte A Data Input and Output pins (x18 Version Only)  
Byte B Data Input and Output pins (x18 Version Only)  
8, 9, 12, 13, 18, 19, 22, 23, 24  
DQB1–DQB9  
51, 52, 53, 56, 57, 75, 78, 79,  
1, 2, 3, 6, 7, 25, 28, 29, 30  
NC  
No Connect (x18 Version Only)  
51, 52, 53, 56, 57, 58, 59, 62,63 DQA1–DQA9  
I/O  
Byte A Data Input and Output pins (x36 Versions Only)  
Byte B Data Input and Output pins (x36 Versions Only)  
Byte C Data Input and Output pins (x36 Versions Only)  
Byte D Data Input and Output pins (x36 Versions Only)  
Power down control; active high  
68, 69, 72, 73, 74, 75, 78, 79, 80 DQB1–DQB9 I/O  
1, 2, 3, 6, 7, 8, 9, 12, 13  
DQC1–DQC9  
I/O  
I/O  
In  
18, 19, 22, 23, 24, 25, 28, 29, 30 DQD1–DQD9  
64  
ZZ  
FT  
14  
In  
Pipeline/Flow Through Mode Control; active low  
Linear Burst Order; active low  
31  
LBO  
TMS  
TDI  
In  
38  
In  
Scan Test Mode Select  
39  
Scan Test Data In  
42  
43  
TDO  
TCK  
VDD  
Scan Test Data Out  
Scan Test Clock  
15, 41, 65, 91  
3.3 V power supply  
5,10, 17, 21, 26, 40, 55, 60, 67,  
71, 76, 90  
VSS  
In  
Ground  
VDDQ  
NC  
4, 11, 20, 27, 54, 61, 70, 77  
42, 43,, 84, 16, 66  
In  
3.3 V output power supply for noise reduction  
No Connect  
Rev: 1.00 10/2001  
4/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipeline Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted Low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the Output pins.  
Write operation occurs when the RAM is selected, CKE is active and the Write input is sampled low at the rising edge of clock.  
The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A Write  
Cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,  
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At  
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is  
required at the third rising edge of clock.  
Flow Through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the  
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after  
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way as well, but differ in that the write pipeline is one cycle shorter, preserving the ability  
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late  
write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address  
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of  
clock.  
Rev: 1.00 10/2001  
5/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Synchronous Truth Table  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs; a Deselect continue cycle can only be entered into if a Deselect  
cycle is executed first  
2. Dummy read and write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is  
sampled low but no Byte Write pins are active, so no Write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during Write  
cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.00 10/2001  
6/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Pipeline and Flow Through Read-Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B and D represent input command  
codes, as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram  
Rev: 1.00 10/2001  
7/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
B
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.00 10/2001  
8/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram  
Rev: 1.00 10/2001  
9/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables  
below for details.  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
L
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
Burst Order Control  
LBO  
H or NC  
L
Output Register Control  
Power Down Control  
FT  
ZZ  
H or NC  
L or NC  
H
Active  
Standby, IDD = ISB  
Note:  
There are pull-up devices on the LBO and FT pins and a pull down device on the ZZ pin, so those input pins can be unconnected and the chip will  
operate in the default states as specified in the above table.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of  
Rev: 1.00 10/2001  
10/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal  
found on Pin 14. Not all vendors offer this option, however most mark Pin 14 as VDD or VDDQ on pipelined parts and VSS on flow  
through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Pin 66, a No Connect (NC) on GSI’s GS880Z18/36 NBT SRAM, the Parity Error open drain output on GSI’s GS881Z18/36 NBT  
SRAM, is often marked as a power pin on other vendor’s NBT-compatible SRAMs. Specifically, it is marked VDD or VDDQ on  
pipelined parts and VSS on flow through parts. Users of GSI NBT devices who are not actually using the ByteSafe™ parity feature  
may want to design the board site for the RAM with Pin 66 tied high through a 1k ohm resistor in Pipeline mode applications or  
tied low in Flow Through mode applications in order to keep the option to use non-configurable devices open. By using the pull-up  
resistor, rather than tying the pin to one of the power rails, users interested in upgrading to GSI’s ByteSafe NBT SRAMs  
(GS881Z18/36), featuring Parity Error detection and JTAG Boundary Scan, will be ready for connection to the active low, open  
drain Parity Error output driver at Pin 66 on GSI’s TQFP ByteSafe RAMs.  
Rev: 1.00 10/2001  
11/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
VDDQ  
VCK  
Description  
Value  
Unit  
Voltage on VDD Pins  
–0.5 to 4.6  
–0.5 to VDD  
V
V
V
Voltage in VDDQ Pins  
Voltage on Clock Input Pin  
Voltage on I/O Pins  
–0.5 to 6  
VI/O  
–0.5 to VDDQ +0.5 (£ 4.6 V max.)  
V
V
VIN  
–0.5 to VDD +0.5 (£ 4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
IIN  
+/–20  
+/–20  
mA  
mA  
W
IOUT  
PD  
TSTG  
TBIAS  
1.5  
oC  
oC  
–55 to 125  
–55 to 125  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended  
period of time, may affect reliability of this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min.  
3.135  
2.375  
1.7  
Typ.  
3.3  
2.5  
Max.  
3.6  
Unit  
V
Notes  
VDD  
I/O Supply Voltage  
V
1
2
2
3
3
VDD +0.3  
Input High Voltage  
V
VIL  
Input Low Voltage  
–0.3  
0
0.8  
70  
85  
V
TA  
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
°C  
°C  
TA  
–40  
25  
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 2.75 V £ VDDQ £ 2.375 V  
(i.e., 2.5 V I/O) and 3.6 V £ VDDQ £ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case.  
2. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of  
Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
4. Input Under/overshoot voltage must be –2 V > Vi < VDD +2 V with a pulse width not to exceed 20% tKC.  
Rev: 1.00 10/2001  
12/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 2.0 V  
VSS  
50%  
VDD  
50%  
VSS – 2.0 V  
20% tKC  
VIL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)  
Parameter  
Input Capacitance  
Symbol  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
CIN  
4
6
5
7
CI/O  
VOUT = 0 V  
Input/Output Capacitance  
pF  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
RQJA  
Max  
40  
Unit  
Notes  
1,2  
single  
four  
°C/W  
°C/W  
°C/W  
RQJA  
24  
1,2  
RQJC  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient.  
Temperature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.00 10/2001  
13/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for tLZ, tHZ, tOLZ and tOHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225W  
225W  
DQ  
30pF*  
50W  
5pF*  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
–1 uA  
1 uA  
VDD ³ VIN ³ VIH  
0 V £ VIN £ VIH  
–1 uA  
–1 uA  
1 uA  
300 uA  
IINZZ  
IINM  
IOL  
ZZ Input Current  
VDD ³ VIN ³ VIL  
0 V £ VIN £ VIL  
–300 uA  
–1 uA  
1 uA  
1 uA  
Mode Pin Input Current  
Output Leakage Current  
Output Disable,  
VOUT = 0 to VDD  
–1 uA  
1 uA  
VOH  
VOH  
VOL  
IOH = –8 mA, VDDQ = 2.375 V  
IOH = –8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1.7 V  
2.4 V  
0.4 V  
Rev: 1.00 10/2001  
14/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Operating Currents  
-200  
-180  
-166  
-150  
-100  
Parameter  
Test Conditions Symbol  
Unit  
0 to –40to 0 to –40to 0 to –40to 0 to –40to 0 to –40to  
70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C  
IDD  
Pipeline  
Device Selected;  
Operating All other inputs  
225  
135  
20  
235  
145  
30  
205  
135  
20  
215  
145  
30  
190  
125  
20  
200  
135  
30  
175  
120  
20  
185  
130  
30  
125  
100  
20  
135  
110  
30  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
³ VIH or £ VIL  
IDD  
Flow-Thru  
Output open  
ISB  
Pipeline  
ZZ ³ VDD –  
Standby  
Current  
0.2 V  
ISB  
Flow-Thru  
20  
30  
20  
30  
20  
30  
20  
30  
20  
30  
IDD  
Pipeline  
Device  
60  
70  
55  
65  
50  
60  
50  
60  
40  
50  
Deselect  
Current  
Deselected;  
All other inputs  
³ VIH or £ VIL  
IDD  
Flow-Thru  
45  
55  
40  
50  
40  
50  
35  
45  
35  
45  
Rev: 1.00 10/2001  
15/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
AC Electrical Characteristics  
-200  
-180  
-166  
-150  
-100  
Parameter  
Symbol  
Unit  
Min  
5.0  
Max  
Min  
5.5  
Max  
Min  
6.0  
Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock Cycle Time  
tKC  
tKQ  
3.5  
6.7  
3.8  
10  
4.5  
12.0  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.0  
3.2  
Pipeline  
tKQX  
1.5  
1.5  
8.8  
1.5  
1.5  
9.1  
1.5  
1.5  
10.0  
1.5  
1.5  
12.0  
1.5  
1.5  
15.0  
tLZ1  
tKC  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQ  
7.5  
8.0  
8.5  
10.0  
Flow  
Through  
tKQX  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
tLZ1  
tKH  
tKL  
Clock LOW Time  
tHZ1  
tOE  
Clock to Output in High-Z  
G to Output Valid  
3.0  
3.0  
3.2  
3.2  
3.5  
3.5  
3.8  
3.8  
5
tOLZ1  
G to output in Low-Z  
0
0
0
0
0
tOHZ1  
tS  
G to output in High-Z  
Setup time  
1.5  
0.5  
5
3.0  
1.5  
0.5  
5
3.2  
1.5  
0.5  
5
3.5  
1.5  
0.5  
5
3.8  
2.0  
0.5  
5
5
ns  
ns  
ns  
ns  
Hold time  
tH  
tZZS2  
ZZ setup time  
tZZH2  
tZZR  
ZZ hold time  
ZZ recovery  
1
1
1
1
1
ns  
ns  
20  
20  
20  
20  
20  
Rev: 1.00 10/2001  
16/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Pipeline Mode Read/Write Cycle Timing  
1
2
3
4
5
6
7
8
9
10  
CK  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL tKC  
CKE  
E*  
ADV  
W
Bn  
tH  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0–An  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
(A4+1)  
DQA–DQD  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
tKQX  
tH  
tS  
tOEHZ  
tOELZ  
G
Write  
D(A5)  
Write  
D(A2) Write  
D(A2+1)  
BURST Read  
Q(A3)  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
17/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Pipeline Mode No-Op, Stall and Deselect Timing  
2
8
4
3
5
6
10  
7
9
1
CK  
tH  
tH  
tH  
tS  
tS  
tS  
CKE  
E*  
ADV  
tS  
tH  
W
Bn  
A0An  
DQ  
A1  
A2  
A3  
A4  
A5  
tKHQZ  
Q(A2)  
D(A1)  
Q(A3)  
D(A4)  
Q(A5)  
tKQHZ  
NOP  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
CONTINUE  
DESELECT  
Write  
D(A1)  
DESELECT  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
18/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Flow Through Mode Read/Write Cycle Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
CKE  
E*  
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL  
tKC  
ADV  
W
Bn  
A7  
A0–An  
A1  
A2  
A3  
A4  
A5  
A6  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
DQ  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
(A4+1)  
tOELZ  
tKQX  
tH  
tS  
tOEHZ  
G
Write  
D(A5)  
Write  
D(A2)  
BURST Read  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
Write  
Q(A3)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
19/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Flow Through Mode No-Op, Stall and Deselect Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
tH  
tS  
tS  
tS  
CKE  
E*  
tH  
tH  
ADV  
W
Bn  
A1  
A2  
A3  
A4  
A5  
A0An  
tKHQZ  
Q(A2)  
D(A1)  
Q(A5)  
Q(A3)  
D(A4)  
NOP  
DQ  
tKQHZ  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
Write  
D(A1)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.00 10/2001  
20/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface  
standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Some  
functions have been modified or eliminated because they can slow the RAM. Nevertheless, the RAM supports 1149.1-1990 TAP  
(Test Access Port) Controller architecture, and can be expected to function in a manner that does not conflict with the operation of  
Standard 1149.1 compliant devices. The JTAG Port interfaces with conventional TTL / CMOS logic level signaling.  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits. To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.  
JTAG Pin Descriptions  
Pin  
Pin Name I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the  
falling edge of TCK.  
TCK  
Test Clock  
In  
Test Mode  
Select  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state  
machine. An undriven TMS input will produce the same result as a logic one input level.  
TMS  
TDI  
In  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed  
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP  
In Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to  
Test Data In  
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input  
level.  
Output that is active depending on the state of the TAP state machine. Output changes in response to the  
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO Test Data Out Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS  
as TCK is strobed. Each of the TAP Registers are serial shift registers that capture serial input data on the rising edge of TCK and  
push serial data out on the next falling edge of TCK. When a register is selected it is placed between the TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAMs JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.00 10/2001  
21/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Boundary Scan Register  
Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The  
flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. Two TAP  
instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
1
1
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
10 9 8 7 6 5 4 3 2 1  
0
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0 0 1 1 0 1 1 0 0 1  
0 0 1 1 0 1 1 0 0 1  
1
1
Rev: 1.00 10/2001  
22/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions, are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. Although the TAP controller in this device follows the 1149.1 conventions, it is not 1194.1-  
compliant because some of the mandatory instructions are not fully implemented. The TAP on this device may be used to monitor  
all input and I/O pads, but cannot be used to load address, data or control signals into the RAM or to preload the I/O buffers.This  
device will not perform EXTEST, INTEST or the SAMPLE/PRELOAD command.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
Rev: 1.00 10/2001  
23/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE/PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm  
the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data cap-  
ture set-up plus hold time (tTS plus tTH ). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O  
ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the  
TDI and TDO pins. Because the PRELOAD portion of the command is not implemented in this device, moving the controller to the Update-  
DR state with the SAMPLE / PRELOAD instruction loaded in the Instruction Register has the same effect as the Pause-DR command. This  
functionality is not Standard 1149.1-compliant.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in  
the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore, this device is not 1149.1-compliant. Neverthe-  
less, this RAM’s TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction regis-  
ter the RAM responds just as it does in response to the BYPASS instruction described above.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the  
Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 1.00 10/2001  
24/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
This RAM does not implement 1149.1 EXTEST function. *Not 1149.1 Compliant *  
1
1, 2  
1
IDCODE  
001  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z.  
SAMPLE-Z  
010  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
011  
1
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
This RAM does not implement 1149.1 PRELOAD function. *Not 1149.1 Compliant *  
100  
101  
110  
111  
1
1
1
1
GSI  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol Min. Max. Unit Notes  
VIHT  
VDD +0.3  
Test Port Input High Voltage  
1.7  
–0.3  
–300  
–1  
V
V
1, 2  
1, 2  
3
VILT  
Test Port Input Low Voltage  
0.8  
1
IINTH  
IINTL  
IOLT  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
uA  
uA  
uA  
V
1
4
–1  
1
5
VOHT  
VOLT  
2.4  
0.4  
6, 7  
6, 8  
V
Notes:  
1. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
2. Input Under/overshoot voltage must be –2 V > Vi < VDD +2 V with a pulse width not to exceed 20%  
tTKC.  
3. VDD ³ VIN ³ VIL  
4. 0 V £ VIN £ VIL  
5. Output Disable, VOUT = 0 to VDD  
6. The TDO output driver is served by the VDD supply.  
7. IOH = –4 mA  
8. IOL = +4 mA  
Rev: 1.00 10/2001  
25/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
2.3 V  
JTAG Port AC Test Load  
DQ  
Input low level  
0.2 V  
30pF*  
Input slew rate  
1 V/ns  
50W  
Input reference level  
Output reference level  
1.25 V  
VT = 1.25 V  
1.25 V  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
JTAG Port Timing Diagram  
tTKL  
tTKH  
tTKC  
TCK  
tTS tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
20  
10  
10  
5
Max  
Unit  
ns  
TCK Cycle Time  
10  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
ns  
ns  
ns  
ns  
tTH  
5
ns  
Rev: 1.00 10/2001  
26/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Output Driver Characteristics  
120.0  
100.0  
Pull Down Drivers  
80.0  
60.0  
40.0  
VDDQ  
20.0  
IOut  
0.0  
VOut  
VS S  
-20.0  
-40.0  
-60.0  
-80.0  
-100.0  
-120.0  
-140.0  
Pull Up Drivers  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
V Out (Pull Down)  
VDDQ - V Out (Pull Up)  
3.6V PD HD  
3.3V PD HD  
3.1V PD HD  
3.1V PU HD  
3.3V PU HD  
3.6V PU HD  
BPR 1999.05.18  
Rev: 1.00 10/2001  
27/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
TQFP Package Drawing  
q
L
c
L1  
Symbol  
Description  
Standoff  
Min. Nom. Max  
A1  
A2  
b
0.05  
1.35  
0.20  
0.09  
0.10  
1.40  
0.30  
0.15  
1.45  
0.40  
0.20  
22.1  
20.1  
16.1  
14.1  
Body Thickness  
Lead Width  
c
Lead Thickness  
D
Terminal Dimension 21.9  
Package Body 19.9  
Terminal Dimension 15.9  
22.0  
20.0  
16.0  
14.0  
0.65  
0.60  
1.00  
e
D1  
E
b
E1  
e
Package Body  
Lead Pitch  
13.9  
L
Foot Length  
Lead Length  
Coplanarity  
Lead Angle  
0.45  
0.75  
L1  
Y
A1  
A2  
E1  
E
0.10  
7°  
q
0°  
Notes:  
1. All dimensions are in millimeters (mm).  
2. Package width and length do not include mold protrusion.  
BPR 1999.05.18  
Rev: 1.00 10/2001  
28/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
Ordering Information—GSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
GS841Z18AT-200  
GS841Z18AT-180  
GS841Z18AT-166  
GS841Z18AT-150  
GS841Z18AT-100  
GS841Z36AT-200  
GS841Z36AT-180  
GS841Z36AT-166  
GS841Z36AT-150  
GS841Z36AT-100  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
200/7.5  
180/8  
C
C
C
C
C
C
C
C
C
C
I
166/8.5  
150/10  
100/12  
200/7.5  
180/8  
166/8.5  
150/10  
100/12  
200/7.5  
180/8  
256K x 18 GS841Z18AT-2001I  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
Notes:  
GS841Z18AT-180I  
GS841Z18AT-166I  
GS841Z18AT-150I  
GS841Z18AT-100I  
GS841Z36AT-200I  
GS841Z36AT-180I  
GS841Z36AT-166I  
GS841Z36AT-150I  
GS841Z36AT-100I  
I
166/8.5  
150/10  
100/12  
200/7.5  
180/8  
I
I
I
I
I
166/8.5  
150/10  
100/12  
I
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8Z36A-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some  
of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.00 10/2001  
29/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Product Preview  
GS841Z18/36AT-200/180/166/150/100  
4Mb Synchronous NBT Datasheet Revision History  
Types of Changes  
Format or Content  
DS/DateRev. Code: Old;  
Page /Revisions/Reason  
New  
• Creation of new datasheet  
841Z18A_r1  
Rev: 1.00 10/2001  
30/30  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  

相关型号:

GS841Z36AT-200T

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, TQFP-100
GSI

GS841Z36CGT-100

ZBT SRAM, 128KX36, 12ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-100I

ZBT SRAM, 128KX36, 12ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-100IT

ZBT SRAM, 128KX36, 12ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-100T

暂无描述
GSI

GS841Z36CGT-150

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-150I

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-150IT

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-150T

ZBT SRAM, 128KX36, 7.5ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-166

ZBT SRAM, 128KX36, 7ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-166I

ZBT SRAM, 128KX36, 7ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI

GS841Z36CGT-166IT

ZBT SRAM, 128KX36, 7ns, CMOS, PQFP100, ROHS COMPLIANT, TQFP-100
GSI