GS8662S08GE-167I [GSI]

72Mb Burst of 2 DDR SigmaSIO-II SRAM; 2个DDR SigmaSIO -II SRAM 72MB爆
GS8662S08GE-167I
型号: GS8662S08GE-167I
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

72Mb Burst of 2 DDR SigmaSIO-II SRAM
2个DDR SigmaSIO -II SRAM 72MB爆

存储 内存集成电路 静态存储器 双倍数据速率
文件: 总37页 (文件大小:1767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
333 MHz–167 MHz  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
72Mb Burst of 2  
DDR SigmaSIO-II SRAM  
1.8 V V  
DD  
1.8 V and 1.5 V I/O  
Features  
• Simultaneous Read and Write SigmaSIO™ Interface  
• JEDEC-standard pinout and package  
• Dual Double Data Rate interface  
• Byte Write controls sampled at data-in time  
• DLL circuitry for wide output data valid window and future  
frequency scaling  
• Burst of 2 Read and Write  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V or 1.8 V HSTL Interface  
• Pipelined read operation  
• Fully coherent read and write pipelines  
• ZQ mode pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• Pin-compatible with future 144Mb devices  
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package  
• RoHS-compliant 165-bump BGA package available  
Bottom View  
165-Bump, 15 mm x 17 mm BGA  
1 mm Bump Pitch, 11 x 15 Bump Array  
JEDEC Std. MO-216, Variation CAB-1  
SigmaRAMFamily Overview  
Clocking and Addressing Schemes  
GS8662S08/09/18/36 are built in compliance with the  
SigmaSIO-II SRAM pinout standard for Separate I/O  
synchronous SRAMs. They are 75,497,472-bit (72Mb)  
SRAMs. These are the first in a family of wide, very low  
voltage HSTL I/O SRAMs designed to operate at the speeds  
needed to implement economical high performance  
networking systems.  
A Burst of 2 SigmaSIO-II SRAM is a synchronous device. It  
employs dual input register clock inputs, K and K. The device  
also allows the user to manipulate the output register clock  
input quasi independently with dual output register clock  
inputs, C and C. If the C clocks are tied high, the K clocks are  
routed internally to fire the output registers instead. Each Burst  
of 2 SigmaSIO-II SRAM also supplies Echo Clock outputs,  
CQ and CQ, which are synchronized with read data output.  
When used in a source synchronous clocking scheme, the Echo  
Clock outputs can be used to fire input registers at the data’s  
destination.  
Because Separate I/O Burst of 2 RAMs always transfer data in  
two packets, A0 is internally set to 0 for the first read or write  
transfer, and automatically incremented by 1 for the next  
transfer. Because the LSB is tied off internally, the address  
field of a Burst of 2 RAM is always one address pin less than  
the advertised index depth (e.g., the 4M x 18 has a 1M  
addressable index).  
Parameter Synopsis  
- 333  
3.0 ns  
0.45 ns  
-300  
3.3 ns  
-250  
4.0 ns  
0.45 ns  
-200  
5.0 ns  
0.45 ns  
-167  
tKHKH  
tKHQV  
6.0 ns  
0.5 ns  
0.45 ns  
Rev: 1.01 9/2005  
1/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
8M x 8 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
R/W  
NW1  
K
NC  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D4  
NC  
NC  
D5  
NC  
NC  
NC  
Q4  
NC  
Q5  
SA  
NC  
SA  
K
NW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D2  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
V
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
D
V
V
V
V
REF  
OFF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
Q1  
K
L
NC  
NC  
NC  
Q6  
NC  
D6  
NC  
NC  
Q7  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
NC  
D7  
V
V
NC  
SS  
SS  
SS  
SS  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
NC  
TCK  
SA  
SA  
SA  
SA  
NC  
TDO  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.  
2. It is recommended that H1 be tied low for compatibility with future devices.  
Rev: 1.01 9/2005  
2/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
8M x 9 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
R/W  
NC  
K
NC  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
NC  
NC  
D5  
NC  
NC  
D6  
NC  
NC  
NC  
Q5  
NC  
Q6  
SA  
NC  
SA  
K
BW  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D3  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
NC  
TDI  
V
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
Q2  
K
L
NC  
Q7  
NC  
D7  
NC  
NC  
Q8  
SA  
V
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
D8  
V
V
NC  
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
NC  
TCK  
SA  
SA  
SA  
SA  
D0  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW controls writes to D0:D7  
1. It is recommended that H1 be tied low for compatibility with future devices.  
Rev: 1.01 9/2005  
3/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
4M x 18 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
V
/SA  
SS  
A
CQ  
SA  
R/W  
BW1  
K
NC  
LD  
SA  
SA  
CQ  
(144Mb)  
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
Q9  
D9  
SA  
NC  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
NC  
D11  
NC  
D10  
Q10  
Q11  
D12  
Q13  
V
V
SA  
V
SS  
SS  
SS  
SS  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
D
V
V
V
V
REF  
OFF  
REF  
DDQ  
DDQ  
NC  
NC  
NC  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
NC  
Q4  
K
L
NC  
NC  
V
NC  
NC  
NC  
NC  
NC  
SA  
D3  
NC  
Q1  
Q15  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NC  
V
V
SS  
SS  
SS  
SS  
NC  
D17  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
D0  
NC  
SA  
SA  
SA  
SA  
TDO  
TCK  
C
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
2. It is recommended that H1 be tied low for compatibility with future devices.  
Rev: 1.01 9/2005  
4/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
2M x 36 SigmaQuad SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
/SA  
11  
V
/SA  
V
SS  
SS  
A
CQ  
SA  
R/W  
BW2  
K
BW1  
LD  
SA  
CQ  
(288Mb)  
(144Mb)  
B
C
D
E
F
Q27  
D27  
D28  
Q29  
Q30  
D30  
Q18  
D18  
D19  
Q19  
Q20  
D21  
Q22  
SA  
BW3  
SA  
K
BW0  
SA  
SA  
D17  
D16  
Q16  
Q15  
D14  
Q13  
Q17  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
Q28  
D20  
D29  
Q21  
D22  
V
V
SA  
V
Q7  
D15  
D6  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
Q14  
D13  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
D
V
V
V
V
REF  
OFF  
REF  
DDQ  
DDQ  
D31  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q4  
D3  
K
L
Q32  
Q33  
D33  
D34  
Q35  
TDO  
V
V
V
V
V
V
Q11  
Q1  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
D9  
SA  
SA  
SA  
SA  
D0  
C
SA  
TMS  
2
11 x 15 Bump BGA—15 x 17 mm Body—1 mm Bump Pitch  
Notes:  
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.  
2. BW2 controls writes to D18:D26. BW3 controls writes to D27:D35.  
3. It is recommended that H1 be tied low for compatibility with future devices.  
Rev: 1.01 9/2005  
5/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Pin Description Table  
Symbol  
SA  
Description  
Synchronous Address Inputs  
No Connect  
Type  
Input  
Comments  
NC  
R/W  
Read/Write Contol Pin  
Input  
Write Active Low; Read Active High  
Active Low  
x08 Version  
NW0–NW1  
BW0–BW1  
BW0–BW3  
Synchronous Nybble Writes  
Synchronous Byte Writes  
Synchronous Byte Writes  
Input  
Input  
Input  
Active Low  
x18 Version  
Active Low  
x36 Version  
K
Input Clock  
Output Clock  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Output  
Active High  
Active High  
C
TMS  
TDI  
TCK  
TDO  
Test Mode Select  
Test Data Input  
Test Clock Input  
Test Data Output  
V
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Input Clock  
REF  
ZQ  
K
Active Low  
Active Low  
Active Low  
Active Low  
Active Low  
Active High  
C
Output Clock  
D
DLL Disable  
OFF  
LD  
CQ  
CQ  
Dn  
Qn  
Synchronous Load Pin  
Output Echo Clock  
Output Echo Clock  
Synchronous Data Inputs  
Synchronous Data Outputs  
Power Supply  
Output  
Output  
Input  
Output  
Supply  
V
1.8 V Nominal  
1.8 or 1.5 V Nominal  
DD  
V
Isolated Output Buffer Supply  
Power Supply: Ground  
Supply  
Supply  
DDQ  
V
SS  
Notes:  
1. C, C, K, or K cannot be set to V  
voltage.  
REF  
2. When ZQ pin is directly connected to V , output impedance is set to minimum value and it cannot be connected to ground or left  
DD  
unconnected.  
3. NC = Not Connected to die or any other pin  
Rev: 1.01 9/2005  
6/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Background  
Separate I/O SRAMs, like SigmaQuad SRAMs, are attractive in applications where alternating reads and writes are needed. On the  
other hand, Common I/O SRAMs like the SigmaCIO family are popular in applications where bursts of read or write traffic are  
needed. The SigmaSIO SRAM is a hybrid of these two devices. Like the SigmaQuad family devices, the SigmaSIO features a  
separate I/O data path, offering the user independent Data In and Data Out pins. However, the SigmaSIO devices offer a control  
protocol like that offered on the SigmaCIO devices. Therefore, while SigmaQuad SRAMs allow a user to operate both data ports at  
the same time, they force alternating loads of read and write addresses. SigmaSIO SRAMs allow continuous loads of read or write  
addresses like SigmaCIO SRAMs, but in a separate I/O configuration.  
Like a SigmaQuad SRAM, a SigmaSIO-II SRAM can execute an alternating sequence of reads and writes. However, doing so  
results in the Data In port and the Data Out port stalling with nothing to do on alternate transfers. A SigmaQuad device would keep  
both ports running at capacity full time. On the other hand, the SigmaSIO device can accept a continuous stream of read commands  
and read data or a continuous stream of write commands and write data. The SigmaQuad device, by contrast, restricts the user from  
loading a continuous stream of read or write addresses. The advantage of the SigmaSIO device is that it allows twice the random  
address bandwidth for either reads or writes than could be acheived with a SigmaQuad version of the device. SigmaCIO SRAMs  
offer this same advantage, but do not have the separate Data In and Data Out pins offered on the SigmaSIO SRAMs. Therefore,  
SigmaSIO devices are useful in psuedo dual port SRAM applications where communication of burst traffic between two  
electrically independent busses is desired.  
Each of the three SigmaQuad Family SRAMs—SigmaQuad, SigmaCIO, and SigmaSIO—supports similar address rates because  
random address rate is determined by the internal performance of the RAM. In addition, all three SigmaQuad Family SRAMs are  
based on the same internal circuits. Differences between the truth tables of the different devices proceed from differences in how  
the RAM’s interface is contrived to interact with the rest of the system. Each mode of operation has its own advantages and  
disadvantages. The user should consider the nature of the work to be done by the RAM to evaluate which version is best suited to  
the application at hand.  
Burst of 2 Sigma SIO-II SRAM DDR Read  
The status of the Address Input, R/W, and LD pins are sampled at each rising edge of K. LD high causes chip disable. A high on  
the R/W pin begins a read cycle. The two resulting data output transfers begin after the next rising edge of the K clock. Data is  
clocked out by the next rising edge of the C if it is active. Otherwise, data is clocked out at the next rising edge of K. The next data  
chunk is clocked out on the rising edge of C, if active. Otherwise, data is clocked out on the rising edge of K.  
Burst of 2 Sigma SIO-II SRAM DDR Write  
The status of the Address Input, R/W, and LD pins are sampled at each rising edge of K. LD high causes chip disable. A low on the  
R/W pin, begins a write cycle. Data is clocked in by the next rising edge of K and then the rising edge of K.  
Rev: 1.01 9/2005  
7/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Power-Up Sequence for SigmaQuad-II SRAMs  
SigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.  
Power-Up Sequence  
1. Power-up and maintain Doff at low state.  
1a. Apply VDD  
.
1b. Apply VDDQ  
.
1c. Apply VREF (may also be applied at the same time as VDDQ).  
2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.  
3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.  
Note:  
If you want to tie Doff high with an unstable clock, you must stop the clock for a minimum of 30 seconds to reset the DLL after the clocks become  
stablized.  
DLL Constraints  
• The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (tKCVar on page 21).  
• The DLL cannot operate at a frequency lower than 119 MHz.  
• If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during  
the initial stage.  
Power-Up Sequence (Doff controlled)  
Power UP Interval  
Unstable Clocking Interval  
DLL Locking Interval (1024 Cycles)  
Normal Operation  
K
K
V
DD  
V
DDQ  
V
REF  
Doff  
Power-Up Sequence (Doff tied High)  
Power UP Interval  
Unstable Clocking Interval  
Stop Clock Interval  
30ns Min  
DLL Locking Interval (1024 Cycles)  
Normal Operation  
K
K
V
DD  
V
DDQ  
V
REF  
Doff  
Note:  
If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.  
Rev: 1.01 9/2005  
8/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Special Functions  
Byte Write and Nybble Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18  
version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble  
Write Enable” and “NWx” may be substituted in all the discussion above.  
Example x18 RAM Write Sequence using Byte Write Enables  
Data In Sample  
BW0  
BW1  
D0–D8  
D9–D17  
Time  
Beat 1  
Beat 2  
0
1
1
0
Data In  
Don’t Care  
Data In  
Don’t Care  
Resulting Write Operation  
Beat 1  
Beat 2  
D9–D17  
D0–D8  
D9–D17  
D0–D8  
Written  
Unchanged  
Unchanged  
Written  
Output Register Control  
SigmaSIO-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output  
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the  
output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K  
and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs.  
Rev: 1.01 9/2005  
9/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Example Four Bank Depth Expansion Schematic  
R/W  
3
LD  
3
R/W  
2
LD  
2
R/W  
1
LD  
R/W  
1
0
LD  
0
A –A  
0
n
K
D –D  
1
n
Bank 3  
Bank 1  
Bank 2  
Bank 0  
A
A
A
A
R/W  
R/W  
R/W  
R/W  
LD  
LD  
K
LD  
K
LD  
K
K
D
C
Q
D
C
Q
D
C
Q
D
C
Q
C
Q –Q  
1
n
Note:  
For simplicity BWn is not shown.  
Rev: 1.01 9/2005  
10/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Burst of 2 SigmaSIO-II SRAM Depth Expansion  
Write B  
Read C  
Write D  
Read E  
Write F  
Read G  
Read H  
Read J  
NOP  
K
K
Address  
B
C
D
E
F
G
H
J
LD Bank 1  
LD Bank 2  
R/W Bank 1  
R/W Bank 2  
BWx Bank 1  
BWx Bank 2  
D Bank 1  
D Bank 2  
C Bank 1  
C Bank 1  
Q Bank 1  
CQ Bank 1  
CQ Bank 1  
C Bank 2  
C Bank 2  
Q Bank 2  
CQ Bank 2  
CQ Bank 2  
B+1  
F+1  
B
F
D+1  
D
E
E+1  
H
H+1  
C
C+1  
G
G+1  
J
Rev: 1.01 9/2005  
11/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaSIO-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to V  
SS  
via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be 5X the  
value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a  
vendor-specified tolerance is between 150and 300. Periodic readjustment of the output driver impedance is necessary as the  
impedance is affected by drifts in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts  
in supply voltage and temperature every 1024 cycles. A clock cycle counter periodically triggers an impedance evaluation, resets  
and counts again. Each impedance evaluation may move the output driver impedance level one step at a time towards the optimum  
level. The output driver is implemented with discrete binary weighted impedance steps. Impedance updates for “0s” occur  
whenever the SRAM is driving “1s” for the same DQs (and vice-versa for “1s”) or the SRAM is in HI-Z.  
Separate I/O Burst of 2 Sigma SIO-II SRAM Truth Table  
Current  
A
LD  
R/W  
D
D
Q
Q
Operation  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
(t )  
(t )  
(t )  
(t )  
(t  
)
(t  
)
(t  
)
(t  
)
n
n
n
n
n+1  
n+1  
n+1  
Hi-Z  
Q0  
n+1  
X
V
1
0
0
X
1
0
Deselect  
Read  
X
X
Q1  
V
Write  
D0  
D1  
Hi-Z  
Notes:  
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”  
2. “—” indicates that the input requirement or output state is determined by the next operation.  
3. Q0 and Q1 indicate the first and second pieces of output data transferred during Read operations.  
4. D0 and D1 indicate the first and second pieces of input data transferred during Write operations.  
5. Qs are tristated for one cycle in response to Deselect and Write commands, one cycle after the command is sampled, except when pre-  
ceded by a Read command.  
6. CQ is never tristated.  
7. Users should not clock in metastable addresses.  
Rev: 1.01 9/2005  
12/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
x18 Byte Write Clock Truth Table  
BW  
BW  
Current Operation  
D
D
K ↑  
K ↑  
K ↑  
K ↑  
K ↑  
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
n+1  
n+2  
n
n+1  
n+2  
Write  
T
T
D1  
D2  
Dx stored if BWn = 0 in both data transfers  
Write  
T
F
F
F
T
F
D1  
X
X
D2  
X
Dx stored if BWn = 0 in 1st data transfer only  
Write  
Dx stored if BWn = 0 in 2nd data transfer only  
Write Abort  
No Dx stored in either data transfer  
X
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.  
Rev: 1.01 9/2005  
13/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
x36 Byte Write Enable (BWn) Truth Table  
BW3 BW2 BW1 BW0  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D0–D8  
Don’t Care  
Data In  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
x8 Nybble Write Enable (NWn) Truth Table  
NW1 NW0  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D0–D8  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.01 9/2005  
14/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
State Diagram  
Power-Up  
LOAD  
NOP  
LOAD  
Load New  
LOAD  
LOAD  
LOAD  
READ  
WRITE  
LOAD  
DDR Read  
DDR Write  
Rev: 1.01 9/2005  
15/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
Voltage on V Pins  
DD  
–0.5 to 2.9  
V
DD  
V
Voltage in V  
Voltage in V  
Pins  
Pins  
–0.5 to V  
V
V
DDQ  
DDQ  
REF  
DD  
V
–0.5 to V  
REF  
DDQ  
V
–0.5 to V  
–0.5 to V  
+0.3 (2.9 V max.)  
Voltage on I/O Pins  
V
I/O  
DDQ  
DDQ  
V
+0.3 (2.9 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IN  
I
+/–100  
+/–100  
125  
mA dc  
mA dc  
IN  
I
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
OUT  
o
T
C
J
o
T
–55 to 125  
C
STG  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
V
V
V
DD  
V
I/O Supply Voltage  
Reference Voltage  
1.7  
1.8  
1.9  
DDQ  
V
0.68  
0.95  
REF  
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V V  
1.6 V (i.e., 1.5 V I/O)  
DDQ  
and 1.7 V V  
1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.  
DDQ  
2. The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The  
DD DDQ REF  
power down sequence must be the reverse. V  
must not exceed V .  
DD  
DDQ  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Ambient Temperature  
(Commercial Range Versions)  
T
0
25  
70  
°C  
A
Ambient Temperature  
(Industrial Range Versions)  
T
–40  
25  
85  
°C  
A
Rev: 1.01 9/2005  
16/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
HSTL I/O DC Input Characteristics  
Parameter  
DC Input Logic High  
Symbol  
Min  
Max  
Units  
mV  
Notes  
V
(dc)  
V
+ 0.1  
V
+ 0.3  
DDQ  
1
1
IH  
REF  
V (dc)  
V
– 0.1  
REF  
DC Input Logic Low  
–0.3  
mV  
IL  
Note:  
Compatible with both 1.8 V and 1.5 V I/O drivers  
HSTL I/O AC Input Characteristics  
Parameter  
AC Input Logic High  
Symbol  
Min  
Max  
Units  
Notes  
3,4  
V
(ac)  
V
+ 0.2  
REF  
mV  
mV  
mV  
IH  
V (ac)  
V
– 0.2  
REF  
AC Input Logic Low  
3,4  
IL  
V
Peak to Peak AC Voltage  
V
(ac)  
5% V  
(DC)  
REF  
1
REF  
REF  
Notes:  
1. The peak to peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. To guarantee AC characteristics, V ,V , Trise, and Tfall of inputs and clocks must be within 10% of each other.  
IH IL  
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
4. See AC Input Definition drawing below.  
HSTL I/O AC Input Definitions  
V
(ac)  
IH  
V
REF  
V (ac)  
IL  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKHKH  
V
+ 1.0 V  
DD  
V
SS  
50%  
50%  
V
DD  
V
– 1.0 V  
SS  
20% tKHKH  
V
IL  
Rev: 1.01 9/2005  
17/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 3.3 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
Output Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
= 0 V  
pF  
OUT  
Note: This parameter is sample tested.  
AC Test Conditions  
Parameter  
Conditions  
V
Input high level  
Input low level  
DDQ  
0 V  
Max. input slew rate  
Input reference level  
2 V/ns  
V
V
/2  
/2  
DDQ  
DDQ  
Output reference level  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 (HSTL I/O)  
V
= 0.75 V  
REF  
50Ω  
VT = V /2  
DDQ  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
–2 uA  
2 uA  
IL  
V
V V  
IN  
–100 uA  
–2 uA  
2 uA  
2 uA  
DD  
IL  
IL  
I
Doff  
INDOFF  
0 V V V  
IN  
Output Disable,  
= 0 to V  
I
Output Leakage Current  
–2 uA  
2 uA  
OL  
V
OUT  
DDQ  
Rev: 1.01 9/2005  
18/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Programmable Impedance HSTL Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Units Notes  
V
V
V
/2 – 0.12  
V
V
/2 + 0.12  
DDQ  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
V
V
V
V
1, 3  
2, 3  
4, 5  
4, 6  
OH1  
DDQ  
V
/2 – 0.12  
– 0.2  
/2 + 0.12  
DDQ  
OL1  
DDQ  
V
V
V
DDQ  
OH2  
DDQ  
V
Output Low Voltage  
Vss  
0.2  
OL2  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175Ω ≤ RQ 350Ω).  
OL  
DDQ  
OL  
DDQ  
3. Parameter tested with RQ = 250and V  
= 1.5 V or 1.8 V  
DDQ  
4. Minimum Impedance mode, ZQ = V  
SS  
5.  
6.  
I
I
= –1.0 mA  
= 1.0 mA  
OH  
OL  
Rev: 1.01 9/2005  
19/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Operating Currents  
-333  
-300  
-250  
-200  
-167  
Parameter  
Symbol  
Test Conditions  
Notes  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
0
to  
40  
to  
70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C  
VDD = Max, IOUT = 0 mA  
IDD  
IDD  
IDD  
IDD  
Operating Current (x36): DDR  
Operating Current (x18): DDR  
Operating Current (x9): DDR  
Operating Current (x8): DDR  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2, 3  
2, 3  
2, 3  
2, 3  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
VDD = Max, IOUT = 0 mA  
Cycle Time tKHKH Min  
Device deselected,  
IOUT = 0 mA, f = Max,  
ISB1  
Standby Current (NOP): DDR  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2, 4  
All Inputs 0.2 V or VDD – 0.2 V  
Notes:  
1.  
2.  
Power measured with output pins floating.  
Minimum cycle, IOUT = 0 mA  
Operating current is calculated with 50% read cycles and 50% write cycles.  
Standby Current is only after all pending read and write burst operations are completed.  
3.  
4.  
Rev: 1.01 9/2005  
20/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
AC Electrical Characteristics  
-333  
-300  
-250  
-200  
-167  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tCHCH  
K, K Clock Cycle Time  
C, C Clock Cycle Time  
3.0  
3.5  
0.2  
3.3  
4.2  
0.2  
4.0  
6.3  
0.2  
5.0  
7.9  
0.2  
6.0  
8.4  
0.2  
ns  
ns  
ns  
tKCVar  
tTKC Variable  
5
tKHKL  
tCHCL  
K, K Clock High Pulse Width  
C, C Clock High Pulse Width  
1.2  
1.32  
1.6  
2.0  
2.4  
tKLKH  
tCLCH  
K, K Clock Low Pulse Width  
C, C Clock Low Pulse Width  
1.2  
1.32  
1.6  
2.0  
2.4  
ns  
ns  
K to K High  
C to C High  
tKHKH  
1.35  
0
1.49  
0
1.8  
0
2.2  
0
2.7  
0
tKHCH  
tKCLock  
tKCReset  
K, K Clock High to C, C Clock High  
DLL Lock Time  
1.3  
1.45  
1.8  
2.3  
2.8  
ns  
cycle  
ns  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
1024  
30  
6
K Static to DLL reset  
Output Times  
tKHQV  
tCHQV  
K, K Clock High to Data Output Valid  
C, C Clock High to Data Output Valid  
0.45  
0.45  
0.45  
0.45  
–0.5  
0.5  
ns  
ns  
ns  
ns  
3
3
tKHQX  
tCHQX  
K, K Clock High to Data Output Hold  
C, C Clock High to Data Output Hold  
–0.45  
–0.45  
–0.45  
–0.45  
tKHCQV  
tCHCQV  
K, K Clock High to Echo Clock Valid  
C, C Clock High to Echo Clock Valid  
0.45  
0.45  
0.45  
0.45  
0.5  
tKHCQX  
tCHCQX  
K, K Clock High to Echo Clock Hold  
C, C Clock High to Echo Clock Hold  
–0.45  
–0.45  
–0.45  
–0.45  
–0.5  
tCQHQV  
tCQHQX  
tKHQZ  
tCHQZ  
tKHQX1  
tCHQX1  
CQ, CQ High Output Valid  
CQ, CQ High Output Hold  
0.25  
0.27  
0.30  
0.35  
0.40  
ns  
ns  
7
7
–0.25  
–0.27  
–0.30  
–0.35  
–0.40  
K Clock High to Data Output High-Z  
C Clock High to Data Output High-Z  
0.45  
0.45  
0.45  
0.45  
0.5  
ns  
ns  
3
3
K Clock High to Data Output Low-Z  
C Clock High to Data Output Low-Z  
–0.45  
–0.45  
–0.45  
–0.45  
–0.5  
Setup Times  
tAVKH  
tIVKH  
Address Input Setup Time  
0.4  
0.4  
0.4  
0.4  
0.3  
0.5  
0.5  
0.6  
0.6  
0.4  
0.7  
0.7  
0.5  
ns  
ns  
ns  
Control Input Setup Time  
Data Input Setup Time  
2
tDVKH  
0.28  
0.35  
Rev: 1.01 9/2005  
21/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
AC Electrical Characteristics (Continued)  
-333  
-300  
-250  
-200  
-167  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Hold Times  
tKHAX  
tKHIX  
Address Input Hold Time  
0.4  
0.4  
0.4  
0.4  
0.3  
0.5  
0.5  
0.6  
0.6  
0.4  
0.7  
0.7  
0.5  
ns  
ns  
ns  
Control Input Hold Time  
tKHDX  
Data Input Hold Time  
0.28  
0.35  
Notes:  
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).  
3. If C, C are tied high, K, K become the references for C, C timing parameters  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus conten-  
tion because tCHQX1 is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX  
parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the same board to be at such different voltages and tempera-  
tures.  
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
6.  
V
slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once V and input clock are stable.  
D
D
D
D
7. Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet  
parameters reflect tester guard bands and test setup variations.  
Rev: 1.01 9/2005  
22/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
K Controlled Read-First Timing Diagram  
Read A  
Write B  
Read C  
Read E  
Deselect  
Deselect  
KHKL  
KHKH  
KLKH  
K
K
KH#KH  
AVKH  
KHAX  
Address  
LD  
A
B
C
D
E
IVKH  
IVKH  
KHIX  
KHIX  
R/W  
IVKH  
KHIX  
B+1  
BWx  
B
B
DVKH  
KHDX  
B+1  
D
KHQX1  
A
KHQZ  
KHQV  
C+1  
KHQX  
D+1  
Q
A+1  
C
D
CQ  
KHCQV  
KHCQX  
CQHQV  
CQHQX  
CQ  
Rev: 1.01 9/2005  
23/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
K Controlled Write-First Timing Diagram  
NOP  
Write A  
Read B  
KHKL  
Read C  
Write D  
Write E  
Deselect  
KHKH  
KLKH  
K
K
KH#KH  
AVKH  
KHAX  
Address  
LD  
A
B
C
D
E
IVKH  
KHIX  
IVKH  
KHIX  
R/W  
KHIX  
IVKH  
BWx  
A
A
A+1  
D
D
D+1  
D+1  
E
E+1  
E+1  
KHDX  
DVKH  
D
A+1  
E
KHQV  
KHQX1  
KHQX  
C
KHQZ  
Q
B
B+1  
C+1  
KHCQX  
KHCQV  
CQ  
CQ  
KHCQX  
KHCQV  
CQHQX  
CQHQV  
Rev: 1.01 9/2005  
24/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
C Controlled Read-First Timing Diagram  
Read A  
Write B  
Read C  
Read D  
Deselect  
Deselect  
KHKL  
KHKH  
KLKH  
K
K
KHKH#  
AVKH  
KHAX  
Address  
A
B
C
D
IVKH  
KHIX  
LD  
IVKH  
KHIX  
R/W  
BWx  
D
KHIX  
IVKH  
B
B
B+1  
KHDX  
DVKH  
B+1  
CLCH  
KHCH  
CHCL  
CHCH  
C
C
CHCH#  
CHQX1  
A
CHQZ  
CHQV  
CHQX  
D
Q
A+1  
C
C+1  
D+1  
CQ  
CHCQX  
CHCQV  
CQHCV  
CQHQX  
CQ  
Rev: 1.01 9/2005  
25/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
C Controlled Write-First Timing Diagram  
NOP  
Write A  
Read B  
KHKL  
Write C  
Write D  
Read E  
Deselect  
KHKH  
KLKH  
K
K
KH#KH  
KHAX  
AVKH  
Addr  
LD  
A
B
C
D
E
IVKH  
KHIX  
IVKH  
KHIX  
R/W  
KHIX  
IVKH  
BWx  
A
A
A+1  
A+1  
C
C
C+1  
C+1  
D
D
D+1  
D+1  
KHDX  
KLKH  
DVKH  
D
KHKL  
KHKH  
C
C
KH#KH  
CHQX1  
B
CHQZ  
CHQX  
CHQV  
B+1  
Q
CQ  
CQHQV  
CQHQX  
CQ  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with the current IEEE Standard, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DD  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
Rev: 1.01 9/2005  
26/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automatically at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, referred to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.01 9/2005  
27/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
1
1
x36  
x18  
x9  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
x8  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
Rev: 1.01 9/2005  
28/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
0
Select IR  
0
0
1
1
1
1
Capture DR  
0
Capture IR  
0
Shift DR  
1
Shift IR  
1
0
0
Exit1 DR  
0
Exit1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
0
0
Exit2 DR  
1
Exit2 IR  
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
Rev: 1.01 9/2005  
29/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 1.01 9/2005  
30/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
010  
TDO.  
1
Forces all RAM output drivers to High-Z.  
RFU  
011  
100  
Do not use this instruction; Reserved for Future Use.  
1
1
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
RFU  
RFU  
101  
110  
111  
Do not use this instruction; Reserved for Future Use.  
Do not use this instruction; Reserved for Future Use.  
Places Bypass Register between TDI and TDO.  
1
1
1
BYPASS  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
Symbol  
Min.  
1.7  
Typ.  
1.8  
Max.  
Unit  
V
1.9  
V
V
V
V
V
DDQ  
V
V
+ 0.3  
DD  
1.3  
IH  
V
0.3  
1.4  
0.5  
IL  
Output High Voltage (I = –2 mA)  
V
V
DD  
OH  
OH  
Output Low Voltage (I = 2 mA)  
V
V
0.4  
OL  
OL  
SS  
Note:  
The input level of SRAM pin is to follow the SRAM DC specification.  
Rev: 1.01 9/2005  
31/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
JTAG Port AC Test Conditions  
Parameter  
Symbol  
Min  
Unit  
V /V  
Input High/Low Level  
Input Rise/Fall Time  
1.3/0.5  
1.0/1.0  
0.9  
V
ns  
V
IH IL  
TR/TF  
Input and Output Timing Reference Level  
Notes:  
1. Distributed scope and test jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
tTH  
tTH  
tTS  
tTS  
TDI  
TMS  
tTKQ  
TDO  
tTH  
tTS  
Parallel SRAM input  
Rev: 1.01 9/2005  
32/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
Min.  
50  
20  
20  
5
Max  
10  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
TCK Cycle Time  
CHCH  
t
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
CHCL  
t
CLCH  
t
MVCH  
t
5
CHMX  
t
5
DVCH  
t
5
CHDX  
t
5
SVCH  
t
5
CHSX  
t
0
CLQV  
Rev: 1.01 9/2005  
33/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Package Dimensions—165-Bump FPBGA (Package E)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
15±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.01 9/2005  
34/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Ordering Information—GSI SigmaSIO-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
8M x 9  
GS8662S36E-333  
GS8662S36E-300  
GS8662S36E-250  
GS8662S36E-200  
GS8662S36E-167  
GS8662S36E-333I  
GS8662S36E-300I  
GS8662S36E-250I  
GS8662S36E-200I  
GS8662S36E-167I  
GS8662S18E-333  
GS8662S18E-300  
GS8662S18E-250  
GS8662S18E-200  
GS8662S18E-167  
GS8662S18E-333I  
GS8662S18E-300I  
GS8662S18E-250I  
GS8662S18E-200I  
GS8662S18E-167I  
GS8662S09E-333  
GS8662S09E-300  
GS8662S09E-250  
GS8662S09E-200  
GS8662S09E-167  
GS8662S09E-333I  
GS8662S09E-300I  
GS8662S09E-250I  
GS8662S09E-200I  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
I
8M x 9  
I
8M x 9  
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS866x36E-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.01 9/2005  
35/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Ordering Information—GSI SigmaSIO-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
8M x 9  
8M x 8  
GS8662S09E-167I  
GS8662S08E-333  
GS8662S08E-300  
GS8662S08E-250  
GS8662S08E-200  
GS8662S08E-167  
GS8662S08E-333I  
GS8662S08E-300I  
GS8662S08E-250I  
GS8662S08E-200I  
GS8662S08E-167I  
GS8662S36GE-333  
GS8662S36GE-300  
GS8662S36GE-250  
GS8662S36GE-200  
GS8662S36GE-167  
GS8662S36GE-333I  
GS8662S36GE-300I  
GS8662S36GE-250I  
GS8662S36GE-200I  
GS8662S36GE-167I  
GS8662S18GE-333  
GS8662S18GE-300  
GS8662S18GE-250  
GS8662S18GE-200  
GS8662S18GE-167  
GS8662S18GE-333I  
GS8662S18GE-300I  
GS8662S18GE-250I  
GS8662S18GE-200I  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
165-bump BGA  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
I
C
C
C
C
C
I
165-bump BGA  
8M x 8  
165-bump BGA  
8M x 8  
165-bump BGA  
8M x 8  
165-bump BGA  
8M x 8  
165-bump BGA  
8M x 8  
165-bump BGA  
8M x 8  
165-bump BGA  
I
8M x 8  
165-bump BGA  
I
8M x 8  
165-bump BGA  
I
8M x 8  
165-bump BGA  
I
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS866x36E-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
Rev: 1.01 9/2005  
36/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS8662S08/09/18/36E-333/300/250/200/167  
Ordering Information—GSI SigmaSIO-II SRAM  
Speed  
(MHz)  
3
1
Org  
Type  
Package  
T
Part Number  
A
4M x 18  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 9  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
8M x 8  
GS8662S18GE-167I  
GS8662S09GE-333  
GS8662S09GE-300  
GS8662S09GE-250  
GS8662S09GE-200  
GS8662S09GE-167  
GS8662S09GE-333I  
GS8662S09GE-300I  
GS8662S09GE-250I  
GS8662S09GE-200I  
GS8662S09GE-167I  
GS8662S08GE-333  
GS8662S08GE-300  
GS8662S08GE-250  
GS8662S08GE-200  
GS8662S08GE-167  
GS8662S08GE-333I  
GS8662S08GE-300I  
GS8662S08GE-250I  
GS8662S08GE-200I  
GS8662S08GE-167I  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
SigmaSIO-II SRAM  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
I
C
C
C
C
C
I
I
I
I
I
C
C
C
C
C
I
I
I
I
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS866x36E-300T.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
SigmaSIO-II Revision History  
File Name  
8662Sxx_r1  
Format/Content  
Description of changes  
Creation of datasheet  
Added RoHS-compliant package information  
8662Sxx_r1; 8662Sxx_r1_01  
Content  
Rev: 1.01 9/2005  
37/37  
© 2005, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8662S08GE-200

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-200I

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-200T

DDR SRAM, 8MX8, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, MO-216CAB-1, FPBGA-165
GSI

GS8662S08GE-250

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-250I

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-300

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-300I

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-300IT

DDR SRAM, 8MX8, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, MO-216CAB-1, FPBGA-165
GSI

GS8662S08GE-300T

DDR SRAM, 8MX8, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, MO-216CAB-1, FPBGA-165
GSI

GS8662S08GE-333

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-333I

72Mb Burst of 2 DDR SigmaSIO-II SRAM
GSI

GS8662S08GE-333IT

DDR SRAM, 8MX8, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, MO-216CAB-1, FPBGA-165
GSI