GS8672T20 [GSI]

72Mb SigmaDDR-IITM Burst of 2 ECCRAMTM;
GS8672T20
型号: GS8672T20
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

72Mb SigmaDDR-IITM Burst of 2 ECCRAMTM

双倍数据速率
文件: 总27页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS8672T20/38BE-633/550/500/450/400  
633 MHz–400 MHz  
72Mb SigmaDDR-II+TM  
Burst of 2 ECCRAMTM  
165-Bump BGA  
Commercial Temp  
Industrial Temp  
1.8 V V  
DD  
1.5 V I/O  
Features  
Clocking and Addressing Schemes  
• 2.5 Clock Latency  
The GS8672T20/38BE SigmaDDR-II+ SRAMs are  
• On-Chip ECC with virtually zero SER  
• Simultaneous Read and Write SigmaDDR™ Interface  
• Common I/O bus  
synchronous devices. They employ two input register clock  
inputs, K and K. K and K are independent single-ended clock  
inputs, not differential inputs to a single differential clock input  
buffer.  
• JEDEC-standard package  
• Double Data Rate interface  
• Byte Write capability  
• Burst of 2 Read and Write  
• On-Die Termination (ODT) on Data (DQ), Byte Write (BW),  
and Clock (K, K) outputs  
• 1.8 V +100/–100 mV core power supply  
• 1.5 V HSTL Interface  
• Pipelined read operation with self-timed Late Write  
• Fully coherent read and write pipelines  
• ZQ pin for programmable output drive strength  
• IEEE 1149.1 JTAG-compliant Boundary Scan  
• Pin-compatible with 36Mb and 144Mb devices  
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package  
• RoHS-compliant 165-bump BGA package available  
Each internal read and write operation in a SigmaDDR-II+ B2  
ECCRAM is two times wider than the device I/O bus. An input  
data bus de-multiplexer is used to accumulate incoming data  
before it is simultaneously written to the memory array. An  
output data multiplexer is used to capture the data produced  
from a single memory array read and then route it to the  
appropriate output drivers as needed. Therefore the address  
field of a SigmaDDR-II+ B2 ECCRAM is always one address  
pin less than the advertised index depth (e.g., the 4M x 18 has  
an 2M addressable index).  
On-Chip Error Correction Code  
GSI's ECCRAMs implement an ECC algorithm that detects  
and corrects all single-bit memory errors, including those  
induced by Soft Error Rate (SER) events such as cosmic rays,  
alpha particles etc. The resulting SER of these devices is  
anticipated to be <0.002 FITs/Mb — a 5-order-of-magnitude  
improvement over comparable SRAMs with no On-Chip ECC,  
which typically have an SER of 200 FITs/Mb or more. SER  
quoted above is based on reading taken at sea level.  
SigmaDDRECCRAM Overview  
The GS8672T20/38BE SigmaDDR-II+ ECCRAMs are built in  
compliance with the SigmaDDR-II+ SRAM pinout standard  
for Common I/O synchronous SRAMs. They are  
75,497,472-bit (72Mb) SRAMs. The GS8672T20/38BE  
SigmaDDR SRAMs are just one element in a family of low  
power, low voltage HSTL I/O SRAMs designed to operate at  
the speeds needed to implement economical high performance  
networking systems.  
However, the On-Chip Error Correction (ECC) will be  
disabled if a “Half Write” operation is initiated. See the Byte  
Write Contol section for further information.  
Parameter Synopsis  
-633  
-550  
1.81 ns  
0.45 ns  
-500  
2.0 ns  
0.45 ns  
-450  
2.2 ns  
0.45 ns  
-400  
2.5 ns  
0.45 ns  
tKHKH  
tKHQV  
1.57 ns  
0.45 ns  
Rev: 1.02a 6/2013  
1/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
2M x 36 SigmaDDR-II+ SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
NF  
(144Mb)  
A
CQ  
SA  
R/W  
BW2  
K
BW1  
LD  
SA  
SA  
CQ  
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
SA  
BW3  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ17  
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
V
V
NF  
V
SS  
SS  
SS  
SS  
DQ29  
NC  
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQ15  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ30  
DQ31  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
V
V
NC  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
SA  
NC  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
V
NC  
NC  
NC  
NC  
NC  
SA  
DQ33  
NC  
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
DQ11  
NC  
SS  
SS  
SS  
SS  
DQ35  
NC  
V
SA  
SA  
SA  
SA  
SA  
SA  
SA  
V
SA  
SA  
QVLD  
ODT  
SA  
SA  
DQ9  
TMS  
TCK  
2
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Note:  
BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17; BW2 controls writes to DQ18:DQ26; BW3 controls writes to DQ27:DQ35  
Rev: 1.02a 6/2013  
2/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
4M x 18 SigmaDDR-II+ SRAM—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ  
SA  
SA  
R/W  
BW1  
K
NF  
LD  
SA  
SA  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
DQ9  
NC  
NF  
NF  
SA  
NF  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ7  
NC  
NF  
DQ8  
NF  
V
V
NF  
V
SS  
SS  
SS  
SS  
NF  
DQ10  
DQ11  
NF  
V
V
V
V
V
V
NF  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQ6  
DQ5  
NF  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQ12  
NF  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
DQ13  
V
V
V
V
V
V
V
REF  
ZQ  
REF  
DDQ  
DDQ  
NC  
NC  
NF  
DQ14  
NF  
NC  
DQ4  
NF  
NF  
K
L
V
NC  
NC  
NC  
NC  
NC  
SA  
DQ3  
DQ2  
NF  
DQ15  
NC  
V
V
V
V
V
NC  
DDQ  
SS  
SS  
SS  
SS  
M
N
P
R
NF  
V
V
DQ1  
NC  
SS  
SS  
SS  
SS  
NF  
DQ16  
DQ17  
SA  
V
SA  
SA  
SA  
SA  
SA  
SA  
SA  
V
NF  
NC  
SA  
SA  
QVLD  
ODT  
SA  
SA  
NF  
DQ0  
TDI  
TCK  
TMS  
2
11 x 15 Bump BGA—13 x 15 mm Body—1 mm Bump Pitch  
Note:  
BW0 controls writes to DQ0:DQ8; BW1 controls writes to DQ9:DQ17  
Rev: 1.02a 6/2013  
3/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Pin Description Table  
Description  
Type  
Comments  
Symbol  
Synchronous Address Inputs  
Input  
SA  
High: Read  
Low: Write  
Synchronous Read/Write  
Input  
R/W  
Synchronous Byte Writes  
Synchronous Load Pin  
Input Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Active Low  
BW0–BW3  
LD  
Active Low  
Active High  
K
Input Clock  
Active Low  
K
Test Mode Select  
Test Data Input  
TMS  
TDI  
Test Clock Input  
TCK  
TDO  
VREF  
Test Data Output  
HSTL Input Reference Voltage  
Output Impedance Matching Input  
Data I/O  
Input  
Input/Output  
Input  
Three State  
Active Low  
ZQ  
DQ  
Disable DLL when low  
Output Echo Clock  
Output Echo Clock  
Doff  
CQ  
Output  
Output  
CQ  
Power Supply  
Supply  
Supply  
Supply  
1.8 V Nominal  
1.5 V Nominal  
VDD  
Isolated Output Buffer Supply  
Power Supply: Ground  
VDDQ  
VSS  
Q Valid Output  
On-Die Termination  
No Connect  
Output  
Input  
QVLD  
ODT  
NC  
No Function  
NF  
Notes:  
1. NC = Not Connected to die or any other pin  
2. NF = No Function. There is an electrical connection to this input pin, but the signal has no function in the device. It can be left unconnected,  
or tied to V or V  
SS  
DDQ.  
3. K, or K cannot be set to V  
voltage.  
REF  
Rev: 1.02a 6/2013  
4/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Background  
Common I/O SRAMs, from a system architecture point of view, are attractive in read dominated or block transfer applications.  
Therefore, the SigmaDDR-II+ ECCRAM interface and truth table are optimized for burst reads and writes. Common I/O SRAMs  
are unpopular in applications where alternating reads and writes are needed because bus turnaround delays can cut high speed  
Common I/O SRAM data bandwidth in half.  
Burst Operations  
Read and write operations are burst operations. In every case where a read or write command is accepted by the ECCRAM, it will  
respond by issuing or accepting two beats of data, executing a data transfer on subsequent rising edges of K and K, as illustrated in  
the timing diagrams. This means that it is possible to load new addresses every K clock cycle. Addresses can be loaded less often,  
if intervening deselect cycles are inserted.  
Deselect Cycles  
Chip Deselect commands are pipelined to the same degree as read commands. This means that if a deselect command is applied to  
the ECCRAM on the next cycle after a read command captured by the ECCRAM, the device will complete the two beat read data  
transfer and then execute the deselect command, returning the output drivers to High-Z. A high on the LD pin prevents the RAM  
from loading read or write command inputs and puts the RAM into deselect mode as soon as it completes all outstanding burst  
transfer operations.  
SigmaDDR-II+ B2 ECCRAM Read Cycles  
The SRAM executes pipelined reads. The status of the Address, LD and R/W pins are evaluated on the rising edge of K. The read  
command (LD low and R/W high) is clocked into the SRAM by a rising edge of K.  
SigmaDDR-II+ B2 ECCRAM Write Cycles  
The status of the Address, LD and R/W pins are evaluated on the rising edge of K. The ECCRAM executes Late write data  
transfers. Data in is due at the device inputs on the rising edge of K following the rising edge of K clock used to clock in the write  
command (LD and R/W low) and the write address. To complete the remaining beat of the burst of two write transfer, the  
ECCRAM captures data in on the next rising edge of K, for a total of two transfers per address load.  
Rev: 1.02a 6/2013  
5/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Power-Up Sequence for SigmaDDR-II+ ECCRAMs  
SigmaDDR-II+ ECCRAMs must be powered-up in a specific sequence in order to avoid undefined operations.  
1. After power supplies power-up and clocks (K, K) are stablized, 163,840 cycles are required to set Output Driver  
Impedance.  
2. Thereafter, an additional 65,536 clock cycles are required to lock the DLL after it has been enabled.  
3. Begin Read and Write operations.  
For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.  
On-Chip Error Correction  
SigmaDDR-II ECCRAMs implement a single-bit error detection and correction algorithm (specifically, a Hamming Code) on each  
DDR data word (comprising two 9-bit data bytes) transmitted on each 9-bit data bus (i.e., transmitted on D/Q[8:0], D/Q[17:9], D/  
Q[26:18], or D/Q[35:27]). To accomplish this, 5 ECC parity bits (invisible to the user) are utilized per every 18 data bits (visible to  
the user).  
The ECC algorithm neither corrects nor detects multi-bit errors. However, GSI ECCRAMs are architected in such a way that a  
single SER event very rarely causes a multi-bit error across any given "transmitted data unit", where a "transmitted data unit"  
represents the data transmitted as the result of a single read or write operation to a particular address. The extreme rarity of multi-  
bit errors results in the SER mentioned previously (i.e., <0.002 FITs/Mb measured at sea level.)  
Not only does the on-chip ECC significantly improve SER performance, but it also frees up the entire memory array for data  
storage. Very often SRAM applications allocate 1/9th of the memory array (i.e., one "error bit" per eight "data bits", in any 9-bit  
"data byte") for error detection (either simple parity error detection, or system-level ECC error detection and correction). Such  
error-bit allocation is unnecessary with ECCRAMs the entire memory array can be utilized for data storage, effectively providing  
12.5% greater storage capacity compared to SRAMs of the same density not equipped with on-chip ECC.  
Rev: 1.02a 6/2013  
6/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Special Functions  
Byte Write Control  
Byte Write Enable pins are sampled at the same time that Data In is sampled. A High on the Byte Write Enable pin associated with  
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be  
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven High or Low  
during the data in sample times in a write sequence.  
Each write enable command and write address loaded into the RAM provides the base address for a -beat data transfer. The x18  
version of the RAM, for example, may write bits in association with each address loaded. Any 9-bit byte may be masked in any  
write sequence.  
Note: If “Half Write” operations (i.e., write operations in which a BWn pin is asserted for only half of a DDR write data transfer  
on the associated 9-bit data bus, causing only 9 bits of the 18-bit DDR data word to be written) are initiated, the on-chip ECC will  
be disabled for as long as the SRAM remains powered up thereafter. This must be done because ECC is implemented across entire  
18-bit data words, rather than across individual 9-bit data bytes.  
Byte Write Truth Table  
The truth table below applies to write operations to Address "m", where Address "m" is the 18-bit memory location comprising the  
2 beats of DDR write data associated with each BWn pin in a given clock cycle.  
BWn  
Input Data Byte n  
Operation  
Result  
K  
K  
K  
K  
(Beat 1)  
(Beat 2)  
(Beat 1)  
(Beat 2)  
0
0
1
1
0
1
0
1
D0  
D0  
X
D1  
X
Full Write  
Half Write  
Half Write  
Abort  
D0 and D1 written to Address m  
Only D0 written to Address m  
Only D1 written to Address m  
Address m unchanged  
D1  
X
X
Notes:  
1. BW0 is associated with Input Data Byte D[8:0].  
2. BW1 is associated with Input Data Byte D[17:9].  
3. BW2 is associated with Input Data Byte D[26:18] (in x36 only).  
4. BW3 is associated with Input Data Byte D[35:27] (in x36 only).  
5. ECC is disabled if a “Half Write” operation is initiated.  
Rev: 1.02a 6/2013  
7/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
FLXDrive-II Output Driver Impedance Control  
HSTL I/O SigmaDDR-II ECCRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to  
VSS via an external resistor, RQ, to allow the ECCRAM to monitor and adjust its output driver impedance. The value of RQ must  
be 5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously  
is between 175and 275. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by  
drifts in supply voltage and temperature. The ECCRAM’s output impedance circuitry compensates for drifts in supply voltage and  
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance  
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is  
implemented with discrete binary weighted impedance steps.  
Input Termination Impedance Control  
These SigmaDDR-II+ ECCRAMs are supplied with programmable input termination on Data (DQ), Byte Write (BW), and Clock  
(K, K) input receivers. Input termination can be enabled or disabled via the ODT pin (6R). When the ODT pin is tied Low (or left  
floating–the pin has a small pull-down resistor), input termination is disabled. When the ODT pin is tied High, input termination is  
enabled. Termination impedance is programmed via the same RQ resistor (connected between the ZQ pin and V ) used to  
SS  
program output driver impedance, and is nominally RQ*0.6 Thevenin-equivalent when RQ is between 175and 225. Periodic  
readjustment of the termination impedance occurs to compensate for drifts in supply voltage and temperature, in the same manner  
as for driver impedance (see above).  
Notes:  
1. When ODT = 1, Byte Write (BW), and Clock (K, K) input termination is always enabled.Consequently, BW, K, K inputs  
should always be driven High or Low; they should never be tri-stated (i.e., in a High-Z state). If the inputs are tri-stated, the  
input termination will pull the signal to V  
/2 (i.e., to the switch point of the diff-amp receiver), which could cause the  
DDQ  
receiver to enter a meta-stable state, resulting in the receiver consuming more power than it normally would. This could result  
in the device’s operating currents being higher..  
2. When ODT = 1, DQ input termination is enabled during Write and NOP operations, and disabled during Read operations.  
Specifically, DQ input termination is disabled 0.5 cycles before the SRAM enables its DQ drivers and starts driving valid Read  
Data, and remains disabled until 0.5 cycles after the SRAM stops driving valid Read Data and disables its DQ drivers; DQ  
input termination is enabled at all other times. Consequently, the SRAM Controller should disable its DQ input termination,  
enable its DQ drivers, and drive DQ inputs (High or Low) during Write and NOP operations. And, it should enable its DQ  
input termination and disable its DQ drivers during Read operations. Care should be taken during Write or NOP -> Read  
transitions, and during Read -> NOP transitions, to minimize the time during which one device (SRAM or SRAM Controller)  
has enabled its DQ input termination while the other device has not yet enabled its DQ driver. Otherwise, the input termination  
will pull the signal to VDDQ/2 (i.e., to the switch point of the diff-amp receiver), which could cause the receiver to enter a meta-  
stable state, resulting in the receiver consuming more power than it normally would. This could result in the device’s operating  
currents being higher..  
Rev: 1.02a 6/2013  
8/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Common I/O SigmaDDR-II+ ECCRAM Truth Table  
DQ  
K
LD  
R/W  
Operation  
n
A + 0  
Hi-Z / *  
A + 1  
Hi-Z / *  
1
0
0
X
0
1
Deselect  
Write  
D@Kn+1  
Q@Kn+2  
D@Kn+1  
Q@Kn+3  
Read  
Notes:  
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”.  
2. When On-Die Termination is disabled (ODT = 0), DQ drivers are disabled (i.e., DQ pins are tri-stated) for one cycle in responseto NOP  
and Write commands, 2.5 cycles after the command is sampled.  
3. When On-Die Termination is enabled (ODT = 1), DQ drivers are disabled for one cycle in response to NOP and Write commands, 2.5  
cycles after the command is sampled. The state of the DQ pins during that time (denoted by “*” in the table above) is determined by the  
state of the DQ input termination. See the Input Termination Impedance Control section for more information.  
Byte Write Clock Truth Table  
BW  
BW  
Current Operation  
D
D
K   
K   
K   
K   
K   
(t  
)
(t  
)
(t )  
(t  
)
(t  
)
n + 1  
n + 1½  
n
n + 1  
n + 1½  
Write  
T
T
F
T
F
D1  
D2  
X
Dx stored if BWn = 0 in both data transfers  
Write  
T
F
F
D1  
X
Dx stored if BWn = 0 in 1st data transfer only  
Write  
D2  
X
Dx stored if BWn = 0 in 2nd data transfer only  
Write Abort  
No Dx stored in either data transfer  
X
Notes:  
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.  
Rev: 1.02a 6/2013  
9/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
x36 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
BW2  
BW3  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
D18–D26  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
D27–D35  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Don’t Care  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Don’t Care  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
x18 Byte Write Enable (BWn) Truth Table  
BW0  
BW1  
D0–D8  
Don’t Care  
Data In  
D9–D17  
Don’t Care  
Don’t Care  
Data In  
1
0
1
0
1
1
0
0
Don’t Care  
Data In  
Data In  
Rev: 1.02a 6/2013  
10/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
VDD  
Description  
Value  
–0.5 to 2.4  
Unit  
Voltage on VDD Pins  
Voltage in VDDQ Pins  
Voltage in VREF Pins  
V
VDDQ  
VREF  
VI/O  
–0.5 to VDD  
V
V
–0.5 to VDDQ  
–0.5 to VDDQ +0.5 (2.4 V max.)  
–0.5 to VDDQ +0.5 (2.4 V max.)  
Voltage on I/O Pins  
V
VIN  
Voltage on Other Input Pins  
Input Current on Any Pin  
V
IIN  
+/–100  
+/–100  
125  
mA dc  
mA dc  
IOUT  
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
oC  
oC  
TJ  
TSTG  
–55 to 125  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect  
reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Supply Voltage  
Symbol  
VDD  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
Unit  
V
VDDQ  
VREF  
I/O Supply Voltage  
Reference Voltage  
1.4  
1.6  
V
VDDQ/2 – 0.05  
VDDQ/2 + 0.05  
V
Note:.  
The power supplies need to be powered up simultaneously or in the following sequence: V , V , V , followed by signal inputs. The power  
DD DDQ REF  
down sequence must be the reverse. V  
must not exceed V . For more information, read AN1021 SigmaQuad and SigmaDDR Power-Up.  
DD  
DDQ  
Operating Temperature  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Junction Temperature  
(Commercial Range Versions)  
TJ  
0
25  
85  
C  
Junction Temperature  
(Industrial Range Versions)*  
TJ  
–40  
25  
100  
C  
Note:  
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications  
quoted are evaluated for worst case in the temperature range marked on the device.  
Rev: 1.02a 6/2013  
11/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Thermal Impedance  
Test PCB  
Substrate  
JA (C°/W)  
Airflow = 0 m/s  
JA (C°/W)  
Airflow = 1 m/s  
JA (C°/W)  
Airflow = 2 m/s  
JB (C°/W)  
JC (C°/W)  
Package  
165 BGA  
4-layer  
15.25  
12.38  
11.41  
4.79  
1.31  
Notes:  
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.  
2. Please refer to JEDEC standard JESD51-6.  
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to  
the PCB can result in cooling or heating of the RAM depending on PCB temperature.  
HSTL I/O DC Input Characteristics  
Parameter  
Input Reference Voltage  
Symbol  
VREF  
VIH1  
Min  
Max  
Units  
Notes  
VDDQ /2 – 0.05  
VREF + 0.1  
VDDQ /2 + 0.05  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.3 * VDDQ  
V
V
V
V
V
Input High Voltage  
Input Low Voltage  
Input High Voltage  
1
VIL1  
–0.3  
1
VIH2  
0.7 * VDDQ  
2,3  
2,3  
VIL2  
–0.3  
Input Low Voltage  
Notes:  
1. Parameters apply to K, K, SA, DQ, LD, R/W, BW during normal operation and JTAG boundary scan testing.  
2. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.  
3. Parameters apply to ZQ during JTAG boundary scan testing only.  
HSTL I/O AC Input Characteristics  
Parameter  
Input Reference Voltage  
Symbol  
VREF  
VIH1  
Min  
Max  
Units  
Notes  
VDDQ /2 – 0.08  
VREF + 0.2  
VDDQ /2 + 0.08  
VDDQ + 0.5  
V
V
V
V
V
1,2,3  
1,2,3  
4,5  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
VIL1  
VREF – 0.2  
–0.5  
VIH2  
VDDQ – 0.2  
VDDQ + 0.5  
0.2  
VIL2  
Input Low Voltage  
–0.5  
4,5  
Notes:  
1.  
V
and V  
apply for pulse widths less than one-quarter of the cycle time.  
IL(MIN)  
IH(MAX)  
2. Input rise and fall times myust be a minimum of 1 V/ns, and within 10% of each other.  
3. Parameters apply to K, K, SA, DQ, LD, R/W, BW during normal operation and JTAG boundary scan testing.  
4. Parameters apply to Doff, ODT during normal operation and JTAG boundary scan testing.  
Rev: 1.02a 6/2013  
12/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 1.8 V)  
A
DD  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
Typ.  
4
Max.  
5
Unit  
pF  
Input Capacitance  
Output Capacitance  
COUT  
VOUT = 0 V  
4.5  
5.5  
pF  
Note:  
This parameter is sample tested.  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
1.25  
0 V  
Max. input slew rate  
Input reference level  
Output reference level  
2 V/ns  
0.75  
VDDQ/2  
Note:  
Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
RQ = 250 (HSTL I/O)  
= 0.75 V  
V
REF  
50  
VT = V /2  
DDQ  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
IIL  
Test Conditions  
Min.  
–2 uA  
Max  
Input Leakage Current  
(except mode pins)  
VIN = 0 to VDDQ  
2 uA  
IILDOFF  
IILODT  
VIN = 0 to VDDQ  
VIN = 0 to VDDQ  
Doff  
–100 uA  
–2 uA  
2 uA  
ODT  
100 uA  
Output Disable,  
VOUT = 0 to VDDQ  
IOL  
Output Leakage Current  
–2 uA  
2 uA  
Rev: 1.02a 6/2013  
13/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
HSTL I/O Output Driver DC Electrical Characteristics  
Parameter  
Output High Voltage  
Symbol  
VOH1  
Min.  
Max.  
Units  
Notes  
1
VDDQ/2 – 0.12  
VDDQ/2 – 0.12  
VDDQ – 0.2  
VDDQ/2 + 0.12  
VDDQ/2 + 0.12  
V
V
VOL1  
2
Output Low Voltage  
VOH2  
0.2  
V
3, 4  
3, 5  
6, 7  
Output High Voltage  
VOL2  
V
Output Low Voltage  
ROUT  
(RQ/5) * 0.88  
(RQ/5) * 1.12  
Output Driver Impedance  
Notes:  
1.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175 RQ 275  
DDQ OH DDQ  
OH  
2.  
I
= (V /2) / (RQ/5) +/– 15% @ V = V /2 (for: 175  RQ 275.  
OL  
DDQ  
OL  
DDQ  
3. 0RQ    
4.  
I
= –1.0 mA  
OH  
5.  
I
= 1.0 mA  
OL  
6. Parameter applies when 175  RQ 275  
7. Tested at V = V * 0.2 and V * 0.8  
OUT  
DDQ  
DDQ  
Rev: 1.02a 6/2013  
14/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Rev: 1.02a 6/2013  
15/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
AC Electrical Characteristics  
-633  
-550  
-500  
-450  
-400  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
tKHKH  
tKVar  
K, K Clock Cycle Time  
1.57  
6.0  
0.15  
1.81  
6.0  
0.15  
2.0  
6.0  
0.15  
2.2  
6.0  
0.15  
2.5  
6.0  
0.2  
ns  
ns  
tK Variable  
4
tKHKL  
tKLKH  
tKHKH  
tKHKH  
tKLock  
tKReset  
K, K Clock High Pulse Width  
K, K Clock Low Pulse Width  
K to K High  
0.4  
0.4  
0.4  
0.4  
0.4  
cycle  
cycle  
ns  
0.4  
0.4  
0.4  
0.4  
0.4  
0.67  
0.67  
0.77  
0.77  
0.85  
0.85  
0.94  
0.94  
1.06  
1.06  
K to K High  
ns  
DLL Lock Time  
65,536  
30  
65,536  
30  
65,536  
30  
65,536  
30  
65,536  
30  
cycle  
ns  
5
K Static to DLL reset  
Output Times  
tKHQV  
tKHQX  
K, K Clock High to Data Output Valid  
–0.45  
–0.45  
0.45  
0.45  
–0.45  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
K, K Clock High to Data Output Hold  
K, K Clock High to Echo Clock Valid  
K, K Clock High to Echo Clock Hold  
CQ, CQ High Output Valid  
–0.45  
–0.45  
–0.45  
–0.45  
tKHCQV  
tKHCQX  
tCQHQV  
tCQHQX  
tQVLD  
–0.45  
–0.45  
0.45  
0.45  
0.45  
–0.45  
–0.45  
–0.45  
–0.45  
–0.45  
0.15  
0.15  
0.15  
0.15  
0.2  
CQ, CQ High Output Hold  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
–0.2  
CQ, CQ High to QVLD  
0.15  
0.15  
0.15  
0.15  
0.2  
tCQHCQH  
tCQHCQH  
CQ Phase Distortion  
0.55  
0.65  
0.75  
0.85  
1.0  
ns  
tKHQZ  
K Clock High to Data Output High-Z  
0.45  
0.45  
0.45  
0.45  
0.45  
ns  
ns  
5
5
tKHQX1  
K Clock High to Data Output Low-Z  
Setup Times  
–0.45  
–0.45  
–0.45  
–0.45  
–0.45  
tAVKH  
tIVKH  
Address Input Setup Time  
0.23  
0.23  
0.23  
0.23  
0.25  
0.25  
0.275  
0.275  
0.4  
0.4  
ns  
ns  
1
2
Control Input Setup Time  
(R/W)  
Control Input Setup Time  
(BWX)  
tIVKH  
0.18  
0.18  
0.18  
0.18  
0.2  
0.2  
0.22  
0.22  
0.28  
0.28  
ns  
ns  
3
tDVKH  
Data Input Setup Time  
Hold Times  
tKHAX  
tKHIX  
Address Input Hold Time  
0.23  
0.23  
0.23  
0.23  
0.25  
0.25  
0.275  
0.275  
0.4  
0.4  
ns  
ns  
1
2
Control Input Hold Time  
(R/W)  
Control Input Hold Time  
(BWX)  
tKHIX  
0.18  
0.18  
0.18  
0.18  
0.2  
0.2  
0.22  
0.22  
0.28  
0.28  
ns  
ns  
3
tKHDX  
Data Input Hold Time  
Notes:  
1. All Address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control signals are LD, R/W.  
3. Control signals are BW0, BW1 and (BW2, BW3 for x36).  
4. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
5. slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once V and input clock are stable.  
V
DD  
DD  
Rev: 1.02a 6/2013  
16/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Rev: 1.02a 6/2013  
17/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Rev: 1.02a 6/2013  
18/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DD  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the  
falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state  
machine. An undriven TMS input will produce the same result as a logic one input level.  
TMS  
TDI  
Test Mode Select  
Test Data In  
In  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed  
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP  
In Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to  
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input  
level.  
Output that is active depending on the state of the TAP state machine. Output changes in response to the  
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO  
Test Data Out  
Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the  
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Rev: 1.02a 6/2013  
19/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
·
·
·
·
·
·
·
·
Boundary Scan Register  
·
·
·
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1  
0
·
· · ·  
Control Signals  
Test Access Port (TAP) Controller  
TMS  
TCK  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
GSI Technology  
Not Used  
JEDEC Vendor  
ID Code  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
0
8
1
7
1
6
0
5
1
4
1
3
0
2
0
1
1
0
1
Bit #  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
Rev: 1.02a 6/2013  
20/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facili-  
tate testing of other devices in the scan path.  
Rev: 1.02a 6/2013  
21/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because  
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the  
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with  
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is  
still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.  
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output  
drivers on the falling edge of TCK when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruc-  
tion is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not asso-  
ciated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR  
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associ-  
ated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and  
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-  
Z) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR  
state.  
Rev: 1.02a 6/2013  
22/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
1
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
IDCODE  
001  
1, 2  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z except CQ.  
SAMPLE-Z  
010  
1
GSI  
SAMPLE/PRELOAD  
GSI  
101  
100  
101  
101  
111  
GSI private instruction.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI private instruction.  
1
1
1
1
1
GSI  
GSI private instruction.  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
VILJ  
Min.  
0.3  
Max.  
Unit Notes  
0.3 * VDD  
VDD +0.3  
Test Port Input Low Voltage  
V
V
1
1
VIHJ  
0.7 * VDD  
Test Port Input High Voltage  
IINHJ  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
Test Port Output CMOS High  
Test Port Output CMOS Low  
300  
1  
1
100  
1
uA  
uA  
uA  
V
2
IINLJ  
3
IOLJ  
1  
4
VOHJ  
VOLJ  
VOHJC  
VOLJC  
VDD – 0.2  
0.2  
0.1  
5, 6  
5, 7  
5, 8  
5, 9  
V
VDD – 0.1  
V
V
Notes:  
1. Input Under/overshoot voltage must be 1 V < Vi < V  
+1 V not to exceed 2.4 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
ILJn  
3. 0 V V V  
IN  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V supply.  
DD  
6.  
7.  
8.  
9.  
I
I
I
I
= 2 mA  
OHJ  
= + 2 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OLJC  
Rev: 1.02a 6/2013  
23/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
JTAG Port AC Test Load  
TDO  
VDD – 0.2 V  
0.2 V  
1 V/ns  
VDD/2  
*
50  
30pF  
Input slew rate  
V
/2  
Input reference level  
DD  
* Distributed Test Jig Capacitance  
V
DD/2  
Output reference level  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKC  
tTKH  
tTKL  
TCK  
tTH  
tTH  
tTS  
tTS  
TDI  
TMS  
tTKQ  
TDO  
tTH  
tTS  
Parallel SRAM input  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
Max  
Unit  
TCK Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
tTH  
Rev: 1.02a 6/2013  
24/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Package Dimensions—165-Bump FPBGA (Package E)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.60 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
1.0  
15±0.05  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.02a 6/2013  
25/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Ordering Information—GSI SigmaDDR-II+ ECCRAM  
Speed  
(MHz)  
2
1
Org  
Type  
Package  
T
Part Number  
J
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
4M x 18  
2M x 36  
2M x 36  
GS8672T20BE-633  
GS8672T20BE-550  
GS8672T20BE-500  
GS8672T20BE-450  
GS8672T20BE-400  
GS8672T20BE-633I  
GS8672T20BE-550I  
GS8672T20BE-500I  
GS8672T20BE-450I  
GS8672T20BE-400I  
GS8672T38BE-633  
GS8672T38BE-550  
GS8672T38BE-500  
GS8672T38BE-450  
GS8672T38BE-400  
GS8672T38BE-633I  
GS8672T38BE-550I  
GS8672T38BE-500I  
GS8672T38BE-450I  
GS8672T38BE-400I  
GS8672T20BGE-633  
GS8672T20BGE-550  
GS8672T20BGE-500  
GS8672T20BGE-450  
GS8672T20BGE-400  
GS8672T20BGE-633I  
GS8672T20BGE-550I  
GS8672T20BGE-500I  
GS8672T20BGE-450I  
GS8672T20BGE-400I  
GS8672T38BGE-633  
GS8672T38BGE-550  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
165-bump BGA  
165-bump BGA  
633  
550  
500  
450  
400  
633  
550  
500  
450  
400  
633  
550  
500  
450  
400  
633  
550  
500  
450  
400  
633  
550  
500  
450  
400  
633  
550  
500  
450  
400  
633  
550  
C
C
C
C
C
I
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
C
C
C
C
C
I
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
165-bump BGA  
I
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
C
C
C
C
C
I
I
I
I
I
C
C
Notes:  
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8672TxxBE-500T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Rev: 1.02a 6/2013  
26/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS8672T20/38BE-633/550/500/450/400  
Ordering Information—GSI SigmaDDR-II+ ECCRAM (Continued)  
Speed  
(MHz)  
2
1
Org  
Type  
Package  
T
Part Number  
J
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
2M x 36  
GS8672T38BGE-500  
GS8672T38BGE-450  
GS8672T38BGE-400  
GS8672T38BGE-633I  
GS8672T38BGE-550I  
GS8672T38BGE-500I  
GS8672T38BGE-450I  
GS8672T38BGE-400I  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
SigmaDDR-II+ B2 ECCRAM  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
RoHS-compliant 165-bump BGA  
500  
450  
400  
633  
550  
500  
450  
400  
C
C
C
I
I
I
I
I
Notes:  
1. For Tape and Reel add the character “T” to the end of the part number. Example: GS8672TxxBE-500T.  
2. C = Commercial Temperature Range. I = Industrial Temperature Range.  
Revision History  
Types of Changes  
Format or Content  
File Name  
Revisions  
• Creation of datasheet  
• Added 633 MHz  
GS8672T20_38B_r1  
GS8672T20_38B_r1a  
Content  
Content  
• Added Operating Currents data  
• (Rev1.01a: Editorial updates)  
• (Rev1.01b: Corrected 165 thermal numbers)  
GS8672T20_38B_r1_01  
GS8672T20_38B_r1_02  
• Updated to reflect MP status  
• (Rev1.02a: Removed V reference in Abs Max section)  
Content  
TIN  
Rev: 1.02a 6/2013  
27/27  
© 2011, GSI Technology  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS8672T20AE-400

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-400I

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-400T

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-450T

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-500I

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-500IT

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-500T

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AE-550IT

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, FPBGA-165
GSI

GS8672T20AGE-400IT

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8672T20AGE-400T

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8672T20AGE-450

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI

GS8672T20AGE-450IT

Standard SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 17 X 15 MM, 1 MM PITCH, ROHS COMPLIANT, FPBGA-165
GSI