GS88236BB-166T [GSI]

Cache SRAM, 256KX36, 7ns, CMOS, PBGA119, PLASTIC, BGA-119;
GS88236BB-166T
型号: GS88236BB-166T
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Cache SRAM, 256KX36, 7ns, CMOS, PBGA119, PLASTIC, BGA-119

静态存储器
文件: 总33页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS88218/36BB/D-250/225/200/166/150/133  
119- and 165-Bump BGA  
Commercial Temp  
Industrial Temp 9Mb SCD/DCD Sync Burst SRAMs  
250 MHz133MHz  
512K x 18, 256K x 36  
2.5 V or 3.3 V VDD  
2.5 V or 3.3 V I/O  
either linear or interleave order with the Linear Burst Order (LBO)  
input. The Burst function need not be used. New addresses can be  
loaded on every cycle with no degradation of chip performance.  
Features  
FT pin for user-configurable flow through or pipeline operation  
• Single/Dual Cycle Deselect selectable  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• On-chip read parity checking; even or odd selectable  
• ZQ mode pin for user-selectable high/low output drive  
• 2.5 V or 3.3 V +10%/–10% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleaved Burst mode  
• Internal input resistors on mode pins allow floating mode pins  
• Default to SCD x18/x36 Interleaved Pipeline mode  
• Byte Write (BW) and/or Global Write (GW) operation  
• Internal self-timed write cycle  
• Automatic power-down for portable applications  
• JEDEC-standard 119- and 165-bump BGA packages  
Flow Through/Pipeline Reads  
The function of the Data Output register can be controlled by the  
user via the FT mode . Holding the FT mode pin low places the  
RAM in Flow Through mode, causing output data to bypass the  
Data Output Register. Holding FT high places the RAM in  
Pipeline mode, activating the rising-edge-triggered Data Output  
Register.  
SCD and DCD Pipelined Reads  
The GS88218/36B is a SCD (Single Cycle Deselect) and DCD  
(Dual Cycle Deselect) pipelined synchronous SRAM. DCD  
SRAMs pipeline disable commands to the same degree as read  
commands. SCD SRAMs pipeline deselect commands one stage  
less than read commands. SCD RAMs begin turning off their  
outputs immediately after the deselect command has been  
captured in the input registers. DCD RAMs hold the deselect  
command for one full cycle and then begin turning off their  
outputs just after the second rising edge of clock. The user may  
configure this SRAM for either mode of operation using the SCD  
mode input.  
-250 -225 -200 -166 -150 -133 Unit  
Pipeline  
3-1-1-1  
t
2.5 2.7 3.0 3.4 3.8 4.0 ns  
4.0 4.4 5.0 6.0 6.7 7.5 ns  
KQ  
tCycle  
Curr (x18) 280 255 230 200 185 165 mA  
Curr (x32/x36) 330 300 270 230 215 190 mA  
3.3 V  
2.5 V  
Curr (x18) 275 250 230 195 180 165 mA  
Curr (x32/x36) 320 295 265 225 210 185 mA  
Byte Write and Global Write  
Flow  
Through  
2-1-1-1  
Byte write operation is performed by using Byte Write enable  
(BW) input combined with one or more individual byte write  
signals (Bx). In addition, Global Write (GW) is available for  
writing all bytes at one time, regardless of the Byte Write control  
inputs.  
t
5.5 6.0 6.5 7.0 7.5 8.5 ns  
5.5 6.0 6.5 7.0 7.5 8.5 ns  
KQ  
tCycle  
Curr (x18) 175 165 160 150 145 135 mA  
Curr (x32/x36) 200 190 180 170 165 150 mA  
3.3 V  
2.5 V  
Curr (x18) 175 165 160 150 145 135 mA  
Curr (x32/x36) 200 190 180 170 165 150 mA  
FLXDrive™  
The ZQ pin allows selection between high drive strength (ZQ low)  
for multi-drop bus applications and normal drive strength (ZQ  
floating or high) point-to-point applications. See the Output Driver  
Characteristics chart for details.  
Functional Description  
Applications  
Sleep Mode  
The GS88218/36B is a 9,437,184-bit high performance  
synchronous SRAM with a 2-bit burst address counter. Although  
of a type originally developed for Level 2 Cache applications  
supporting high performance CPUs, the device now finds  
application in synchronous SRAM applications, ranging from  
DSP main store to networking chip set support.  
Low power (Sleep mode) is attained through the assertion (High)  
of the ZZ signal, or by stopping the clock (CK). Memory data is  
retained during Sleep mode.  
Core and Interface Voltages  
The GS88218/36B operates on a 2.5 V or 3.3 V power supply. All  
input are 3.3 V and 2.5 V compatible. Separate output power  
(VDDQ) pins are used to decouple output noise from the internal  
Controls  
Addresses, data I/Os, chip enable (E1), address burst control  
inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW,  
GW) are synchronous and are controlled by a positive-edge-  
triggered clock input (CK). Output enable (G) and power down  
control (ZZ) are asynchronous inputs. Burst cycles can be initiated  
with either ADSP or ADSC inputs. In Burst mode, subsequent  
burst addresses are generated internally and are controlled by  
ADV. The burst address counter may be configured to count in  
circuits and are 3.3 V and 2.5 V compatible.  
Rev: 1.00b 12/2002  
1/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
ByteSafe is a Trademark of Giga Semiconductor, Inc. (GSI Technology).  
GS88218/36BB/D-250/225/200/166/150/133  
165 Bump BGA—x18 Commom I/O—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
A
11  
A
B
C
D
E
F
NC  
A
E1  
BB  
NC  
E3  
BW  
ADSC  
ADV  
A18  
A
B
C
D
E
F
NC  
NC  
A
E2  
NC  
BA  
CK  
GW  
G
ADSP  
A
NC  
NC  
NC  
NC  
NC  
ZQ  
NC  
DQA  
DQA  
DQA  
DQA  
DQA  
ZZ  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
DQB  
DQB  
DQB  
DQB  
MCL  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
G
H
J
NC  
G
H
J
FT  
NC  
NC  
DQB  
DQB  
DQB  
DQB  
DQB  
NC  
V
V
DQA  
DQA  
DQA  
DQA  
NC  
A
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
K
L
NC  
V
V
V
V
V
V
V
V
NC  
K
L
NC  
NC  
M
N
P
R
NC  
NC  
M
N
P
R
SCD  
NC  
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
NC  
DDQ  
SS  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
A17  
A
LBO  
NC  
A
TMS  
A
A
11 x 15 Bump BGA—13mm x 15 mm Body—1.0 mm Bump Pitch  
Rev: 1.00b 12/2002  
2/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
165 Bump BGA—x36 Common I/O—Top View (Package D)  
1
2
3
4
5
6
7
8
9
10  
A
11  
A
B
C
D
E
F
NC  
A
E1  
BC  
BB  
E3  
BW  
ADSC  
ADV  
NC  
A
B
C
D
E
F
NC  
A
E2  
BD  
BA  
CK  
GW  
G
ADSP  
A
NC  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
DQC  
DQC  
DQC  
DQC  
DQC  
FT  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQC  
DQC  
DQC  
DQC  
MCL  
DQD  
DQD  
DQD  
DQD  
SCD  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQB  
DQB  
DQB  
DQB  
ZQ  
G
H
J
G
H
J
NC  
NC  
DQD  
DQD  
DQD  
DQD  
DQD  
NC  
V
V
DQA  
DQA  
DQA  
DQA  
NC  
DQA  
DQA  
DQA  
DQA  
DQA  
A17  
A
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
K
L
V
V
V
V
V
V
V
V
K
L
M
N
P
R
M
N
P
R
V
NC  
TDI  
NC  
A1  
A0  
NC  
V
SS  
DDQ  
SS  
DDQ  
A
A
A
TDO  
TCK  
A
A
A
A
LBO  
NC  
A
TMS  
A
A
11 x 15 Bump BGA—13mm x 15 mm Body—1.0 mm Bump Pitch  
Rev: 1.00b 12/2002  
3/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
GS88236B Pad Out  
119 Bump BGATop View  
1
2
3
4
ADSP  
ADSC  
VDD  
ZQ  
5
6
7
A
VDDQ  
NC  
A6  
A7  
A8  
A9  
VDDQ  
NC  
B
C
D
E
F
E2  
A4  
A15  
A14  
VSS  
VSS  
VSS  
BB  
A17  
NC  
A5  
A3  
A16  
NC  
DQC4  
DQC3  
VDDQ  
DQC2  
DQC1  
VDDQ  
DQD1  
DQD2  
VDDQ  
DQD3  
DQD4  
NC  
DQC9  
DQC8  
DQC7  
DQC6  
DQC5  
VDD  
DQD5  
DQD6  
DQD7  
DQD8  
DQD9  
A2  
VSS  
VSS  
VSS  
BC  
DQB9  
DQB8  
DQB7  
DQB6  
DQB5  
VDD  
DQA5  
DQA6  
DQA7  
DQA8  
DQA9  
A13  
DQB4  
DQB3  
VDDQ  
DQB2  
DQB1  
VDDQ  
DQA1  
DQA2  
VDDQ  
DQA3  
DQA4  
PE  
E1  
G
G
H
J
ADV  
GW  
VDD  
CK  
VSS  
NC  
VSS  
BD  
VSS  
NC  
K
L
VSS  
BA  
SCD  
BW  
A1  
VSS  
VSS  
VSS  
LBO  
A10  
TDI  
VSS  
VSS  
VSS  
FT  
M
N
P
R
T
A0  
VDD  
A11  
NC  
NC  
A12  
TDO  
NC  
ZZ  
VDDQ  
TMS  
TCK  
NC  
VDDQ  
U
Rev: 1.00b 12/2002  
4/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
GS88218B Pad Out  
119 Bump BGATop View  
1
2
3
4
ADSP  
ADSC  
VDD  
ZQ  
5
6
7
VDDQ  
NC  
A6  
A7  
A8  
A9  
VDDQ  
NC  
A
E2  
A4  
A15  
A14  
VSS  
VSS  
VSS  
NC  
A17  
B
C
D
E
F
NC  
A5  
A3  
A16  
NC  
DQB1  
NC  
NC  
VSS  
VSS  
VSS  
BB  
DQA9  
NC  
NC  
DQB2  
NC  
E1  
DQA8  
VDDQ  
DQA6  
NC  
VDDQ  
NC  
G
DQA7  
NC  
DQB3  
NC  
VDD  
DQB5  
NC  
ADV  
GW  
VDD  
CK  
G
H
J
DQB4  
VDDQ  
NC  
VSS  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
LBO  
A11  
TDI  
VSS  
NC  
DQA5  
VDD  
NC  
VDDQ  
DQA4  
NC  
VSS  
BA  
K
L
DQB6  
VDDQ  
DQB8  
NC  
SCD  
BW  
A1  
DQA3  
NC  
DQB7  
NC  
VSS  
VSS  
VSS  
FT  
VDDQ  
NC  
M
N
P
R
T
DQA2  
NC  
DQB9  
A2  
A0  
DQA1  
PE  
NC  
VDD  
NC  
A13  
NC  
A10  
A12  
TDO  
A18  
ZZ  
VDDQ  
TMS  
TCK  
NC  
VDDQ  
U
BPR1999.05.18  
Rev: 1.00b 12/2002  
5/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
GS88218/36 BGA Pin Description  
Symbol  
A0, A1  
An  
Type  
Description  
I
I
Address field LSBs and Address Counter Preset Inputs  
Address Inputs  
Address Inputs  
A17, A18  
DQA1–DQA9  
DQB1–DQB9  
DQC1–DQC9  
DQD1–DQD9  
I/O  
Data Input and Output pins  
BA, BB, BC, BD  
I
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low  
No Connect  
NC  
NC  
No Connect  
CK  
Clock Input Signal; active high  
BW  
I
Byte Write—Writes all enabled bytes; active low  
Global Write Enable—Writes all bytes; active low  
Chip Enable; active low  
GW  
I
E1  
I
E3  
I
Chip Enable; active low  
E2  
I
Chip Enable; active high  
G
ADV  
I
Output Enable; active low  
I
Burst address counter advance enable; active l0w  
Address Strobe (Processor, Cache Controller); active low  
Sleep mode control; active high  
ADSC, ADSP  
ZZ  
I
I
FT  
I
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
LBO  
I
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [Low  
Drive])  
ZQ  
I
I
I
Scan Test Mode Select  
Scan Test Data In  
TMS  
TDI  
O
I
Scan Test Data Out  
TDO  
TCK  
MCL  
SCD  
Scan Test Clock  
I
Must Connect Low  
Single Cycle Deselect/Dual Cyle Deselect Mode Control  
Core power supply  
V
DD  
V
I
I/O and Core Ground  
SS  
V
I
Output driver power supply  
DDQ  
Rev: 1.00b 12/2002  
6/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
GS88218/36B (PE = 0) Block Diagram  
RegisteQr  
A0–An  
D
A0  
A1  
A0  
A1  
D0  
D1  
Q0  
Q1  
Counter  
A
Load  
LBO  
ADV  
CK  
Memory  
Array  
ADSC  
ADSP  
Q
D
Register  
GW  
BW  
BA  
D
Q
36  
36  
Register  
D
Q
BB  
BC  
BD  
4
4
Register  
D
Q
Register  
D
Q
Register  
36  
D
Q
36  
36  
32  
Register  
E1  
D
Q
4
36  
Parity  
Register  
Encode  
4
D
Q
Parity  
Compare  
FT  
G
36  
SCD  
Power Down  
Control  
DQx1–DQx9  
NC  
NC  
ZZ  
Note: Only x36 version shown for simplicity.  
Rev: 1.00b 12/2002  
7/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
GS88218/36B (PE = 1) x32 Mode Block Diagram  
RegisteQr  
A0–An  
D
A0  
A1  
A0  
A1  
D0  
D1  
Q0  
Q1  
Counter  
A
Load  
LBO  
ADV  
CK  
Memory  
Array  
ADSC  
ADSP  
Q
D
Register  
GW  
BW  
BA  
D
Q
36  
36  
4
Parity  
Register  
Encode  
D
Q
BB  
BC  
BD  
32  
4
Register  
D
Q
Register  
D
Q
Register  
32  
D
Q
36  
Register  
36  
D
Q
Register  
E1  
D
Q
4
32  
32  
Register  
Parity  
D
Q
Register  
Encode  
D
Q
4
Parity  
Compare  
FT  
G
32  
SCD  
Power Down  
Control  
DQx1–DQx8  
NC  
NC  
ZZ  
Note: Only x36 version shown for simplicity.  
Rev: 1.00b 12/2002  
8/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Mode Pin Functions  
Mode Name  
Pin  
Name  
State  
Function  
L
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
Burst Order Control  
Output Register Control  
Power Down Control  
LBO  
H
L
FT  
H or NC  
L or NC  
H
Active  
ZZ  
Standby, I = I  
DD SB  
L
Dual Cycle Deselect  
Single Cycle Deselect  
Single/Dual Cycle Deselect Control  
Note:  
SCD  
H or NC  
There are pull-up devices on the SCD and FT pins and a pull-down devices on the ZZ pin, so those input pins can be unconnected and the chip  
will operate in the default states as specified in the above tables.  
Enable / Disable Parity I/O Pins  
This SRAM allows the user to configure the device to operate in Parity I/O active (x18 or x36) or in Parity I/O inactive (x16, x32, or x64) mode.  
Holding the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Rev: 1.00b 12/2002  
9/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Byte Write Truth Table  
Function  
Read  
GW  
H
BW  
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Notes  
1
Read  
H
H
L
H
H
L
H
H
H
L
H
H
H
H
L
1
Write byte a  
Write byte b  
Write byte c  
Write byte d  
Write all bytes  
Write all bytes  
H
L
2, 3  
H
L
H
H
H
L
2, 3  
H
L
H
H
L
2, 3, 4  
2, 3, 4  
2, 3, 4  
H
L
H
L
H
L
L
L
X
X
X
X
X
Notes:  
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.  
2. Byte Write Enable inputs BA, BB, BC, and/or BD may be used in any combination with BW to write single or multiple bytes.  
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.  
4. Bytes C” and “D” are only available on the x36 version.  
Rev: 1.00b 12/2002  
10/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Synchronous Truth Table  
Operation  
State  
3
4
Diagram  
Address Used  
E1  
ADSP ADSC  
ADV  
W
DQ  
5
Key  
Deselect Cycle, Power Down  
Read Cycle, Begin Burst  
None  
External  
External  
External  
Next  
X
R
H
L
X
L
L
X
L
X
X
X
X
L
X
X
F
T
F
F
T
T
F
F
T
T
High-Z  
Q
Q
D
Q
Q
D
D
Q
Q
D
D
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
R
L
L
X
H
X
H
X
H
X
H
H
H
H
X
H
X
H
X
H
X
W
L
CR  
CR  
CW  
CW  
H
H
H
H
H
H
H
H
Next  
L
Next  
L
Next  
L
Current  
Current  
Current  
Current  
H
H
H
H
Notes:  
1. X = Don’t Care, H = High, L = Low  
2. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding  
3. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown  
as “Q” in the Truth Table above).  
4. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish  
basic synchronous or synchronous burst operations and may be avoided for simplicity.  
5. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.  
6. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.  
Rev: 1.00b 12/2002  
11/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Simplified State Diagram  
X
Deselect  
W
R
W
R
X
R
X
First Write  
First Read  
CW  
CR  
CR  
W
R
R
X
Burst Write  
X
Burst Read  
CR  
CR  
CW  
Notes:  
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.  
2. The upper portion of the diagram assumes active use of only the Enable (E1) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and  
that ADSP is tied high and ADSC is tied low.  
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs and  
assumes ADSP is tied high and ADV is tied low.  
Rev: 1.00b 12/2002  
12/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Simplified State Diagram with G  
X
Deselect  
W
R
W
R
X
W
R
X
First Write  
First Read  
CR  
CW  
CW  
CR  
W
R
R
W
X
Burst Write  
X
Burst Read  
CR  
CW  
CW  
CR  
Notes:  
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.  
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing  
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.  
3. Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet  
Data Input Set Up Time.  
Rev: 1.00b 12/2002  
13/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Absolute Maximum Ratings  
(All voltages reference to V )  
SS  
Symbol  
Description  
Value  
Unit  
V
V
Voltage on V Pins  
0.5 to 4.6  
DD  
DD  
V
Voltage in V  
Pins  
DDQ  
0.5 to 4.6  
V
DDQ  
V
0.5 to V  
+0.5 (4.6 V max.)  
DDQ  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
I/O  
V
0.5 to V +0.5 (4.6 V max.)  
V
IN  
DD  
I
+/20  
+/20  
mA  
mA  
W
IN  
I
OUT  
P
1.5  
D
o
T
55 to 125  
55 to 125  
C
STG  
o
T
Temperature Under Bias  
C
BIAS  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Rev: 1.00b 12/2002  
14/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Power Supply Voltage Ranges  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
Notes  
V
3.3 V Supply Voltage  
2.5 V Supply Voltage  
V
V
V
V
DD3  
V
2.3  
2.5  
2.7  
DD2  
3.3 V V  
2.5 V V  
I/O Supply Voltage  
I/O Supply Voltage  
V
3.0  
3.3  
3.6  
DDQ  
DDQ  
DDQ3  
V
2.3  
2.5  
2.7  
DDQ2  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
V
Range Logic Levels  
Parameter  
DDQ3  
Symbol  
Min.  
2.0  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
V
Input Low Voltage  
V
0.3  
2.0  
0.8  
+ 0.3  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
V
1,3  
1,3  
DDQ  
IHQ  
DDQ  
V
V
0.3  
0.8  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
V
Range Logic Levels  
Parameter  
DDQ2  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
0.6*V  
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
DD  
V
Input Low Voltage  
V
0.3*V  
DD  
0.3  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
0.6*V  
V
+ 0.3  
DDQ  
1,3  
1,3  
DDQ  
IHQ  
DD  
V
V
0.3*V  
DD  
0.3  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
Rev: 1.00b 12/2002  
15/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Recommended Operating Temperatures  
Parameter  
Symbol  
Min.  
0
Typ.  
25  
Max.  
70  
Unit  
°C  
Notes  
T
Ambient Temperature (Commercial Range Versions)  
2
2
A
T
Ambient Temperature (Industrial Range Versions)  
Note:  
40  
25  
85  
°C  
A
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
2.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 2.5 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V
= 0 V  
Input Capacitance  
4
6
5
7
IN  
IN  
C
V
OUT  
= 0 V  
Input/Output Capacitance  
pF  
I/O  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
Max  
40  
Unit  
Notes  
1,2  
R
R
R
single  
four  
°C/W  
°C/W  
°C/W  
ΘJA  
ΘJA  
ΘJC  
24  
1,2  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.00b 12/2002  
16/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
AC Test Conditions  
Parameter  
Conditions  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
/2  
Input slew rate  
V
Input reference level  
DD  
V
/2  
Output reference level  
Output load  
DDQ  
Fig. 1  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1  
unless otherwise noted.  
3. Device is deselected as defined by the Truth Table.  
Output Load 1  
DQ  
*
50Ω  
30pF  
V
DDQ/2  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
1 uA  
1 uA  
IL  
V
V V  
IN  
1 uA  
1 uA  
1 uA  
100 uA  
DD  
IH  
IH  
I
I
ZZ and PE Input Current  
FT, SCD, ZQ Input Current  
IN1  
IN2  
0 V V V  
IN  
V
V V  
IN  
100 uA  
1 uA  
1 uA  
1 uA  
DD  
IL  
IL  
0 V V V  
IN  
I
Output Disable, V  
= 0 to V  
DD  
Output Leakage Current  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1 uA  
1.7 V  
2.4 V  
1 uA  
OL  
OUT  
DDQ  
DDQ  
V
V
I
I
= 8 mA, V  
= 8 mA, V  
= 2.375 V  
= 3.135 V  
OH2  
OH3  
OH  
OH  
V
I
= 8 mA  
OL  
0.4 V  
OL  
Rev: 1.00b 12/2002  
17/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Rev: 1.00b 12/2002  
18/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
AC Electrical Characteristics  
-250  
-225  
-200  
-166  
-150  
-133  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Setup time  
tKC  
tKQ  
4.0  
2.5  
5.5  
4.4  
2.7  
6.0  
5.0  
3.0  
6.5  
6.0  
3.4  
7.0  
6.7  
3.8  
7.5  
7.5  
1.5  
1.5  
1.5  
0.5  
8.5  
3.0  
3.0  
1.5  
0.5  
1.7  
2
4.0  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
1.5  
1.5  
1.2  
0.2  
5.5  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.3  
0.3  
6.0  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.4  
0.4  
6.5  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.5  
0.5  
7.0  
3.0  
3.0  
1.5  
0.5  
1.3  
1.5  
1.5  
1.5  
1.5  
0.5  
7.5  
3.0  
3.0  
1.5  
0.5  
1.5  
1.7  
Pipeline  
1
tLZ  
tS  
tH  
Hold time  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Setup time  
tKC  
tKQ  
tKQX  
Flow  
Through  
1
tLZ  
tS  
tH  
Hold time  
Clock HIGH Time  
Clock LOW Time  
tKH  
tKL  
Clock to Output in  
High-Z  
1
1.5  
2.5  
1.5  
2.7  
1.5  
3.0  
1.5  
3.0 1.5 3.0 1.5 3.0  
ns  
tHZ  
G to Output Valid  
G to output in Low-Z  
G to output in High-Z  
ZZ setup time  
tOE  
0
2.5  
2.5  
0
2.7  
2.7  
0
3.2  
3.0  
0
3.5  
3.0  
0
3.8  
3.0  
0
4.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
1
tOLZ  
tOHZ  
1
5
5
5
5
5
5
2
tZZS  
tZZH  
2
ZZ hold time  
1
1
1
1
1
1
ZZ recovery  
tZZR  
20  
20  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.00b 12/2002  
19/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Rev: 1.00b 12/2002  
20/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Rev: 1.00b 12/2002  
21/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by it’s internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after ZZ recovery time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I 2. The duration of  
SB  
Sleep mode is dictated by the length of time the ZZ is in a high state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, I 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
SB  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tH  
tS  
tKC  
tKL  
tKH  
ADSP  
ADSC  
ZZ  
tZZH  
tZZS  
tZZR  
Snooze  
Application Tips  
Single and Dual Cycle Deselect  
SCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally, but that are ended with  
the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually  
assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste  
bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at  
bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
Rev: 1.00b 12/2002  
22/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and  
0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising  
edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI  
and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.00b 12/2002  
23/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
0
1
1
1
1
1
x72  
x36  
x32  
x18  
x16  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
Rev: 1.00b 12/2002  
24/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the  
Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it  
is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although  
allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be  
paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-  
Rev: 1.00b 12/2002  
25/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
DR state then places the boundary scan register between the TDI and TDO pins.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The  
EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK when  
the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the  
sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in  
parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the value of the  
Boundary Scan Register location with which each output pin is associated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Bound-  
ary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
IDCODE  
Code  
000  
001  
Description  
Notes  
1
1, 2  
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.00b 12/2002  
26/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
2.0  
Max.  
Unit Notes  
V
V
V
+0.3  
DD3  
3.3 V Test Port Input High Voltage  
3.3 V Test Port Input Low Voltage  
2.5 V Test Port Input High Voltage  
2.5 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
V
V
1
1
IHJ3  
V
0.3  
0.8  
+0.3  
ILJ3  
V
0.6 * V  
V
1
IHJ2  
DD2  
DD2  
V
0.3 * V  
1
0.3  
300  
1  
V
1
ILJ2  
DD2  
I
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
Test Port Output High Voltage  
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
Test Port Output Low Voltage  
0.4  
V
OLJ  
V
V
– 100 mV  
DDQ  
Test Port Output CMOS High  
V
OHJC  
V
Test Port Output CMOS Low  
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < V  
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
3. 0 V V V  
IN  
ILJn  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OHJC  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
V
– 0.2 V  
Input high level  
Input low level  
DQ  
DD  
0.2 V  
1 V/ns  
*
50Ω  
Input slew rate  
30pF  
V
V
/2  
Input reference level  
DDQ  
V
/2  
DDQ  
/2  
Output reference level  
DDQ  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
Rev: 1.00b 12/2002  
27/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
JTAG Port Timing Diagram  
tTKL  
tTS  
tTKH  
tTKC  
TCK  
tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
TCK Cycle Time  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
ns  
ns  
tTH  
Boundary Scan (BSDL Files)  
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications  
Engineering Department at: apps@gsitechnology.com.  
Rev: 1.00b 12/2002  
28/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Package Dimensions—165-Bump FPBGA (Package D)  
A1 CORNER  
TOP VIEW  
BOTTOM VIEW  
A1 CORNER  
M
M
Ø0.10  
C
Ø0.25 C A B  
Ø0.40~0.50 (165x)  
1
2 3 4 5 6 7 8 9 10 11  
11 10 9 8  
7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
I
A
B
C
D
E
F
G
H
I
J
J
K
L
K
L
M
N
P
R
M
N
P
R
A
1.0  
10.0  
13±0.07  
1.0  
B
0.20(4x)  
SEATING PLANE  
C
Rev: 1.00b 12/2002  
29/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Package Dimensions119-Pin PBGA  
Pin 1  
A
Corner  
7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
G
G
H
J
K
L
M
N
P
R
T
U
H
D
B
J
S
K
L
M
N
P
R
T
U
R
Bottom View  
Top View  
Package Dimensions—119-Pin PBGA  
Symbol  
Description  
Width  
Min. Nom. Max  
13.9 14.0 14.1  
21.9 22.0 22.1  
A
B
Length  
C
Package Height (including ball) 1.73 1.86 1.99  
D
Ball Size  
0.60 0.75 0.90  
0.50 0.60 0.70  
E
Ball Height  
F
Package Height (excluding balls) 1.16 1.26 1.36  
G
Width between Balls  
Package Height above board  
Width of package between balls  
Length of package between balls  
Variance of Ball Height  
1.27  
K
0.65 0.70 0.75  
R
7.62  
20.32  
0.15  
S
T
Unit: mm  
Side View  
Rev: 1.00b 12/2002  
30/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
Ordering Information for GSI Synchronous Burst RAMs  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
Notes:  
GS88218BB-250  
GS88218BB-225  
GS88218BB-200  
GS88218BB-166  
GS88218BB-150  
GS88218BB-133  
GS88236BB-250  
GS88236BB-225  
GS88236BB-200  
GS88236BB-166  
GS88236BB-150  
GS88236BB-133  
GS88218BB-250I  
GS88218BB-225I  
GS88218BB-200I  
GS88218BB-166I  
GS88218BB-150I  
GS88218BB-133I  
GS88236BB-250I  
GS88236BB-225I  
GS88236BB-200I  
GS88236BB-166I  
GS88236BB-150I  
GS88236BB-133I  
GS88218BD-250  
GS88218BD-225  
GS88218BD-200  
GS88218BD-166  
GS88218BD-150  
GS88218BD-133  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
119 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
250/5.5  
225/6  
C
C
C
C
C
C
C
C
C
C
C
C
I
200/6.5  
166/7  
150/7.5  
133/8.5  
250/5.5  
225/6  
200/6.5  
166/7  
150/7.5  
133/8.5  
250/5.5  
225/6  
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
250/5.5  
225/6  
I
I
I
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
250/5.5  
225/6  
I
I
C
C
C
C
C
C
200/6.5  
166/7  
150/7.5  
133/8.5  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS88236B-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.00b 12/2002  
31/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
Notes:  
GS88236BD-250  
GS88236BD-225  
GS88236BD-200  
GS88236BD-166  
GS88236BD-150  
GS88236BD-133  
GS88218BD-250I  
GS88218BD-225I  
GS88218BD-200I  
GS88218BD-166I  
GS88218BD-150I  
GS88218BD-133I  
GS88236BD-250I  
GS88236BD-225I  
GS88236BD-200I  
GS88236BD-166I  
GS88236BD-150I  
GS88236BD-133I  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
Pipeline/Flow Through  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
165 BGA  
250/5.5  
225/6  
C
C
C
C
C
C
I
200/6.5  
166/7  
150/7.5  
133/8.5  
250/5.5  
225/6  
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
250/5.5  
225/6  
I
I
I
I
200/6.5  
166/7  
I
I
150/7.5  
133/8.5  
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS88236B-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.00b 12/2002  
32/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS88218/36BB/D-250/225/200/166/150/133  
9Mb Sync SRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
88218B_r1  
Rev: 1.00b 12/2002  
33/33  
© 2001, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS88236BB-200

512K x 18, 256K x 36 9Mb SCD/DCD Sync Burst SRAMs
GSI

GS88236BB-200I

512K x 18, 256K x 36 9Mb SCD/DCD Sync Burst SRAMs
GSI

GS88236BB-200IT

Cache SRAM, 256KX36, 6.5ns, CMOS, PBGA119, FPBGA-119
GSI

GS88236BB-200IV

512K x 18, 256K x 36 9Mb SCD/DCD Sync Burst SRAMs
GSI

GS88236BB-200IVT

Cache SRAM, 256KX36, 6.5ns, CMOS, PBGA119, FPBGA-119
GSI

GS88236BB-200V

512K x 18, 256K x 36 9Mb SCD/DCD Sync Burst SRAMs
GSI

GS88236BB-200VT

暂无描述
GSI

GS88236BB-225IT

Cache SRAM, 256KX36, 6ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS88236BB-225T

Cache SRAM, 256KX36, 6ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS88236BB-250

512K x 18, 256K x 36 9Mb SCD/DCD Sync Burst SRAMs
GSI

GS88236BB-250I

512K x 18, 256K x 36 9Mb SCD/DCD Sync Burst SRAMs
GSI

GS88236BB-250IT

Cache SRAM, 256KX36, 5.5ns, CMOS, PBGA119, FPBGA-119
GSI