GS881E18TT-11I [GSI]

Standard SRAM, 512KX18, 11ns, CMOS, PQFP100;
GS881E18TT-11I
型号: GS881E18TT-11I
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Standard SRAM, 512KX18, 11ns, CMOS, PQFP100

静态存储器 内存集成电路
文件: 总34页 (文件大小:467K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
100-Pin TQFP  
Commercial Temp  
Industrial Temp  
100 MHz–66 MHz  
3.3 V VDD  
3.3 V and 2.5 V I/O  
512K x 18, 256K x 36 ByteSafe™  
8Mb Sync Burst SRAMs  
counter may be configured to count in either linear or  
1.10 9/2000Features  
• FT pin for user-configurable flow through or pipelined  
operation  
• Dual Cycle Deselect (DCD) operation  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• On-chip write parity checking; even or odd selectable  
• 3.3 V +10%/–5% core power supply  
interleave order with the Linear Burst Order (LBO) input. The  
Burst function need not be used. New addresses can be loaded  
on every cycle with no degradation of chip performance.  
Flow Through/Pipeline Reads  
The function of the Data Output register can be controlled by  
the user via the FT mode pin (Pin 14). Holding the FT mode  
pin low places the RAM in Flow Through mode, causing  
output data to bypass the Data Output Register. Holding FT  
high places the RAM in Pipeline mode, activating the rising-  
edge-triggered Data Output Register.  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleaved Burst mode  
• Internal input resistors on mode pins allow floating mode pins  
• Default to Interleaved Pipeline mode  
• Byte Write (BW) and/or Global Write (GW) operation  
• Common data inputs and data outputs  
• Clock Control, registered, address, data, and control  
• Internal self-timed write cycle  
• Automatic power-down for portable applications  
• 100-lead TQFP package  
DCD Pipelined Reads  
The GS881E18//36T is a DCD (Dual Cycle Deselect)  
pipelined synchronous SRAM. SCD (Single Cycle Deselect)  
versions are also available. DCD SRAMs pipeline disable  
commands to the same degree as read commands. DCD RAMs  
hold the deselect command for one full cycle and then begin  
turning off their outputs just after the second rising edge of  
clock.  
-11  
-11.5  
10 ns  
-100  
-80  
-66  
Pipeline tCycle 10 ns  
10 ns 12.5 ns 15 ns  
Byte Write and Global Write  
3-1-1-1  
t
4.0 ns 4.0 ns 4.0 ns 4.5 ns 5.0 ns  
225 mA 225 mA 225 mA 200 mA 185 mA  
KQ  
DD  
Byte write operation is performed by using Byte Write enable  
(BW) input combined with one or more individual byte write  
signals (Bx). In addition, Global Write (GW) is available for  
writing all bytes at one time, regardless of the byte write  
control inputs.  
I
Flow  
Through  
2-1-1-1  
t
11 ns 11.5 ns 12 ns  
15 ns 15 ns 15 ns  
14 ns  
15 ns  
18 ns  
20 ns  
KQ  
tCycle  
180 mA 180 mA 180 mA 175 mA 165 mA  
I
DD  
ByteSafe™ Parity Functions  
The GS881E18/36T features ByteSafe data security functions.  
See detailed discussion following.  
Functional Description  
Sleep Mode  
Applications  
Low power (Sleep mode) is attained through the assertion  
(high) of the ZZ signal, or by stopping the clock (CK).  
Memory data is retained during Sleep mode.  
The GS881E18//36T is a 9,437,184-bit high performance  
synchronous SRAM with a 2-bit burst address counter.  
Although of a type originally developed for Level 2 Cache  
applications supporting high performance CPUs, the device  
now finds application in synchronous SRAM applications,  
ranging from DSP main store to networking chip set support.  
Core and Interface Voltages  
The GS881E18//36T operates on a 3.3 V power supply, and all  
inputs/outputs are 3.3 V- and 2.5 V-compatible. Separate  
Controls  
output power (V  
) pins are used to decouple output noise  
DDQ  
Addresses, data I/Os, chip enables (E1, E2), address burst  
control inputs (ADSP, ADSC, ADV) and write control inputs  
(Bx, BW, GW) are synchronous and are controlled by a  
positive-edge-triggered clock input (CK). Output enable (G)  
and power down control (ZZ) are asynchronous inputs. Burst  
cycles can be initiated with either ADSP or ADSC inputs. In  
Burst mode, subsequent burst addresses are generated  
internally and are controlled by ADV. The burst address  
from the internal circuit.  
Rev: 1.10 9/2000  
1/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
GS881E18 100-Pin TQFP Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A18  
NC  
NC  
V
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
V
4
DDQ  
DDQ  
V
V
5
SS  
SS  
NC  
6
NC  
NC  
DQB1  
DQB2  
DQA9  
DQA8  
DQA7  
7
8
9
512K X 18  
Top View  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
DQA6  
DQA5  
DQB3  
DQB4  
FT  
V
SS  
QE  
V
DD  
V
DP  
DD  
ZZ  
DQA4  
DQA3  
V
SS  
DQB5  
DQB6  
V
V
DDQ  
DDQ  
V
V
SS  
SS  
DQA2  
DQA1  
NC  
DQB7  
DQB8  
DQB9  
NC  
NC  
V
V
SS  
SS  
V
V
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.10 9/2000  
2/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
GS881E36 100-Pin TQFP Pinout  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
DQB9  
DQB8  
DQB7  
DQC9  
DQC8  
DQC7  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
V
V
4
DDQ  
DDQ  
V
V
5
SS  
SS  
DQB6  
DQB5  
DQB4  
DQB3  
6
DQC6  
DQC5  
DQC4  
DQC3  
7
8
9
256K x 36  
Top View  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
DQB2  
DQB1  
DQC2  
DQC1  
V
FT  
SS  
QE  
V
DD  
V
DP  
DD  
ZZ  
DQA1  
DQA2  
V
SS  
DQD1  
DQD2  
V
V
DDQ  
DDQ  
V
V
SS  
SS  
DQA3  
DQA4  
DQA5  
DQA6  
DQD3  
DQD4  
DQD5  
DQD6  
V
V
SS  
SS  
V
V
DDQ  
DDQ  
DQA7  
DQA8  
DQA9  
DQD7  
DQD8  
DQD9  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Rev: 1.10 9/2000  
3/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
TQFP Pin Descriptio  
Pin Location  
Typ  
e
Symbol  
Description  
37, 36  
A0, A1  
A2–A17  
A18  
I
I
I
Address field LSBs and Address Counter preset Inputs  
35, 34, 33, 32, 100, 99, 82, 81, 44, 45,  
46, 47, 48, 49, 50, 92  
Address Inputs  
Address Inputs  
80  
63, 62, 59, 58, 57, 56, 53, 52  
68, 69, 72, 73, 74, 75, 78, 79  
13, 12, 9, 8, 7, 6, 3, 2  
DQA1–DQA8  
DQB1–DQB8  
DQC1–DQC8  
DQD1–DQD8  
I/O  
Data Input and Output pins ( x36 Version)  
18, 19, 22, 23, 24, 25, 28, 29  
DQA9, DQB9,  
DQC9, DQD9  
51, 80, 1, 30  
I/O  
I/O  
Data Input and Output pins  
Data Input and Output pins  
58, 59, 62, 63, 68, 69, 72, 73, 74  
8, 9, 12, 13, 18, 19, 22, 23, 24  
DQA1–DQA9  
DQB1–DQB9  
51, 52, 53, 56, 57  
75, 78, 79,  
NC  
No Connect  
1, 2, 3, 6, 7  
25, 28, 29, 30  
16  
66  
DP  
QE  
I
O
I
Parity Input; 1 = Even, 0 = Odd  
Parity Error Out; Open Drain Output  
87  
BW  
Byte Write—Writes all enabled bytes; active low  
Byte Write Enable for DQA, DQB Data I/Os; active low  
Byte Write Enable for DQC, DQD Data I/Os; active low ( x36 Version)  
No Connect (x18 Version)  
93, 94  
95, 96  
95, 96  
89  
BA, BB  
BC, BD  
NC  
I
I
I
CK  
Clock Input Signal; active high  
88  
GW  
I
Global Write Enable—Writes all bytes; active low  
Chip Enable; active low  
98  
E1  
I
97  
E2  
I
Chip Enable; active high  
86  
G
I
Output Enable; active low  
83  
ADV  
ADSP, ADSC  
I
Burst address counter advance enable; active low  
Address Strobe (Processor, Cache Controller); active low  
84, 85  
I
Rev: 1.10 9/2000  
4/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Typ  
e
Pin Location  
Symbol  
Description  
64  
ZZ  
FT  
I
I
Sleep mode control; active high  
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
Scan Test Mode Select  
14  
31  
LBO  
TMS  
TDI  
I
38  
I
39  
I
Scan Test Data In  
42  
43  
TDO  
TCK  
O
I
Scan Test Data Out  
Scan Test Clock  
V
15, 41, 65, 91  
I
Core power supply  
DD  
V
5,10,17, 21, 26, 40, 55, 60, 67, 71, 76, 90  
4, 11, 20, 27, 54, 61, 70, 77  
I
I
I/O and Core Ground  
SS  
V
Output driver power supply  
DDQ  
Rev: 1.10 9/2000  
5/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
GS881E18/36 Block Diagram  
Register  
A0–An  
D
Q
A0  
A1  
A0  
A1  
D0  
D1  
Q0  
Q1  
Counter  
Load  
A
LBO  
ADV  
Memory  
Array  
CK  
ADSC  
ADSP  
Q
D
Register  
GW  
BW  
BA  
D
Q
36  
36  
Register  
D
Q
BB  
BC  
BD  
4
4
Register  
D
Q
Register  
D
Q
Register  
36  
D
Q
36  
36  
32  
Register  
E1  
E2  
D
Q
4
36  
Parity  
Encode  
Register  
D
Q
4
Parity  
Compare  
FT  
G
36  
0
Power Down  
Control  
DQx0–DQx9  
QE  
DP  
ZZ  
Note: Only x36 version shown for simplicity.  
Rev: 1.10 9/2000  
6/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
ByteSafeParity Functions  
This SRAM includes a write data parity check that checks the validity of data coming into the RAM on write cycles. In Flow  
Through mode, write data errors are reported in the cycle following the data input cycle. In Pipeline mode, write data errors are  
reported one clock cycle later. (See Write Parity Error Output Timing Diagram.) The Data Parity Mode (DP) pin must be tied  
high to set the RAM to check for even parity or low to check for odd parity. Read data parity is not checked by the RAM as data.  
Validity is best established at the data’s destination. The Parity Error Output is an open drain output and drives low to indicate a  
parity error. Multiple Parity Error Output pins may share a common pull-up resistor.  
Write Parity Error Output Timing Diagram  
CK  
DQ  
D In A  
D In B  
D In C  
D In D  
D In E  
tKQ  
tLZ  
tHZ  
tKQX  
QE  
DQ  
Err A  
Err C  
D In A  
D In B  
D In C  
D In D  
D In E  
tKQ  
tLZ  
tHZ  
tKQX  
QE  
Err A  
Err C  
BPR 1999.05.18  
Rev: 1.10 9/2000  
7/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
L
H or NC  
L
Burst Order Control  
Output Register Control  
Power Down Control  
LBO  
FT  
ZZ  
DP  
H or NC  
L or NC  
H
Active  
Standby, I = I  
DD SB  
L
Check for Odd Parity  
Check for Even Parity  
ByteSafe Data Parity Control  
H or NC  
Note:  
There are pull-up devices on the LBO, DP and FT pins and a pull down device on the ZZ pin, so those input pins can be unconnected and the  
chip will operate in the default states as specified in the above table.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Rev: 1.10 9/2000  
8/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Byte Write Truth Table  
Function  
Read  
GW  
BW  
H
L
B
A
B
B
B
C
B
D
Notes  
1
H
H
H
H
H
H
H
L
X
X
X
X
Read  
H
L
H
H
L
H
H
H
L
H
H
H
H
L
1
Write byte a  
Write byte b  
Write byte c  
Write byte d  
Write all bytes  
Write all bytes  
L
2, 3  
L
H
H
H
L
2, 3  
L
H
H
L
2, 3, 4  
2, 3, 4  
2, 3, 4  
L
H
L
L
L
X
X
X
X
X
Notes:  
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.  
2. Byte Write Enable inputs BA, BB, BC, and/or BD may be used in any combination with BW to write single or multiple bytes.  
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.  
4. Bytes C” and “D” are only available on the x36 version.  
Rev: 1.10 9/2000  
9/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Synchronous Truth Table  
Operation  
State  
2
Address  
Used  
E2  
3
4
Diagram  
E1  
ADSP ADSC ADV  
W
DQ  
(x36only)  
5
Key  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Notes:  
None  
None  
X
X
H
L
X
F
F
T
T
T
X
X
X
X
X
X
X
X
X
L
L
X
L
X
X
X
X
X
X
L
X
X
X
X
F
T
F
F
T
T
F
F
T
T
High-Z  
High-Z  
None  
X
L
L
H
L
High-Z  
External  
External  
External  
Next  
R
X
L
Q
Q
D
Q
Q
D
D
Q
Q
D
D
R
L
L
X
H
X
H
X
H
X
H
H
H
H
X
H
X
H
X
H
X
W
L
CR  
CR  
CW  
CW  
H
H
H
H
H
H
H
H
Next  
L
Next  
L
Next  
L
Current  
Current  
Current  
Current  
H
H
H
H
1. X = Don’t Care, H = High, L = Low.  
2. For x36 Version, E = T (True) if E2 = 1; E = F (False) if E2 = 0.  
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.  
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown  
as “Q” in the Truth Table above).  
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish  
basic synchronous or synchronous burst operations and may be avoided for simplicity.  
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.  
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.  
Rev: 1.10 9/2000  
10/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Simplified State Diagram  
X
Deselect  
W
R
W
R
X
R
X
CR  
First Write  
First Read  
CW  
CR  
W
R
R
X
Burst Write  
X
Burst Read  
CR  
CW  
CR  
Notes:  
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.  
2. The upper portion of the diagram assumes active use of only the Enable (E1 and E2) and Write (BA, BB, BC, BD, BW, and GW) control  
inputs, and that ADSP is tied high and ADSC is tied low.  
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, and  
assumes ADSP is tied high and ADV is tied low.  
Rev: 1.10 9/2000  
11/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Simplified State Diagram with G  
X
Deselect  
W
R
W
R
X
W
R
X
CR  
First Write  
First Read  
CR  
CW  
CW  
W
R
R
W
X
Burst Write  
X
Burst Read  
CR  
CW  
CW  
CR  
Notes:  
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.  
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passing  
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal Read cycles.  
3. Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet  
Data Input Set Up Time.  
Rev: 1.10 9/2000  
12/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
V
Voltage on V Pins  
–0.5 to 4.6  
DD  
DD  
V
Voltage in V  
Pins  
–0.5 to V  
V
DDQ  
DDQ  
DD  
V
Voltage on Clock Input Pin  
Voltage on I/O Pins  
–0.5 to 6  
V
CK  
V
–0.5 to V  
+0.5 (£ 4.6 V max.)  
DDQ  
V
I/O  
V
–0.5 to V +0.5 (£ 4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
IN  
DD  
I
+/–20  
+/–20  
mA  
mA  
W
IN  
I
OUT  
P
1.5  
D
o
T
–55 to 125  
–55 to 125  
C
STG  
o
T
Temperature Under Bias  
C
BIAS  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
Min.  
3.135  
2.375  
1.7  
Typ.  
3.3  
2.5  
Max.  
Unit  
V
Notes  
V
3.6  
DD  
V
V
I/O Supply Voltage  
V
1
2
2
3
3
DDQ  
DD  
V
V
+0.3  
DD  
Input High Voltage  
V
IH  
V
Input Low Voltage  
–0.3  
0
0.8  
V
IL  
T
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
70  
85  
°C  
°C  
A
T
–40  
25  
A
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 2.75 V £ V  
£ 2.375 V  
DDQ  
(i.e., 2.5 V I/O) and 3.6 V £ V  
£ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case.  
DDQ  
2. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of  
Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
4. Input Under/overshoot voltage must be –2 V > Vi < V +2 V with a pulse width not to exceed 20% tKC.  
DD  
Rev: 1.10 9/2000  
13/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 2.0 V  
50%  
VSS  
50%  
VDD  
VSS – 2.0 V  
20% tKC  
VIL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 3.3 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V = 0 V  
IN  
Input Capacitance  
4
6
5
7
IN  
C
V
= 0 V  
Input/Output Capacitance  
pF  
I/O  
OUT  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
Max  
40  
Unit  
Notes  
1,2  
R
single  
four  
°C/W  
°C/W  
°C/W  
QJA  
R
24  
1,2  
QJA  
R
9
3
QJC  
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.10 9/2000  
14/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for t , t , t and t  
LZ HZ OLZ  
OHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225W  
DQ  
*
50W  
VT = 1.25 V  
30pF  
*
225W  
5pF  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
–1 uA  
1 uA  
IL  
V
³ V ³ V  
IN  
–1 uA  
–1 uA  
1 uA  
300 uA  
DD  
IH  
IH  
I
ZZ Input Current  
INZZ  
0 V £ V £ V  
IN  
V
³ V ³ V  
IN  
–300 uA  
–1 uA  
1 uA  
1 uA  
DD  
IL  
I
Mode Pin Input Current  
Output Leakage Current  
INM  
0 V £ V £ V  
IN  
IL  
Output Disable,  
V
I
–1 uA  
1 uA  
OL  
= 0 to V  
OUT  
DD  
V
I
I
= –8 mA, V  
= –8 mA, V  
= 2.375 V  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1.7 V  
2.4 V  
OH  
OH  
DDQ  
DDQ  
V
= 3.135 V  
OH  
OH  
V
I
= 8 mA  
OL  
0.4 V  
OL  
Rev: 1.10 9/2000  
15/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Operating Currents  
-11  
-11.5  
-100  
-80  
-66  
0
to  
–40  
to  
0
to  
–40  
to  
0
to  
–40  
to  
0
to  
–40  
to  
0
to  
–40  
to  
Parameter  
Test Conditions  
Symbol  
Unit  
70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C 70°C 85°C  
I
DD  
Device Selected;  
All other inputs  
³ V or £ V  
225  
180  
30  
235  
190  
40  
225  
180  
30  
235  
190  
40  
225  
180  
30  
235  
190  
40  
200  
175  
30  
210  
185  
40  
185  
165  
30  
195  
175  
40  
mA  
mA  
mA  
mA  
mA  
mA  
Pipeline  
Operating  
Current  
IH  
IL  
I
DD  
Output open  
Flow-Thru  
I
SB  
Pipeline  
Standby  
Current  
ZZ ³ V - 0.2V  
DD  
I
SB  
30  
40  
30  
40  
30  
40  
30  
40  
30  
40  
Flow-Thru  
I
DD  
80  
90  
80  
90  
80  
90  
70  
80  
60  
70  
Device Deselected;  
All other inputs  
Pipeline  
Deselect  
Current  
I
DD  
³ V or £ V  
IH  
IL  
65  
75  
65  
75  
65  
75  
55  
65  
50  
60  
Flow-Thru  
Rev: 1.10 9/2000  
16/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
AC Electrical Characteristics  
-11  
-11.5  
-100  
-80  
-66  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
tKC  
tKQ  
10  
4.0  
10  
4.0  
10  
4.0  
12.5  
4.5  
15  
5
ns  
ns  
ns  
ns  
Pipeline  
tKQX  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1
tLZ  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKC  
tKQ  
15.0  
11.0  
15.0  
11.5  
15.0  
12.0  
15.0  
14.0  
20  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Flow-  
Thru  
tKQX  
3.0  
3.0  
1.7  
2
3.0  
3.0  
1.7  
2
3.0  
3.0  
2
3.0  
3.0  
2
3.0  
3.0  
2.3  
2.5  
1.5  
1
tLZ  
tKH  
tKL  
Clock LOW Time  
2.2  
1.5  
2.2  
1.5  
1
Clock to Output in High-Z  
G to Output Valid  
1.5  
4.0  
4.0  
1.5  
4.2  
4.2  
4.5  
4.5  
4.5  
4.5  
4.8  
4.8  
tHZ  
tOE  
1
G to output in Low-Z  
G to output in High-Z  
0
0
0
0
0
ns  
ns  
tOLZ  
1
4.0  
4.2  
4.5  
4.5  
4.8  
tOHZ  
tS  
Setup time  
Hold time  
1.5  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
ns  
ns  
tH  
2
ZZ setup time  
ZZ hold time  
ZZ recovery  
5
1
5
1
5
1
5
1
5
1
ns  
ns  
ns  
tZZS  
tZZH  
2
tZZR  
20  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.10 9/2000  
17/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Write Cycle Timing  
Single Write  
Burst Write  
Deselected  
Write  
CK  
tH  
tS  
ADSP is blocked by E inactive  
tKC  
tKL  
tKH  
ADSP  
tH  
tH  
tS  
tS  
ADSC initiated write  
ADSC  
ADV  
ADV must be inactive for ADSP Write  
tH  
tS  
WR2  
WR3  
WR1  
A0–An  
tS tH  
GW  
BW  
tH  
tS  
tS  
tH  
WR3  
WR1  
WR2  
BA–BD  
tS  
tH  
tH  
E1 masks ADSP  
E1  
E2  
tS  
Deselected with E2  
E2 only sampled with ADSP or ADSC  
G
tS  
tH  
Write specified byte for 2A and all bytes for 2B, 2C& 2D  
D2C D2D D3A  
Hi-Z  
D1A  
DQA–DQD  
D2A  
D2B  
Rev: 1.10 9/2000  
18/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Flow Through Read Cycle Timing  
Single Read  
Burst Read  
tKL  
CK  
tKH  
tS  
tH  
ADSP is blocked by E inactive  
tKC  
ADSP  
ADSC  
ADV  
tS tH  
ADSC initiated read  
tH  
tS  
Suspend Burst  
Suspend Burst  
tS  
tH  
RD1  
RD2  
RD3  
A0–An  
GW  
tS  
tS  
tH  
tH  
BW  
BA–BD  
tH  
tS  
E1 masks ADSP  
E1  
tS tH  
E2 only sampled with ADSP or ADSC  
Deselected with E2  
E2  
tOHZ  
tOE  
G
tKQX  
tKQX  
tOLZ  
Hi-Z  
Q2B  
Q2c  
Q3A  
Q1A  
Q2A  
Q2D  
DQA–DQD  
tLZ  
tHZ  
tKQ  
Rev: 1.10 9/2000  
19/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Flow Through Read-Write Cycle Timing  
Single Write  
Burst Read  
Single Read  
CK  
tH  
tS  
tKC  
ADSP is blocked by E inactive  
ADSC initiated read  
tKH tKL  
ADSP  
ADSC  
ADV  
tS tH  
tS tH  
tS  
tH  
RD2  
RD1  
WR1  
A0–An  
GW  
tS tH  
tH  
tS  
BW  
tS  
tH  
WR1  
BA–BD  
tS  
tS  
tH  
tH  
E1 masks ADSP  
E1  
E2 only sampled with ADSP and ADSC  
E2  
tOHZ  
tOE  
G
tS  
D1A  
tH  
tKQ  
Hi-Z  
DQA–DQD  
Q1A  
Q2A  
Q2A  
Q2B  
Q2c  
Q2D  
Burst wrap around to it’s initial state  
Rev: 1.10 9/2000  
20/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Pipelined DCD Read Cycle Timing  
Single Read  
Burst Read  
tKL  
CK  
tH  
tS  
ADSP is blocked by E1 inactive  
tKC  
tKH  
tH  
ADSP  
ADSC  
tS  
ADSC initiated read  
tS  
tH  
Suspend Burst  
ADV  
A0–An  
GW  
tS  
tH  
RD3  
RD1  
RD2  
tS  
tS  
tH  
tH  
BW  
BA–BD  
tS tH  
E1 masks ADSP  
E1  
E2  
tH  
tS  
E2 only sampled with ADSP or ADSC  
tOE  
G
tOHZ  
tKQX  
Q2A  
tKQX  
Q3A  
tHZ  
tOLZ  
tLZ  
Hi-Z  
Q1A  
Q2B  
Q2D  
Q2c  
DQA–DQD  
tKQ  
Rev: 1.10 9/2000  
21/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Pipelined DCD Read-Write Cycle Timing  
Single Write  
Burst Read  
Single Read  
tKL  
CK  
ADSP  
ADSC  
ADV  
tS  
tH  
tKH  
tKC  
ADSP is blocked by E1 inactive  
tS tH  
ADSC initiated read  
tS  
tH  
tH  
tS  
tH  
RD2  
WR1  
RD1  
A0–An  
tS  
GW  
BW  
tS  
tH  
tH  
tS  
WR1  
BA–BD  
tS tH  
E1 masks ADSP  
E
1
tS tH  
E2 only sampled with ADSP and ADSC  
E2  
tOE  
tOHZ  
G
tS  
tH  
tKQ  
Hi-Z  
Q1A  
D1a  
Q2A  
Q2B  
Q2c  
DQA–DQD  
Q2D  
Rev: 1.10 9/2000  
22/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Sleep Mode Timing Diagram  
CK  
tH  
tS  
tKC  
tKL  
tKH  
ADSP  
ADSC  
ZZ  
tZZH  
tZZS  
tZZR  
Snooze  
Application Tips  
Single and Dual Cycle Deselect  
SCD devices force the use of “dummy read cycles” (read cycles that are launched normally but that are ended with the output  
drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance but their use usually assures there  
will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste bandwidth on  
dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address  
boundary crossings) but greater care must be exercised to avoid excessive bus contention.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface  
standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Some  
functions have been modified or eliminated because they can slow the RAM. Nevertheless, the RAM supports 1149.1-1990 TAP  
(Test Access Port) Controller architecture, and can be expected to function in a manner that does not conflict with the operation of  
Standard 1149.1 compliant devices. The JTAG Port interfaces with conventional TTL / CMOS logic level signaling.  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits. To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
Rev: 1.10 9/2000  
23/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
JTAG Pin Descriptions  
Pin  
Pin Name I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the  
falling edge of TCK.  
TCK  
Test Clock  
In  
Test Mode  
Select  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state  
machine. An undriven TMS input will produce the same result as a logic one input level.  
TMS  
TDI  
In  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed  
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP  
In Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to  
Test Data In  
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input  
level.  
Output that is active depending on the state of the TAP state machine. Output changes in response to the  
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO Test Data Out Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS  
as TCK is strobed. Each of the TAP Registers are serial shift registers that capture serial input data on the rising edge of TCK and  
push serial data out on the next falling edge of TCK. When a register is selected it is placed between the TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAMs JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The  
flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. Two TAP  
instructions can be used to activate the Boundary Scan Register.  
Rev: 1.10 9/2000  
24/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2
1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
1
1
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
10 9 8 7 6 5 4 3 2 1  
0
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
1
1
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions, are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. Although the TAP controller in this device follows the 1149.1 conventions, it is not 1194.1-  
compliant because some of the mandatory instructions are not fully implemented. The TAP on this device may be used to monitor  
all input and I/O pads, but cannot be used to load address, data or control signals into the RAM or to preload the I/O buffers.This  
device will not perform EXTEST, INTEST or the SAMPLE/PRELOAD command.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
Rev: 1.10 9/2000  
25/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE/PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm  
the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data cap-  
ture set-up plus hold time (tTS plus tTH ). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O  
ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the  
TDI and TDO pins. Because the PRELOAD portion of the command is not implemented in this device, moving the controller to the Update-  
DR state with the SAMPLE / PRELOAD instruction loaded in the Instruction Register has the same effect as the Pause-DR command. This  
functionality is not Standard 1149.1-compliant.  
Rev: 1.10 9/2000  
26/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in  
the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore, this device is not 1149.1-compliant. Neverthe-  
less, this RAM’s TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction regis-  
ter the RAM responds just as it does in response to the BYPASS instruction described above.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the  
Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
This RAM does not implement 1149.1 EXTEST function. *Not 1149.1 Compliant *  
1
1, 2  
1
IDCODE  
001  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z.  
SAMPLE-Z  
010  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
011  
1
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
This RAM does not implement 1149.1 PRELOAD function. *Not 1149.1 Compliant *  
100  
101  
110  
111  
1
1
1
1
GSI  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.10 9/2000  
27/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol Min. Max. Unit Notes  
V
V
+0.3  
DD  
Test Port Input High Voltage  
1.7  
–0.3  
–300  
–1  
V
V
1, 2  
1, 2  
IHT  
V
Test Port Input Low Voltage  
0.8  
ILT  
I
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
1
1
uA  
uA  
uA  
V
3
4
INTH  
I
INTL  
I
–1  
1
5
OLT  
V
2.4  
0.4  
6, 7  
6, 8  
OHT  
V
V
OLT  
Notes:  
1. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
2. Input Under/overshoot voltage must be –2 V > Vi < V +2 V with a pulse width not to exceed 20%  
DD  
tTKC.  
3.  
V
³ V ³ V  
DD  
IN  
IL  
IL  
4. 0 V £ V £ V  
IN  
5. Output Disable, V  
= 0 to V  
DD  
OUT  
6. The TDO output driver is served by the V supply.  
DD  
7.  
8.  
I
I
= –4 mA  
= +4 mA  
OH  
OL  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
2.3 V  
JTAG Port AC Test Load  
DQ  
Input low level  
0.2 V  
*
Input slew rate  
1 V/ns  
50W  
30pF  
Input reference level  
Output reference level  
1.25 V  
V = 1.25 V  
T
1.25 V  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
Rev: 1.10 9/2000  
28/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
JTAG Port Timing Diagram  
tTKL  
tTKH  
tTKC  
TCK  
tTS tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
20  
10  
10  
5
Max  
Unit  
ns  
TCK Cycle Time  
10  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
ns  
ns  
ns  
ns  
tTH  
5
ns  
Rev: 1.10 9/2000  
29/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
GS811E18/36T TQFP Boundary Scan Register  
Order  
1
x36  
x18 Pin  
Order  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
x36  
x18 Pin  
Order  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
x36  
x18 Pin  
PH = 0  
n/a  
A9  
A8  
81  
FT  
14  
16  
2
PH = 0  
A10  
n/a  
82  
DP  
3
44  
ADV  
ADSP  
83  
PH = 0  
n/a  
4
A11  
45  
46  
84  
DQD1  
DQB5  
DQB6  
DQB7  
DQB8  
DQB9  
18  
19  
22  
23  
24  
5
A12  
ADSC  
G
85  
DQD2  
DQD3  
6
A13  
47  
86  
7
A14  
48  
BW  
87  
DQD4  
8
A15  
49  
GW  
CK  
88  
DQD5  
9
A16  
50  
89  
DQD6  
NC = 1 25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
x36 = DQA9  
NC = 1 51  
NC = 1 52  
NC = 1 53  
NC = 1 56  
NC = 1 57  
PH = 0  
PH = 0  
A17  
n/a  
DQD7  
NC = 1 28  
DQA8  
DQA7  
DQA6  
DQA5  
DQA4  
DQA3  
DQA2  
DQA1  
n/a  
DQD8  
NC = 1 29  
92  
x36 = DQD9  
NC = 1 30  
BA  
93  
LBO  
31  
32  
33  
34  
35  
36  
BB  
94  
A5  
A4  
DQA1  
DQA2  
DQA3  
DQA4  
58  
59  
62  
63  
64  
66  
68  
69  
72  
73  
74  
BC  
BD  
NC = 1 95  
NC = 1 96  
A3  
E2  
E1  
A7  
A6  
97  
98  
A2  
A1  
ZZ  
99  
A0  
37  
n/a  
QE  
100  
PH = 0  
BPR 1999.08.11  
DQB1  
DQB2  
DQB3  
DQB4  
DQB5  
DQB6  
DQB7  
DQB8  
DQA5  
DQA6  
DQA7  
DQA8  
DQA9  
x36 = DQC9  
DQC8  
NC = 1  
NC = 1  
NC = 1  
NC = 1  
NC = 1  
DQB1  
1
2
DQC7  
3
DQC6  
6
DQC5  
7
NC = 1 75  
NC = 1 78  
NC = 1 79  
DQC4  
8
DQC3  
DQB2  
9
DQC2  
DQB3  
12  
13  
x36 = DQB9  
A18  
80  
DQC1  
DQB4  
Notes:  
1. The Boundary Scan Register contains a number of registers that are not connected to any pin. They default to the value shown at reset.  
2. Registers are listed in exit order (i.e. Location 1 is the first out of the TDO pin.  
3. NC = No Connect, NA = Not Active, PH = Place Holder (No associated pin)  
Rev: 1.10 9/2000  
30/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Output Driver Characteristics  
120.0  
100.0  
Pull Down Drivers  
80.0  
60.0  
40.0  
VD D Q  
20.0  
I O u t  
0.0  
VO u t  
VS S  
-20.0  
-40.0  
-60.0  
-80.0  
-100.0  
-120.0  
-140.0  
Pull Up Drivers  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
V Out (Pull Down)  
VDDQ - V Out (Pull Up)  
3.6V PD HD  
3.3V PD HD  
3.1V PD HD  
3.1V PU HD  
3.3V PU HD  
3.6V PU HD  
BPR 1999.05.18  
Rev: 1.10 9/2000  
31/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
TQFP Package Drawing  
q
L
c
L1  
Symbol  
Description  
Standoff  
Min. Nom. Max  
A1  
A2  
b
0.05  
1.35  
0.20  
0.09  
0.10  
1.40  
0.30  
0.15  
1.45  
0.40  
0.20  
22.1  
20.1  
16.1  
14.1  
Body Thickness  
Lead Width  
c
Lead Thickness  
D
Terminal Dimension 21.9  
Package Body 19.9  
Terminal Dimension 15.9  
22.0  
20.0  
16.0  
14.0  
0.65  
0.60  
1.00  
e
D1  
E
b
E1  
e
Package Body  
Lead Pitch  
13.9  
L
Foot Length  
Lead Length  
Coplanarity  
Lead Angle  
0.45  
0.75  
L1  
Y
A1  
A2  
E1  
E
0.10  
7°  
q
0°  
Notes:  
1. All dimensions are in millimeters (mm).  
2. Package width and length do not include mold protrusion.  
BPR 1999.05.18  
Rev: 1.10 9/2000  
32/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Ordering Information for GSI Synchronous Burst RAMs  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
514K x 18  
514K x 18  
514K x 18  
514K x 18  
514K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
514K x 18  
514K x 18  
514K x 18  
514K x 18  
514K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
Notes:  
GS881E18T-11  
GS881E18T-11.5  
GS881E18T-100  
GS881E18T-80  
GS881E18T-66  
GS881E36T-11  
GS881E36T-11.5  
GS881E36T-100  
GS881E36T-80  
GS881E36T-66  
GS881E18T-11I  
GS881E18T-11.5I  
GS881E18T-100I  
GS881E18T-80I  
GS881E18T-66I  
GS881E36T-11I  
GS881E36T-11.5I  
GS881E36T-100I  
GS881E36T-80I  
GS881E36T-66I  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
ByteSafe DCD Pipeline/Flow Through  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
100/11  
100/11.5  
100/12  
80/14  
C
C
C
C
C
C
C
C
C
C
I
66/18  
100/11  
100/11.5  
100/12  
80/14  
66/18  
100/11  
100/11.5  
100/12  
80/14  
I
I
I
66/18  
I
100/11  
100/11.5  
100/12  
80/14  
I
I
I
I
66/18  
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS881E18TT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.10 9/2000  
33/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS881E18/36T-11/11.5/100/80/66  
Revision History  
Types of Changes  
Format or Content  
DS/DateRev. Code: Old;  
Page;Revisions;Reason  
New  
• Last Page/Fixed “GSGS..” in Ordering Information Note.  
• Fromatted Pin Outs and Pin Description to new small caps.  
• Formatted Block diagrams to new small caps.  
Format/Typos  
• Formatted Timing Diagrams to new small caps.  
• Changed “Flow thru” to “Flow Through” in Timing Diagrams.  
• Boundary Scan Register/Formatted to new small caps.  
• Package Diagram/Changed “Dimesion” to “Dimension”.  
GS881E18/36TRev1.04h 5/  
1999;  
• 5/Fixed pin description table to match pinouts.  
• Pin Description/Changed chip enables to match pins.  
• Pin Description/Changed pin 80 from NC to Address Input.  
1.05 9/1999I  
• Pin Description/Rearranged Address Inputs to match order of  
Content  
Pinout  
• Changed I to O for TDO  
• Package Diagram/Changed Dimension D Max from 20.1 to  
22.1  
• First Release of 880 F.  
GS881E18/36T1.05 9/  
1999I;1.05 11/1999J  
Content  
Content  
• Changed order of TQFP Address Inputs to match pinout.  
• Changed order of TQFP DATA Input and Output pins to  
match pinout.  
GS881E18/36T1.05 11/  
1999K881E18/36T1.06 1/  
200010L  
• New GSI Logo.  
• Changed all speed bin information (headings, references,  
tables, ordering info..) to reflect 150 - 80Mhz  
GS881E18/36T1.06 1/  
2000L;  
GS881E18/36T1.07 3/  
2000N;  
Content  
Content  
• Corrections to AC Electrical Characteristics Table -  
• Fixed Boundary Scan Register Added Pin 29  
GS881E18/36T1.07 3/  
2000N;  
GS881E18/36T1.08 3/  
2000O;  
• Removed 150 MHz speed bin  
881E GS881E18/36T1.08 3/  
2000O;  
• Changed 133 MHz and 117 MHz speed bins to 11 ns and  
11.5 ns (100 MHz) numbers  
• Updated format to comply with Technical Publications  
standards  
Content/Format  
Content  
881E183236_r1_09  
• Updated Capitance table—removed Input row and changed  
Output row to I/O  
881E18_r1_09;  
881E18_r1_10  
Rev: 1.10 9/2000  
34/34  
© 2000, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS881E18TT-66I

Standard SRAM, 512KX18, 18ns, CMOS, PQFP100
GSI

GS881E18TT-80

Standard SRAM, 512KX18, 14ns, CMOS, PQFP100
GSI

GS881E32AD-133

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-133I

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-133IT

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-133T

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-150

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-150I

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-150IT

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-150T

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-166

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI

GS881E32AD-166I

512K x 18, 256K x 36 9Mb Synchronous Burst SRAMs
GSI