GS842Z36AGB-200T [GSI]

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, BGA-119;
GS842Z36AGB-200T
型号: GS842Z36AGB-200T
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, BGA-119

静态存储器
文件: 总33页 (文件大小:745K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
119-Bump BGA  
Commercial Temp  
Industrial Temp  
200 MHz–100 MHz  
4Mb Pipelined and Flow Through  
3.3 V V  
DD  
Synchronous NBT SRAMs  
2.5 V and 3.3 V V  
DDQ  
Features  
Functional Description  
The GS842Z18/36AB is a 4Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
• 256K x 18 and 128K x 36 configurations  
• User configurable Pipeline and Flow Through mode  
• NBT (No Bus Turn Around) functionality allows zero wait  
read-write-read bus utilization  
• Fully pin compatible with both pipelined and flow through  
NtRAM™, NoBL™ and ZBT™ SRAMs  
• Pin-compatible with 2M, 8M, and 16M devices  
• 3.3 V +10%/–10% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleave Burst mode  
• Byte write operation (9-bit Bytes)  
• 3 chip enable signals for easy depth expansion  
• Clock Control, registered address, data, and control  
• ZZ Pin for automatic power-down  
Because it is a synchronous device, address, data inputs, and  
read/ write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• JEDEC-standard 119-bump BGA package  
–200  
–180  
–166  
–150  
–100  
tCycle 5.0 ns 5.5 ns 6.0 ns 6.6 ns  
10 ns  
4.5 ns  
Pipeline  
3-1-1-1  
The GS842Z18/36AT may be configured by the user to  
operate in Pipeline or Flow Through mode. Operating as a  
pipelined synchronous device, in addition to the rising-edge-  
triggered registers that capture input signals, the device  
incorporates a rising-edge-triggered output register. For read  
cycles, pipelined SRAM output data is temporarily stored by  
the edge triggered output register during the access cycle and  
then released to the output drivers at the next rising edge of  
clock.  
tKQ  
IDD  
3.0 ns 3.2 ns 3.5 ns 3.8 ns  
370 mA 335 mA 310 mA 280 mA 190 mA  
Flow  
tKQ  
7.5 ns  
8 ns  
8.5 ns  
10 ns  
12 ns  
12 ns  
15 ns  
Through tCycle 8.8 ns 9.1 ns 10 ns  
2-1-1-1  
IDD  
220 mA 210 mA 190 mA 165 mA 135 mA  
The GS842Z18/36AT is implemented with GSI's high  
performance CMOS technology and is available in a JEDEC-  
standard 119-bump BGA package.  
Flow Through and Pipelined NBT SRAM Back-to-Back Read/Write Cycles  
Clock  
Address  
A
R
B
C
R
D
E
R
F
Read/Write  
W
W
W
Flow Through  
Data I/O  
Q
D
Q
D
Q
E
A
B
C
D
Pipelined  
Data I/O  
Q
D
Q
D
Q
E
A
B
C
D
Rev: 1.01 3/2002  
1/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
GS842Z18A Pad Out  
119 Bump BGATop View  
1
2
3
4
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
A6  
A7  
NC  
ADV  
VDD  
ZQ  
E1  
A8  
A9  
VDDQ  
NC  
E2  
A4  
A15  
A14  
VSS  
VSS  
VSS  
NC  
VSS  
NC  
VSS  
BA  
E3  
NC  
A5  
A3  
A16  
NC  
DQB1  
NC  
NC  
VSS  
VSS  
VSS  
BB  
DQA9  
NC  
NC  
DQB2  
NC  
DQA8  
VDDQ  
DQA6  
NC  
VDDQ  
NC  
G
DQA7  
NC  
G
H
J
DQB3  
NC  
VDD  
DQB5  
NC  
NC  
W
DQB4  
VDDQ  
NC  
VSS  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
LBO  
A11  
TDI  
DQA5  
VDD  
NC  
VDD  
CK  
NC  
CKE  
A1  
VDDQ  
DQA4  
NC  
K
L
DQB6  
VDDQ  
DQB8  
NC  
DQA3  
NC  
M
N
P
R
T
DQB7  
NC  
VSS  
VSS  
VSS  
FT  
VDDQ  
NC  
DQA2  
NC  
DQB9  
A2  
A0  
DQA1  
NC  
NC  
VDD  
NC  
TCK  
A13  
NC  
A10  
A12  
TDO  
A17  
ZZ  
U
VDDQ  
TMS  
NC  
VDDQ  
Rev: 1.01 3/2002  
2/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
GS842Z36A Pad Out  
119 Bump BGATop View  
1
2
3
4
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
A6  
A7  
NC  
ADV  
VDD  
ZQ  
E1  
A8  
A9  
VDDQ  
NC  
E2  
A4  
A15  
A14  
VSS  
VSS  
VSS  
BB  
E3  
NC  
A5  
A3  
A16  
NC  
DQC4  
DQC3  
VDDQ  
DQC2  
DQC1  
VDDQ  
DQD1  
DQD2  
VDDQ  
DQD3  
DQD4  
NC  
DQC9  
DQC8  
DQC7  
DQC6  
DQC5  
VDD  
VSS  
VSS  
VSS  
BC  
DQB9  
DQB8  
DQB7  
DQB6  
DQB5  
VDD  
DQB4  
DQB3  
VDDQ  
DQB2  
DQB1  
VDDQ  
DQA1  
DQA2  
VDDQ  
DQA3  
DQA4  
NC  
G
G
H
J
NC  
W
VSS  
NC  
VSS  
BD  
VSS  
NC  
VSS  
BA  
VDD  
CK  
NC  
CKE  
A1  
K
L
DQD5  
DQD6  
DQD7  
DQD8  
DQD9  
A2  
DQA5  
DQA6  
DQA7  
DQA8  
DQA9  
A13  
M
N
P
R
T
VSS  
VSS  
VSS  
LBO  
A10  
TDI  
VSS  
VSS  
VSS  
FT  
A0  
VDD  
A11  
TCK  
NC  
NC  
A12  
TDO  
NC  
ZZ  
U
VDDQ  
TMS  
NC  
VDDQ  
Rev: 1.01 3/2002  
3/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
GS842Z18/36A Pin Description  
Pin Location  
Symbol  
Type  
Description  
P4, N4  
A0, A1  
I
Address field LSBs and Address Counter Preset Inputs  
A2, A3, A5, A6, B3, B5, C2, C3, C5,  
C6, R2, R6, T3, T5  
An  
I
Address Inputs  
T4  
An  
NC  
An  
I
I
Address Inputs (x36 Version)  
No Connect (x36 Version)  
Address Inputs (x18 Version)  
A4, T2, T6  
T2, T6  
K7, L7, N7, P7, K6, L6, M6, N6, P6 DQA1DQA9  
H7, G7, E7, D7, H6, G6, F6, E6, D6 DQB1DQB9  
H1, G1, E1, D1, H2, G2, F2, E2, D2 DQC1DQC9  
K1, L1, N1, P1, K2, L2, M2, N2, P2 DQD1DQD9  
I/O  
Data Input and Output pins (x36 Version)  
L5, G5, G3, L3  
BA, BB, BC, BD  
I
I/O  
I
Byte Write Enable for DQA, DQB, DQC, DQA I/Os; active low ( x36 Version)  
Data Input and Output pin (x18 Version)  
P7, N6, L6, K7, H6, G7, F6, E7, D6 DQA1DQA9  
D1, E2, G2, H1, K2, L1, M2, N1, P2 DQB1DQB9  
L5, G3  
BA, BB  
Byte Write Enable for DQA, DQB Data I/Os; active low ( x18 Version)  
P6, N7, M6, L7, K6, H7, G6, E6, D7,  
D2, E1, F2, G1, H2, K1, L2, N2, P1,  
G5, L3, T4, A4  
NC  
No Connect (x18 Version)  
K4  
M4  
H4  
CK  
CKE  
W
I
I
I
I
I
I
I
I
I
I
Clock Input Signal; active high  
Clock Input Buffer Enable; active low  
Write Enable. Writes all enabled bytes; active low  
Chip Enable; active low  
E4, B6  
B2  
E1, E3  
E2  
Chip Enable; active high  
F4  
G
Output Enable; active low  
B4  
ADV  
ZZ  
Burst address counter advance enable; active high  
Sleep Mode control; active high  
T7  
R5  
FT  
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
R3  
LBO  
FLXDrive Output Impedance Control  
(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])  
D4  
ZQ  
I
B1, C1, R1, T1, L4, B7, C7, U6, J3,  
J5, G4, R7  
NC  
No Connect  
U2  
TMS  
I
Scan Test Mode Select  
Rev: 1.01 3/2002  
4/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
GS842Z18/36A Pin Description  
Pin Location  
Symbol  
Type  
Description  
Scan Test Data In  
Scan Test Data Out  
Scan Test Clock  
U3  
TDI  
TDO  
TCK  
VDD  
I
O
I
U5  
U4  
J2, C4, J4, R4, J6  
I
Core power supply  
D3, E3, F3, H3, K3, M3, N3, P3, D5,  
E5, F5, H5, K5, M5, N5, P5  
VSS  
I
I/O and Core Ground  
A1, F1, J1, M1, U1, A7, F7,  
J7, M7, U7  
VDDQ  
CK  
I
I
Output driver power supply  
K4  
Clock Input Signal; active high  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipelined Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
L
H
H
L
H
H
H
L
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signal W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the Output pins.  
Write operation occurs when the RAM is selected, CKE is active and the write input is sampled low at the rising edge of clock. The  
Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write cycle  
Rev: 1.01 3/2002  
5/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
with no Byte Write inputs active is a no-op cycle. The Pipelined NBT SRAM provides double late write functionality, matching the  
write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising  
edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the  
third rising edge of clock.  
Flow through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a read cycle and the use  
of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new  
address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way as well, but differ in that the write pipeline is one cycle shorter as well, preserving  
the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a  
double late write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode,  
address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising  
edge of clock.  
Rev: 1.01 3/2002  
6/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Synchronous Truth Table  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs; a Deselect continue cycle can only be entered into if a Deselect  
cycle is executed first  
2. Dummy read and write abort can be considered NOPs because the SRAM performs no operation. A write abort occurs when the W pin is  
sampled low, but no byte write pins are active, so no write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write  
cycles.  
4. If CKE high occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE high occurs during a write cycle, the bus will  
remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are low  
6. All inputs, except G and ZZ, must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.01 3/2002  
7/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Pipelined and Flow Through Read-Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram  
Rev: 1.01 3/2002  
8/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
R
B
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.01 3/2002  
9/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Flow Through Mode Data I/O State Diagram  
R
B
W
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
Current State  
Next State  
Current State and Next State Definition for: Pipelined and Flow Through Read Write Control State Diagram  
Rev: 1.01 3/2002  
10/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
Read to Write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, interleaved burst sequence is selected. See the tables  
below for details.  
FLXDrive™  
The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive  
strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
L
H or NC  
L
Burst Order Control  
LBO  
Output Register Control  
Power Down Control  
FT  
ZZ  
ZQ  
H or NC  
L or NC  
H
Active  
Standby, IDD = ISB  
L
High Drive (Low Impedance)  
Low Drive (High Impedance)  
FLXDrive Output Impedance Control  
H or NC  
Note:  
There is a are pull-up devices on the LBO, ZQ, and FT pins and a pull down device on the PE and ZZ pins, so those input pins can be  
unconnected and the chip will operate in the default states as specified in the above table.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Rev: 1.01 3/2002  
11/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull-down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of  
Sleep Mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal  
found on Bump R5. Not all vendors offer this option, however, most mark Bump R5 as VDD or VDDQ on pipelined parts and VSS  
on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.  
Rev: 1.01 3/2002  
12/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
Description  
Value  
Unit  
Voltage on VDD Pins  
–0.5 to 4.6  
–0.5 to VDD  
V
V
V
VDDQ  
VCK  
Voltage in VDDQ Pins  
Voltage on Clock Input Pin  
Voltage on I/O Pins  
–0.5 to 6  
VI/O  
–0.5 to VDDQ +0.5 (£ 4.6 V max.)  
V
V
VIN  
–0.5 to VDD +0.5 (£ 4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
IIN  
+/–20  
+/–20  
mA  
mA  
W
IOUT  
PD  
1.5  
oC  
oC  
TSTG  
–55 to 125  
–55 to 125  
TBIAS  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended  
period of time, may affect reliability of this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min.  
3.135  
2.375  
1.7  
Typ.  
3.3  
2.5  
Max.  
3.6  
Unit  
V
Notes  
VDD  
I/O Supply Voltage  
V
1
2
2
3
3
VDD +0.3  
Input High Voltage  
V
VIL  
Input Low Voltage  
–0.3  
0
0.8  
70  
85  
V
TA  
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
°C  
°C  
TA  
–40  
25  
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 2.75 V £ VDDQ £ 2.375 V  
(i.e., 2.5 V I/O) and 3.6 V £ VDDQ £ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case.  
2. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of  
Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
4. Input Under/overshoot voltage must be –2 V > Vi < VDD +2 V with a pulse width not to exceed 20% tKC.  
Rev: 1.01 3/2002  
13/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 2.0 V  
VSS  
50%  
VDD  
50%  
VSS – 2.0 V  
20% tKC  
VIL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)  
Parameter  
Input Capacitance  
Symbol  
Test conditions  
VIN = 0 V  
Typ.  
Max.  
Unit  
pF  
CIN  
4
6
5
7
CI/O  
VOUT = 0 V  
Input/Output Capacitance  
pF  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
RQJA  
Max  
40  
Unit  
Notes  
1,2  
single  
four  
°C/W  
°C/W  
°C/W  
RQJA  
24  
1,2  
RQJC  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient.  
Temperature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.01 3/2002  
14/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for tLZ, tHZ, tOLZ and tOHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225W  
225W  
DQ  
30pF*  
50W  
5pF*  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
–1 uA  
1 uA  
VDD ³ VIN ³ VIH  
0 V £ VIN £ VIH  
–1 uA  
–1 uA  
1 uA  
300 uA  
IINZZ  
IINM  
IOL  
ZZ Input Current  
VDD ³ VIN ³ VIL  
0 V £ VIN £ VIL  
–300 uA  
–1 uA  
1 uA  
1 uA  
Mode Pin Input Current  
Output Leakage Current  
Output Disable,  
VOUT = 0 to VDD  
–1 uA  
1 uA  
VOH  
VOH  
VOL  
IOH = –8 mA, VDDQ = 2.375 V  
IOH = –8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1.7 V  
2.4 V  
0.4 V  
Rev: 1.01 3/2002  
15/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Operating Currents  
-200  
-180  
-166  
-150  
-100  
Test  
Conditions  
Parameter  
Symbol  
Unit  
0 to –40to 0 to –40to 0 to –40to 0 to –40to 0 to –40to  
70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C  
IDD  
Pipeline  
Device Selected;  
All other inputs  
³ VIH or £ VIL  
370  
220  
20  
380  
230  
30  
335  
210  
20  
345  
220  
30  
310  
190  
20  
320  
200  
30  
280  
165  
20  
290  
175  
30  
190  
135  
20  
200  
145  
30  
mA  
mA  
mA  
mA  
mA  
mA  
Operating  
Current  
IDD  
Flow-Thru  
Output open  
ISB  
Pipeline  
ZZ ³ VDD –  
Standby  
Current  
0.2 V  
ISB  
Flow-Thru  
20  
30  
20  
30  
20  
30  
20  
30  
20  
30  
IDD  
Pipeline  
Device  
Deselected;  
All other inputs  
³ VIH or £ VIL  
60  
70  
55  
65  
50  
60  
50  
60  
40  
50  
Deselect  
Current  
IDD  
Flow-Thru  
45  
55  
40  
50  
40  
50  
35  
45  
35  
45  
Rev: 1.01 3/2002  
16/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
AC Electrical Characteristics  
-200  
-180  
-166  
-150  
-100  
Parameter  
Symbol  
Unit  
Min  
5.0  
Max  
Min  
5.5  
Max  
Min  
6.0  
Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock Cycle Time  
tKC  
tKQ  
3.5  
6.7  
3.8  
10  
4.5  
12.0  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.0  
3.2  
Pipeline  
tKQX  
1.5  
1.5  
8.8  
1.5  
1.5  
9.1  
1.5  
1.5  
10.0  
1.5  
1.5  
12.0  
1.5  
1.5  
15.0  
tLZ1  
tKC  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQ  
7.5  
8.0  
8.5  
10.0  
Flow  
Through  
tKQX  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
3.0  
3.0  
1.3  
1.5  
1.5  
tLZ1  
tKH  
tKL  
Clock LOW Time  
tHZ1  
tOE  
Clock to Output in High-Z  
G to Output Valid  
3.0  
3.0  
3.2  
3.2  
3.5  
3.5  
3.8  
3.8  
5
tOLZ1  
G to output in Low-Z  
0
0
0
0
0
tOHZ1  
tS  
G to output in High-Z  
Setup time  
1.5  
0.5  
5
3.0  
1.5  
0.5  
5
3.2  
1.5  
0.5  
5
3.5  
1.5  
0.5  
5
3.8  
2.0  
0.5  
5
5
ns  
ns  
ns  
ns  
Hold time  
tH  
tZZS2  
ZZ setup time  
tZZH2  
tZZR  
ZZ hold time  
ZZ recovery  
1
1
1
1
1
ns  
ns  
20  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested  
2. ZZ is an asynchronous signal. However, In order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.01 3/2002  
17/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Pipeline Mode Read/Write Cycle Timing  
1
2
3
4
5
6
7
8
9
10  
CK  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL tKC  
CKE  
E*  
ADV  
W
Bn  
tH  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0–An  
tKQ  
tHZ  
tOE  
tKQX  
tLZ  
D
Q
(A4+1)  
DQA–DQD  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
tKQX  
tH  
tS  
tOHZ  
tOLZ  
G
Write  
D(A5)  
Write  
D(A2) Write  
D(A2+1)  
BURST Read  
Q(A3)  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.01 3/2002  
18/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Pipeline Mode No-Op, Stall and Deselect Timing  
2
8
4
3
5
6
10  
7
9
1
CK  
tH  
tH  
tH  
tS  
tS  
tS  
CKE  
E*  
ADV  
tS  
tH  
W
Bn  
A0–An  
DQ  
A1  
A2  
A3  
A4  
A5  
tHZ  
Q(A2)  
D(A1)  
Q(A3)  
D(A4)  
Q(A5)  
tKQX  
NOP  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
CONTINUE  
DESELECT  
Write  
D(A1)  
DESELECT  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.01 3/2002  
19/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Flow Through Mode Read/Write Cycle Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
CKE  
E*  
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL  
tKC  
ADV  
W
Bn  
A7  
A0–An  
A1  
A2  
A3  
A4  
A5  
A6  
tKQ  
tHZ  
tOE  
tKQX  
tLZ  
D
Q
(A4+1)  
DQ  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
tKQX  
tOHZ  
tH  
tS  
tOLZ  
G
Write  
D(A5)  
Write  
D(A2)  
BURST Read  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
Write  
Q(A3)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.01 3/2002  
20/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Flow Through Mode No-Op, Stall and Deselect Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
tH  
tS  
tS  
tS  
CKE  
E*  
tH  
tH  
ADV  
W
Bn  
A1  
A2  
A3  
A4  
A5  
A0–An  
tHZ  
Q(A2)  
D(A1)  
Q(A5)  
Q(A3)  
D(A4)  
NOP  
DQ  
tKQX  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
Write  
D(A1)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.01 3/2002  
21/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard  
(commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output drivers are powered by VDDQ  
.
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI,  
and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may  
be left floating or tied to either VDD or VSS. TDO should be left unconnected.  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied  
to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and  
pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various  
data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The  
Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset  
state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s  
JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.01 3/2002  
22/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are  
then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also  
includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins and the bits in the Boundary Scan  
Register is described in the Scan Order Table following. The Boundary Scan Register, under the control of the TAP Controller, is loaded with the  
contents of the RAMs I/O ring when the controller is in Capture-DR state and then is placed between the TDI and TDO pins when the controller is  
moved to Shift-DR state. SAMPLE-Z, SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with  
the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM. It describes various attributes of the  
RAM as indicated below. The register is then placed between the TDI and TDO pins when the controller is moved into Shift-DR state. Bit 0 in the  
register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Rev: 1.01 3/2002  
23/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific (Private)  
instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be implemented in prescribed  
ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load address, data or control signals into the  
RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01. When the  
controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired instruction is serially  
loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to Update-IR state. The TAP instruction set for this device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
Rev: 1.01 3/2002  
24/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the  
Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it  
is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although  
allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be  
paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-  
DR state then places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s.  
The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input  
pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK  
when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,  
the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are trans-  
ferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the  
value of the Boundary Scan Register location with which each output pin is associated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the  
Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 1.01 3/2002  
25/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
1
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z.  
SAMPLE-Z  
RFU  
010  
011  
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
SAMPLE/PRELOAD  
GSI  
100  
101  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI private instruction.  
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
110  
111  
1
1
BYPASS  
Notes:  
Places Bypass Register between TDI and TDO.  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.01 3/2002  
26/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
VIHJ3  
VILJ3  
Min.  
Max.  
VDD3 +0.3  
0.8  
Unit Notes  
2.0  
3.3 V Test Port Input High Voltage  
3.3 V Test Port Input Low Voltage  
2.5 V Test Port Input High Voltage  
2.5 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
V
V
1
1
0.3  
VIHJ2  
VILJ2  
0.6 * VDD2  
VDD2 +0.3  
0.3 * VDD2  
V
1
0.3  
V
1
IINHJ  
300  
1
100  
1
uA  
uA  
uA  
V
2
IINLJ  
1  
3
IOLJ  
1  
4
VOHJ  
VOLJ  
Test Port Output High Voltage  
Test Port Output Low Voltage  
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
0.4  
V
VOHJC  
VOLJC  
VDDQ – 100 mV  
Test Port Output CMOS High  
V
Test Port Output CMOS Low  
100 mV  
V
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.  
2. ILJ £ VIN £ VDDn  
V
3. 0 V £ VIN £ VILJn  
4. Output Disable, VOUT = 0 to VDDn  
5. The TDO output driver is served by the VDDQ supply.  
6. IOHJ = 4 mA  
7. IOLJ = + 4 mA  
8. IOHJC = –100 uA  
9. IOHJC = +100 uA  
Rev: 1.01 3/2002  
27/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
2.3 V  
JTAG Port AC Test Load  
DQ  
Input low level  
0.2 V  
30pF*  
50W  
Input slew rate  
1 V/ns  
VT = 1.25 V  
Input reference level  
Output reference level  
1.25 V  
* Distributed Test Jig Capacitance  
1.25 V  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKL  
tTS  
tTKH  
tTKC  
TCK  
tTH  
TMS  
TDI  
TDO  
tTKQ  
Rev: 1.01 3/2002  
28/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
20  
20  
10  
10  
ns  
ns  
ns  
tTH  
ns  
GS842Z18/36A Boundary Scan Chain Order  
Bump  
Order  
x36  
x18  
x36  
x18  
1(TBD)  
Rev: 1.01 3/2002  
29/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Output Driver Characteristics  
TBD  
Rev: 1.01 3/2002  
30/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Package Dimensions—119-Bump BGA  
Pin 1  
Corner  
A
7 6 5 4 3 2  
1
A
B
C
D
E
F
G
H
J
G
D
B
P
S
K
L
M
N
P
R
T
U
R
N
Bottom View  
Top View  
Package Dimensions—119-Pin BGA  
Symbol  
Description  
Width  
Min. Nom. Max  
A
13.8  
21.8  
-
14.0  
22.0  
14.2  
22.2  
2.40  
0.90  
0.70  
1.70  
B
Length  
C
Package Height (including ball)  
Ball Size  
D
0.60  
0.50  
0.75  
0.60  
E
Ball Height  
F
Package Height (excluding balls)  
Width between Balls  
Package Height above board  
Cut-out Package Width  
Foot Length  
1.46  
G
1.27  
K
0.80  
0.90  
1.00  
N
12.00  
19.50  
7.62  
P
R
Width of package between balls  
Length of package between balls  
Variance of Ball Height  
S
T
20.32  
0.15  
Side View  
Unit: mm  
BPR 1999.05.18  
Rev: 1.01 3/2002  
31/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
Ordering Information—GSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
GS842Z18AB-200  
GS842Z18AB-180  
GS842Z18AB-166  
GS842Z18AB-150  
GS842Z18AB-100  
GS842Z36AB-200  
GS842Z36AB-180  
GS842Z36AB-166  
GS842Z36AB-150  
GS842Z36AB-100  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
NBT Pipeline/Flow Through  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
200/7.5  
180/8  
C
C
C
C
C
C
C
C
C
C
I
166/8.5  
150/10  
100/12  
200/7.5  
180/8  
166/8.5  
150/10  
100/12  
200/7.5  
180/8  
256K x 18 GS842Z18AB-2001I  
256K x 18  
256K x 18  
256K x 18  
256K x 18  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
128K x 36  
Notes:  
GS842Z18AB-180I  
GS842Z18AB-166I  
GS842Z18AB-150I  
GS842Z18AB-100I  
GS842Z36AB-200I  
GS842Z36AB-180I  
GS842Z36AB-166I  
GS842Z36AB-150I  
GS842Z36AB-100I  
I
166/8.5  
150/10  
100/12  
200/7.5  
180/8  
I
I
I
I
I
166/8.5  
150/10  
100/12  
I
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS842Z36AB-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some  
of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.01 3/2002  
32/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary  
GS842Z18/36AB-200/180/166/150/100  
4Mb Synchronous NBT Datasheet Revision History  
Types of Changes  
Format or Content  
DS/DateRev. Code: Old;  
Page /Revisions/Reason  
New  
• Creation of new datasheet  
842Z18A_r1  
• Updated power numbers in table on page 1 and Operating  
Currents table  
• Updated pinout for x18  
• Updated Pin Description table  
• Removed ByteSafe references  
• Changed DP and QE to NC  
842Z18A_r1;  
842Z18A_r1_01  
Content  
• Delete PE from entire document (changed to NC)  
Rev: 1.01 3/2002  
33/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  

相关型号:

GS842Z36CB-100

ZBT SRAM, 128KX36, 12ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CB-150IT

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CB-166IT

ZBT SRAM, 128KX36, 7ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CB-166T

ZBT SRAM, 128KX36, 7ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CB-200

ZBT SRAM, 128KX36, 6.5ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CB-250

ZBT SRAM, 128KX36, 5.5ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CB-250IT

ZBT SRAM, 128KX36, 5.5ns, CMOS, PBGA119, FPBGA-119
GSI

GS842Z36CGB-100

ZBT SRAM, 128KX36, 12ns, CMOS, PBGA119, ROHS COMPLIANT, FPBGA-119
GSI

GS842Z36CGB-150

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, ROHS COMPLIANT, FPBGA-119
GSI

GS842Z36CGB-150IT

ZBT SRAM, 128KX36, 7.5ns, CMOS, PBGA119, ROHS COMPLIANT, FPBGA-119
GSI

GS842Z36CGB-166

ZBT SRAM, 128KX36, 7ns, CMOS, PBGA119, ROHS COMPLIANT, FPBGA-119
GSI

GS842Z36CGB-166I

ZBT SRAM, 128KX36, 7ns, CMOS, PBGA119, ROHS COMPLIANT, FPBGA-119
GSI