GS882Z36B-11IT [GSI]

ZBT SRAM, 256KX36, 11ns, CMOS, PBGA119, PLASTIC, BGA-119;
GS882Z36B-11IT
型号: GS882Z36B-11IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

ZBT SRAM, 256KX36, 11ns, CMOS, PBGA119, PLASTIC, BGA-119

静态存储器 内存集成电路
文件: 总34页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS882Z18/36B-11/100/80/66  
119-Bump BGA  
Commercial Temp  
Industrial Temp  
100 MHz–66 MHz  
8Mb Pipelined and Flow Through  
3.3 V V  
DD  
Synchronous NBT SRAMs  
2.5 V and 3.3 V V  
DDQ  
Features  
Functional Description  
• 512K x 18 and 256K x 36 configurations  
• User-configurable Pipelined and Flow Through mode  
• NBT (No Bus Turn Around) functionality allows zero wait  
• Read-Write-Read bus utilization  
• Fully pin-compatible with both pipelined and flow through  
NtRAM™, NoBL™ and ZBT™ SRAMs  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• On-chip write parity checking; even or odd selectable  
• ZQ mode pin for user selectable high/low output drive  
strength.  
• x16/x32 mode with on-chip parity encoding and error  
detection  
• Pin-compatible with 2M, 4M and 16M devices  
• 3.3 V +10%/–5% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleave Burst mode  
• Byte write operation (9-bit Bytes)  
The GS882Z818/36B is an 8Mbit Synchronous Static SRAM.  
GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other  
pipelined read/double late write or flow through read/single  
late write SRAMs, allow utilization of all available bus  
bandwidth by eliminating the need to insert deselect cycles  
when the device is switched from read to write cycles.  
Because it is a synchronous device, address, data inputs, and  
read/ write control inputs are captured on the rising edge of the  
input clock. Burst order control (LBO) must be tied to a power  
rail for proper operation. Asynchronous inputs include the  
Sleep mode enable (ZZ) and Output Enable. Output Enable can  
be used to override the synchronous control of the output  
drivers and turn the RAM's output drivers off at any time.  
Write cycles are internally self-timed and initiated by the rising  
edge of the clock input. This feature eliminates complex off-  
chip write pulse generation required by asynchronous SRAMs  
and simplifies input signal timing.  
• 3 chip enable signals for easy depth expansion  
• Clock Control, registered, address, data, and control  
• ZZ Pin for automatic power-down  
The GS882Z818/36B may be configured by the user to  
operate in Pipeline or Flow Through mode. Operating as a  
pipelined synchronous device, in addition to the rising-edge-  
triggered registers that capture input signals, the device  
incorporates a rising-edge-triggered output register. For read  
cycles, pipelined SRAM output data is temporarily stored by  
the edge-triggered output register during the access cycle and  
then released to the output drivers at the next rising edge of  
clock.  
• JEDEC-standard 119-Bump BGA package  
-11  
-100  
-80  
-66  
tCycle  
tKQ  
IDD  
10 ns  
4.5 ns  
10 ns  
4.5 ns  
12.5 ns  
4.8 ns  
15 ns  
5 ns  
Pipeline  
3-1-1-1  
210 mA 210 mA 190 mA 170 mA  
tKQ  
tCycle  
IDD  
11 ns  
15 ns  
12 ns  
15 ns  
14 ns  
15 ns  
18 ns  
20 ns  
Flow Through  
2-1-1-1  
150 mA 150 mA 130 mA 130 mA  
The GS882Z818/36B is implemented with GSI's high  
performance CMOS technology and is available in a JEDEC-  
Standard 119-bump BGA package.  
Flow Through and Pipelined NBT SRAM Back-to-Back Read/Write Cycles  
Clock  
Address  
A
R
B
C
R
D
E
R
F
Read/Write  
W
W
W
Flow Through  
Data I/O  
QA  
DB  
QC  
DD  
QE  
Pipelined  
Data I/O  
QA  
DB  
QC  
DD  
QE  
Rev: 1.15 6/2001  
1/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
NoBL is a trademark of Cypress Semiconductor Corp.. NtRAM is a trademark of Samsung Electronics Co.. ZBT is a trademark of Integrated Device Technology, Inc.  
Preliminary.  
GS882Z18/36B-11/100/80/66  
GS882Z36 Pad Out  
119-Bump BGA—Top View  
1
2
3
4
5
6
7
A
VDDQ  
NC  
A6  
A7  
NC  
ADV  
VDD  
ZQ  
E1  
A8  
A9  
VDDQ  
NC  
B
C
D
E
F
E2  
A4  
A15  
A14  
VSS  
VSS  
VSS  
BB  
E3  
NC  
A5  
A3  
A16  
NC  
DQC4  
DQC3  
VDDQ  
DQC2  
DQC1  
VDDQ  
DQD1  
DQD2  
VDDQ  
DQD3  
DQD4  
NC  
DQPC9  
DQC8  
DQC7  
DQC6  
DQC5  
VDD  
VSS  
VSS  
VSS  
BC  
DQPB9  
DQB8  
DQB7  
DQB6  
DQB5  
VDD  
DQB4  
DQB3  
VDDQ  
DQB2  
DQB1  
VDDQ  
DQA1  
DQA2  
VDDQ  
DQA3  
DQA4  
PE  
G
G
H
J
A17  
W
VSS  
DP  
VSS  
QE  
VSS  
BA  
VDD  
CK  
NC  
CKE  
A1  
K
L
DQD5  
DQD6  
DQD7  
DQD8  
DQPD9  
A2  
VSS  
BD  
DQA5  
DQA6  
DQA7  
DQA8  
DQPA9  
A13  
M
N
P
R
T
VSS  
VSS  
VSS  
LBO  
A10  
TDI  
VSS  
VSS  
VSS  
FT  
A0  
VDD  
A11  
TCK  
NC  
NC  
A12  
TDO  
NC  
ZZ  
U
VDDQ  
TMS  
NC  
VDDQ  
Rev: 1.15 6/2001  
2/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
GS882Z18 Pad Out  
119-Bump BGA—Top View  
1
2
3
4
NC  
ADV  
VDD  
ZQ  
E1  
5
6
7
A
VDDQ  
NC  
A6  
A7  
A8  
A9  
VDDQ  
NC  
B
C
D
E
F
E2  
A4  
A15  
A14  
VSS  
VSS  
VSS  
NC  
VSS  
QE  
VSS  
BA  
E3  
NC  
A5  
A3  
A16  
NC  
DQB1  
NC  
NC  
VSS  
VSS  
VSS  
BB  
DQA9  
NC  
NC  
DQB2  
NC  
DQA8  
VDDQ  
DQA6  
NC  
VDDQ  
NC  
G
DQA7  
NC  
DQB3  
NC  
VDD  
DQB5  
NC  
A17  
W
G
H
J
DQB4  
VDDQ  
NC  
VSS  
DP  
DQA5  
VDD  
NC  
VDD  
CK  
NC  
CKE  
A1  
VDDQ  
DQA4  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
LBO  
A11  
K
L
DQB6  
VDDQ  
DQB8  
NC  
DQA3  
NC  
DQB7  
NC  
VSS  
VSS  
VSS  
FT  
VDDQ  
NC  
M
N
P
R
T
DQA2  
NC  
DQB9  
A2  
A0  
DQA1  
PE  
NC  
VDD  
NC  
A13  
NC  
A10  
A12  
A18  
ZZ  
VDDQ  
NC  
VDDQ  
U
Rev: 1.15 6/2001  
3/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
GS882Z18/36 BGA Pin Description  
Pin Location  
Symbol  
Type  
Description  
P4, N4  
A0, A1  
I
Address field LSBs and Address Counter Preset Inputs  
A2, A3, A5, A6, B3, B5, C2, C3, C5,  
C6, G4, R2, R6, T3, T5  
An  
I
Address Inputs  
T4  
An  
NC  
An  
I
I
Address Inputs (x36 Version)  
No Connect (x36 Version)  
Address Inputs (x18 Version)  
T2, T6  
T2, T6  
K7, L7, N7, P7, K6, L6, M6, N6, P6 DQA1–DQPA9  
H7, G7, E7, D7, H6, G6, F6, E6, D6 DQB1–DQPB9  
H1, G1, E1, D1, H2, G2, F2, E2, D2 DQC1–DQPC9  
K1, L1, N1, P1, K2, L2, M2, N2, P2 DQD1–DQPD9  
I/O  
Data Input and Output pins (x36 Version)  
L5, G5, G3, L3  
BA, BB, BC, BD  
I
I/O  
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low ( x36 Version)  
Data Input and Output pins (x18 Version)  
P7, N6, L6, K7, H6, G7, F6, E7, D6  
D1, E2, G2, H1, K2, L1, M2, N1, P2  
DQA1–DQA9  
DQB1–DQB9  
L5, G3  
BA, BB  
Byte Write Enable for DQA, DQB Data I/Os; active low ( x18 Version)  
P6, N7, M6, L7, K6, H7, G6, E6, D7,  
D2, E1, F2, G1, H2, K1, L2, N2, P1,  
G5, L3, T4  
NC  
No Connect (x18 Version)  
K4  
M4  
H4  
E4  
B2  
B6  
F4  
B4  
T7  
R5  
R3  
R7  
J3  
CK  
CKE  
W
I
I
Clock Input Signal; active high  
Clock Input Buffer Enable; active low  
Write Enable—Writes all enabled bytes; active low  
Chip Enable; active low  
I
E1  
I
E2  
I
Chip Enable; active high  
E3  
I
Chip Enable; active low  
G
I
Output Enable; active low  
ADV  
ZZ  
I
Burst address counter advance enable; active high  
Sleep Mode control; active high  
I
FT  
I
Flow Through or Pipeline mode; active low  
Linear Burst Order mode; active low  
Parity Bit Enable; active low (High = x16/32 Mode, Low = x18/36 Mode)  
Data Parity Mode Input; 1 = Even, 0 = Odd  
Parity Error Out; Open Drain Output  
LBO  
PE  
DP  
QE  
I
I
I
J5  
O
FLXDrive Output Impedance Control  
(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])  
D4  
ZQ  
NC  
I
B1, C1, R1, T1, L4, B7, C7, U6  
No Connect  
Rev: 1.15 6/2001  
4/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
GS882Z18/36 BGA Pin Description  
Pin Location  
Symbol  
TMS  
Type  
Description  
U2  
I
I
Scan Test Mode Select  
Scan Test Data In  
Scan Test Data Out  
Scan Test Clock  
U3  
TDI  
U5  
U4  
TDO  
O
I
TCK  
VDD  
J2, C4, J4, R4, J6  
I
Core power supply  
D3, E3, F3, H3, K3, M3, N3, P3, D5,  
E5, F5, H5, K5, M5, N5, P5  
VSS  
I
I
I/O and Core Ground  
A1, F1, J1, M1, U1, A7, F7, J7, M7,  
U7  
VDDQ  
Output driver power supply  
BPR2000.002.14  
Functional Details  
Clocking  
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to  
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.  
Pipeline Mode Read and Write Operations  
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle  
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device  
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable  
inputs will deactivate the device.  
Function  
Read  
W
H
L
BA  
X
L
BB  
X
H
L
BC  
X
H
H
L
BD  
X
H
H
H
L
Write Byte “a”  
Write Byte “b”  
Write Byte “c”  
Write Byte “d”  
Write all Bytes  
Write Abort/NOP  
L
H
H
H
L
L
H
H
L
L
H
L
L
L
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted Low, all three  
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address  
presented to the address inputs is latched in to address register and presented to the memory core and control logic. The control  
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At  
the next rising edge of clock the read data is allowed to propagate through the output register and onto the Output pins.  
Write operation occurs when the RAM is selected, CKE is active and the Write input is sampled low at the rising edge of clock.  
Rev: 1.15 6/2001  
5/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A Write  
Cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,  
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At  
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is  
required at the third rising edge of clock.  
Flow Through Mode Read and Write Operations  
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the  
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after  
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow  
Through mode the read pipeline is one cycle shorter than in Pipeline mode.  
Write operations are initiated in the same way as well, but differ in that the write pipeline is one cycle shorter, preserving the ability  
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late  
write protocol, in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address  
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of  
clock.  
Rev: 1.15 6/2001  
6/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Synchronous Truth Table  
Operation  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Continue  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
NOP/Read, Begin Burst  
Dummy Read, Continue Burst  
Write Cycle, Begin Burst  
Write Cycle, Continue Burst  
NOP/Write Abort, Begin Burst  
Write Abort, Continue Burst  
Clock Edge Ignore, Stall  
Sleep Mode  
Type Address E1 E2 E3 ZZ ADV W Bx G CKE CK DQ Notes  
D
D
D
D
R
B
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L-H High-Z  
L-H High-Z  
L-H High-Z  
L-H High-Z  
None  
L
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
1
External  
Next  
L-H  
L-H  
Q
Q
X
L
X
L
H
L
L
1,10  
2
R
B
External  
Next  
H
H
X
X
X
X
X
X
L-H High-Z  
X
L
X
L
H
L
L-H High-Z 1,2,10  
W
B
External  
Next  
L-H  
L-H  
D
D
3
X
L
X
L
H
L
X
L
L
1,3,10  
2,3  
W
B
None  
H
H
X
X
L-H High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
L-H High-Z 1,2,3,10  
Current  
None  
L-H  
X
-
4
High-Z  
Notes:  
1. Continue Burst cycles, whether read or write, use the same control inputs; a Deselect continue cycle can only be entered into if a Deselect  
cycle is executed first  
2. Dummy read and write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is  
sampled low but no Byte Write pins are active, so no Write operation is performed.  
3. G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during Write  
cycles.  
4. If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the bus  
will remain in High Z.  
5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Write signals  
are Low  
6. All inputs, except G and ZZ must meet setup and hold times of rising clock edge.  
7. Wait states can be inserted by setting CKE high.  
8. This device contains circuitry that ensures all outputs are in High Z during power-up.  
9. A 2-bit burst counter is incorporated.  
10. The address counter is incriminated for all Burst continue cycles.  
Rev: 1.15 6/2001  
7/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Pipeline and Flow Through Read-Write Control State Diagram  
D
B
Deselect  
R
D
D
W
New Read  
New Write  
R
R
W
B
B
R
W
W
R
Burst Read  
Burst Write  
B
B
D
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B and D represent input command  
codes, as indicated in the Synchronous Truth Table.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for Pipelined and Flow Through Read/Write Control State Diagram  
Rev: 1.15 6/2001  
8/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Pipeline Mode Data I/O State Diagram  
Intermediate  
Intermediate  
B
R
W
B
Intermediate  
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
Intermediate  
D
Intermediate  
W
R
High Z  
B
D
Intermediate  
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+2)  
Intermediate State (N+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Intermediate  
State  
Current State  
Next State  
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram  
Rev: 1.15 6/2001  
9/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Flow Through Mode Data I/O State Diagram  
R
W
B
B
R
Data Out  
(Q Valid)  
High Z  
(Data In)  
W
D
D
W
R
High Z  
B
D
Key  
Notes  
Input Command Code  
1. The Hold command (CKE Low) is not  
shown because it prevents any state change.  
ƒ
Transition  
2. W, R, B, and D represent input command  
codes as indicated in the Truth Tables.  
Current State (n)  
Next State (n+1)  
n
n+1  
n+2  
n+3  
Clock (CK)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram  
Rev: 1.15 6/2001  
10/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Burst Cycles  
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from  
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address  
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when  
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write  
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into  
Load mode.  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst  
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables  
below for details.  
FLXDrive™  
The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive  
strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.  
Mode Pin Functions  
Mode Name  
Pin Name  
State  
Function  
Linear Burst  
Interleaved Burst  
Flow Through  
Pipeline  
L
Burst Order Control  
LBO  
H or NC  
L
Output Register Control  
Power Down Control  
FT  
ZZ  
DP  
PE  
ZQ  
H or NC  
L or NC  
Active  
Standby, IDD = ISB  
H
L
Check for Odd Parity  
Check for Even Parity  
ByteSafe Data Parity Control  
Parity Enable  
H or NC  
L or NC  
Activate 9th I/Os (x18/36 Mode)  
Deactivate 9th I/Os (x16/32 Mode)  
High Drive (Low Impedance)  
Low Drive (High Impedance)  
H
L
FLXDrive Output Impedance Control  
H
Note:  
There are pull-up devices on the LBO, ZQ, DP and FT pins and a pull down device on the PE and ZZ pins, so those input pins can be  
unconnected and the chip will operate in the default states as specified in the above table.  
Enable / Disable Parity I/O Pins  
This SRAM allows the user to configure the device to operate in Parity I/O active (x18 or x36) or in Parity I/O inactive (x16 or  
x32) mode. Holding the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM. Tying PE high  
deactivates the 9th I/O of each byte, although the bit in each byte of the memory array remains active to store and recall parity bits  
generated and read into the ByteSafe parity circuits.  
Rev: 1.15 6/2001  
11/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
00 01 10 11  
01 00 11 10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
10  
11  
11  
10  
00  
01  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after 2 cycles of wake up time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of  
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tZZR  
ZZ  
Sleep  
tZZS  
tZZH  
Designing for Compatibility  
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal found  
on bump 5R. Not all vendors offer this option, however most mark bump 5R as VDD or VDDQ on pipelined parts and VSS on flow  
through parts. GSI NBT SRAMs are fully compatible with these sockets.  
ByteSafeParity Functions  
In x32/x16 mode this RAM features a parity encoding and checking function. It is assumed that the RAM is being used in x32/x16  
mode because there is no source for parity bits from the system. So, in x32/x16 mode, the device generates parity and stores it  
along with written data. It is also assumed that there is no facility for parity checking, so the RAM checks read parity and reports an  
error in the cycle following parity check. In x32/x16 mode the device does not drive the 9th data output, even though the internal  
ByteSafe parity encoding has been activated. A ByteSafe SRAM, used in x32/x16 mode, allows parity protection of data in  
applications where parity encoding or checking are not otherwise available. As in any system that checks read parity, reads of un-  
Rev: 1.15 6/2001  
12/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
written memory locations may well produce parity errors. Initialization of the memory should be implemented to avoid this issue.  
In x18/x36 mode this SRAM includes a write data parity check that checks the validity of data coming into the RAM on write  
cycles. In Flow Through mode, write data errors are reported in the cycle following the data input cycle. In Pipeline mode, write  
data errors are reported one clock cycle later. (See Write Parity Error Output Timing Diagram.) The Data Parity Mode (DP) pin  
must be tied high to set the RAM to check for even parity or low to check for odd parity. Read data parity is not checked by the  
RAM as data. Validity is best established at the data’s destination. The Parity Error Output is an open drain output and drives low  
to indicate a parity error. Multiple Parity Error Output pins may share a common pull-up resistor.  
x32 Mode (PE = 1) Read Parity Error Output Timing Diagram  
CK  
Address A  
Address B  
D Out A  
Address C  
D Out B  
Address D  
D Out C  
Address E  
D Out D  
Address F  
D Out E  
DQ  
tKQ  
tLZ  
tHZ  
tKQX  
QE  
DQ  
Err A  
Err C  
D Out A  
D Out B  
D Out C  
D Out D  
tKQ  
tLZ  
tHZ  
tKQX  
QE  
Err A  
Err C  
Rev: 1.15 6/2001  
13/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
x18/x36 Mode (PE = 0) Write Parity Error Output Timing Diagram  
CK  
DQ  
D In A  
D In B  
D In C  
D In D  
D In E  
tKQ  
tLZ  
tHZ  
tKQX  
QE  
DQ  
Err A  
Err C  
D In A  
D In B  
D In C  
D In D  
D In E  
tKQ  
tLZ  
tHZ  
tKQX  
QE  
Err A  
Err C  
BPR 1999.05.18  
Rev: 1.15 6/2001  
14/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
Description  
Value  
Unit  
Voltage on VDD Pins  
–0.5 to 4.6  
–0.5 to VDD  
V
V
VDDQ  
VCK  
Voltage in VDDQ Pins  
Voltage on Clock Input Pin  
Voltage on I/O Pins  
–0.5 to 6  
V
VI/O  
–0.5 to VDDQ +0.5 (£ 4.6 V max.)  
–0.5 to VDD +0.5 (£ 4.6 V max.)  
V
VIN  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
IIN  
+/–20  
+/–20  
mA  
mA  
W
IOUT  
PD  
1.5  
oC  
oC  
TSTG  
–55 to 125  
–55 to 125  
TBIAS  
Temperature Under Bias  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended  
period of time, may affect reliability of this component.  
Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
VDD  
VDDQ  
VIH  
Min.  
3.135  
2.375  
1.7  
Typ.  
3.3  
2.5  
Max.  
3.6  
Unit  
V
Notes  
VDD  
I/O Supply Voltage  
V
1
2
2
3
3
VDD +0.3  
Input High Voltage  
V
VIL  
Input Low Voltage  
–0.3  
0
0.8  
70  
85  
V
TA  
Ambient Temperature (Commercial Range Versions)  
Ambient Temperature (Industrial Range Versions)  
25  
°C  
°C  
TA  
–40  
25  
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 2.75 V £ VDDQ £ 2.375 V  
(i.e., 2.5 V I/O) and 3.6 V £ VDDQ £ 3.135 V (i.e., 3.3 V I/O), and quoted at whichever condition is worst case.  
2. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
3. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The part number of  
Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated  
for worst case in the temperature range marked on the device.  
4. Input Under/overshoot voltage must be –2 V > Vi < VDD +2 V with a pulse width not to exceed 20% tKC.  
Rev: 1.15 6/2001  
15/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 2.0 V  
50%  
VSS  
50%  
VDD  
VSS – 2.0 V  
20% tKC  
VIL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)  
Parameter  
Input Capacitance  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
CIN  
VIN = 0 V  
4
6
5
7
CI/O  
VOUT = 0 V  
Input/Output Capacitance  
pF  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
RQJA  
Max  
40  
Unit  
Notes  
1,2  
single  
four  
°C/W  
°C/W  
°C/W  
RQJA  
24  
1,2  
RQJC  
9
3
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.15 6/2001  
16/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
AC Test Conditions  
Parameter  
Input high level  
Input low level  
Conditions  
2.3 V  
0.2 V  
Input slew rate  
1 V/ns  
Input reference level  
Output reference level  
Output load  
1.25 V  
1.25 V  
Fig. 1& 2  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.  
3. Output Load 2 for tLZ, tHZ, tOLZ and tOHZ  
4. Device is deselected as defined by the Truth Table.  
Output Load 2  
2.5 V  
Output Load 1  
DQ  
225W  
225W  
DQ  
30pF*  
50W  
5pF*  
VT = 1.25 V  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
–1 uA  
1 uA  
VDD ³ VIN ³ VIH  
0 V £ VIN £ VIH  
–1 uA  
–1 uA  
1 uA  
300 uA  
IINZZ  
IINM  
IOL  
ZZ Input Current  
VDD ³ VIN ³ VIL  
0 V £ VIN £ VIL  
–300 uA  
–1 uA  
1 uA  
1 uA  
Mode Pin Input Current  
Output Leakage Current  
Output Disable,  
VOUT = 0 to VDD  
–1 uA  
1 uA  
VOH  
VOH  
VOL  
IOH = –8 mA, VDDQ = 2.375 V  
IOH = –8 mA, VDDQ = 3.135 V  
IOL = 8 mA  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1.7 V  
2.4 V  
0.4 V  
Rev: 1.15 6/2001  
17/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Operating Currents  
-11  
-100  
-80  
-66  
Parameter  
Test Conditions  
Symbol  
Unit  
0 to -40 to  
0 to -40 to  
0 to -40 to  
0 to -40 to  
70°C +85°C 70°C +85°C 70°C +85°C 70°C +85°C  
IDD  
Pipeline  
Device Selected;  
All other inputs  
³ VIH or £ VIL  
210  
150  
30  
220  
160  
40  
210  
150  
30  
220  
160  
40  
190  
130  
30  
200  
140  
40  
170  
130  
30  
180  
140  
40  
mA  
mA  
mA  
mA  
mA  
mA  
Operating  
Current  
IDD  
Output open  
Flow-through  
ISB  
Pipeline  
Standby  
Current  
ZZ ³ VDD – 0.2 V  
ISB  
30  
40  
30  
40  
30  
40  
30  
40  
Flow-through  
IDD  
Pipeline  
80  
90  
80  
90  
70  
80  
65  
75  
Device Deselected;  
All other inputs  
³ VIH or £ VIL  
Deselect  
Current  
IDD  
65  
75  
65  
75  
55  
65  
55  
65  
Flow-through  
Rev: 1.15 6/2001  
18/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
AC Electrical Characteristics  
-11  
-100  
-80  
-66  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max  
Clock Cycle Time  
tKC  
tKQ  
10  
4.5  
10  
4.5  
12.5  
4.8  
15  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock to Output Valid  
Pipeline  
Clock to Output Invalid  
tKQX  
1.5  
1.5  
15.0  
1.5  
1.5  
15.0  
1.5  
1.5  
15.0  
1.5  
1.5  
20  
18.0  
5
tLZ1  
tKC  
Clock to Output in Low-Z  
Clock Cycle Time  
Clock to Output Valid  
Flow-  
tKQ  
11.0  
12.0  
14.0  
through  
Clock to Output Invalid  
Clock to Output in Low-Z  
Clock HIGH Time  
tKQX  
3.0  
3.0  
1.7  
2
3.0  
3.0  
2
3.0  
3.0  
2
3.0  
3.0  
2.3  
2.5  
1.5  
tLZ1  
tKH  
tKL  
Clock LOW Time  
2.2  
1.5  
2.2  
1.5  
tHZ1  
tOE  
Clock to Output in High-Z  
G to Output Valid  
1.5  
4.0  
4.0  
4.5  
4.5  
4.8  
4.8  
5
tOLZ1  
G to output in Low-Z  
0
0
0
0
tOHZ1  
tS  
G to output in High-Z  
Setup time  
1.5  
0.5  
5
4.0  
2.0  
0.5  
5
4.5  
5
4.8  
2.0  
0.5  
5
5
ns  
ns  
ns  
ns  
2.0  
0.5  
Hold time  
tH  
tZZS2  
ZZ setup time  
tZZH2  
tZZR  
ZZ hold time  
ZZ recovery  
1
1
1
1
ns  
ns  
20  
20  
20  
20  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup  
and hold times as specified above.  
Rev: 1.15 6/2001  
19/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Pipeline Mode Read/Write Cycle Timing  
1
2
3
4
5
6
7
8
9
10  
CK  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL tKC  
CKE  
E*  
ADV  
W
Bn  
tH  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0–An  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
(A4+1)  
DQA–DQD  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
tKQX  
tH  
tS  
tOEHZ  
tOELZ  
G
Write  
D(A5)  
Write  
D(A2) Write  
D(A2+1)  
BURST Read  
Q(A3)  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.15 6/2001  
20/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Pipeline Mode No-Op, Stall and Deselect Timing  
2
8
4
3
5
6
10  
7
9
1
CK  
tH  
tH  
tH  
tS  
tS  
tS  
CKE  
E*  
ADV  
tS  
tH  
W
Bn  
A0An  
DQ  
A1  
A2  
A3  
A4  
A5  
tKHQZ  
Q(A2)  
D(A1)  
Q(A3)  
D(A4)  
Q(A5)  
tKQHZ  
NOP  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
CONTINUE  
DESELECT  
Write  
D(A1)  
DESELECT  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.15 6/2001  
21/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Flow Through Mode Read/Write Cycle Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
CKE  
E*  
tH  
tH  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
tS  
tS  
tKH tKL  
tKC  
ADV  
W
Bn  
A7  
A0–An  
A1  
A2  
A3  
A4  
A5  
A6  
tKQ  
tKHQZ  
tGLQV  
tKQHZ  
tKQLZ  
D
Q
DQ  
D(A2)  
Q(A3)  
Q(A4)  
Q(A6)  
D(A1)  
D(A5)  
(A2+1)  
(A4+1)  
tOELZ  
tKQX  
tH  
tS  
tOEHZ  
G
Write  
D(A5)  
Write  
D(A2)  
BURST Read  
Read  
Q(A4) Read  
Q(A4+1)  
BURST  
Read  
Q(A6)  
DESELECT  
Write  
D(A1)  
Write  
D(A7)  
COMMAND  
Write  
Q(A3)  
D(A2+1)  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.15 6/2001  
22/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Flow Through Mode No-Op, Stall and Deselect Timing  
4
3
5
6
8
10  
7
9
1
2
CK  
tH  
tS  
tS  
tS  
CKE  
E*  
tH  
tH  
ADV  
W
Bn  
A1  
A2  
A3  
A4  
A5  
A0An  
tKHQZ  
Q(A2)  
D(A1)  
Q(A5)  
Q(A3)  
D(A4)  
NOP  
DQ  
tKQHZ  
Read  
Q(A2)  
STALL Read  
Q(A3)  
Write  
D(A4)  
STALL  
Read  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
Write  
D(A1)  
COMMAND  
DON’T CARE  
UNDEFINED  
*Note: E = High (False) if E1 = 1 or E2 = 0 or E3 = 1  
Rev: 1.15 6/2001  
23/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner consistent with IEEE Standard 1149.1-1990, a serial boundary scan interface  
standard (commonly referred to as JTAG), but does not implement all of the functions required for 1149.1 compliance. Some  
functions have been modified or eliminated because they can slow the RAM. Nevertheless, the RAM supports 1149.1-1990 TAP  
(Test Access Port) Controller architecture, and can be expected to function in a manner that does not conflict with the operation of  
Standard 1149.1 compliant devices. The JTAG Port interfaces with conventional TTL / CMOS logic level signaling.  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits. To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.  
JTAG Pin Descriptions  
Pin  
Pin Name I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the  
falling edge of TCK.  
TCK  
Test Clock  
In  
Test Mode  
Select  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state  
machine. An undriven TMS input will produce the same result as a logic one input level.  
TMS  
TDI  
In  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed  
between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP  
In Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to  
Test Data In  
the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input  
level.  
Output that is active depending on the state of the TAP state machine. Output changes in response to the  
falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO Test Data Out Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as TAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS  
as TCK is strobed. Each of the TAP Registers are serial shift registers that capture serial input data on the rising edge of TCK and  
push serial data out on the next falling edge of TCK. When a register is selected it is placed between the TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAMs JTAG Port to another device in the scan chain with as little delay as possible.  
Rev: 1.15 6/2001  
24/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Boundary Scan Register  
Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The  
flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary  
Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the device pins  
and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan Register, under the  
control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in Capture-DR state and then  
is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. Two TAP instructions can be used to  
activate the Boundary Scan Register.  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
1
1
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  
10 9 8 7 6 5 4 3 2 1  
0
x36  
x32  
x18  
x16  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
1
1
1
1
Rev: 1.15 6/2001  
25/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions, are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. Although the TAP controller in this device follows the 1149.1 conventions, it is not 1194.1-  
compliant because some of the mandatory instructions are not fully implemented. The TAP on this device may be used to monitor  
all input and I/O pads, but cannot be used to load address, data or control signals into the RAM or to preload the I/O buffers.This  
device will not perform EXTEST, INTEST or the SAMPLE/PRELOAD command.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
Rev: 1.15 6/2001  
26/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE/PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will not harm  
the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data cap-  
ture set-up plus hold time (tTS plus tTH ). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O  
ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the boundary scan register between the  
TDI and TDO pins. Because the PRELOAD portion of the command is not implemented in this device, moving the controller to the Update-  
DR state with the SAMPLE / PRELOAD instruction loaded in the Instruction Register has the same effect as the Pause-DR command. This  
functionality is not Standard 1149.1-compliant.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in  
the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore, this device is not 1149.1-compliant. Neverthe-  
less, this RAM’s TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction regis-  
ter the RAM responds just as it does in response to the BYPASS instruction described above.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Bound-  
ary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
Rev: 1.15 6/2001  
27/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
Code  
000  
Description  
Notes  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
This RAM does not implement 1149.1 EXTEST function. *Not 1149.1 Compliant *  
1
1, 2  
1
IDCODE  
001  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all RAM output drivers to High-Z.  
SAMPLE-Z  
010  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
011  
1
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
This RAM does not implement 1149.1 PRELOAD function. *Not 1149.1 Compliant *  
100  
101  
110  
111  
1
1
1
1
GSI  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol Min. Max. Unit Notes  
VIHT  
VDD +0.3  
Test Port Input High Voltage  
1.7  
–0.3  
–300  
–1  
V
V
1, 2  
1, 2  
3
VILT  
Test Port Input Low Voltage  
0.8  
1
IINTH  
IINTL  
IOLT  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
uA  
uA  
uA  
V
1
4
–1  
1
5
VOHT  
VOLT  
2.4  
0.4  
6, 7  
6, 8  
V
Notes:  
1. This device features input buffers compatible with both 3.3 V and 2.5 V I/O drivers.  
2. Input Under/overshoot voltage must be –2 V > Vi < VDD +2 V with a pulse width not to exceed 20%  
tTKC.  
3. VDD ³ VIN ³ VIL  
4. 0 V £ VIN £ VIL  
5. Output Disable, VOUT = 0 to VDD  
6. The TDO output driver is served by the VDD supply.  
7. IOH = –4 mA  
8. IOL = +4 mA  
Rev: 1.15 6/2001  
28/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
2.3 V  
JTAG Port AC Test Load  
DQ  
Input low level  
0.2 V  
30pF*  
Input slew rate  
1 V/ns  
50W  
Input reference level  
Output reference level  
1.25 V  
VT = 1.25 V  
1.25 V  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
JTAG Port Timing Diagram  
tTKL  
tTKH  
tTKC  
TCK  
tTS tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
20  
10  
10  
5
Max  
Unit  
ns  
TCK Cycle Time  
10  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
ns  
ns  
ns  
ns  
tTH  
5
ns  
Rev: 1.15 6/2001  
29/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
GS882Z18/36B BGA Boundary Scan Register  
Bump  
Bump  
x36 x18  
6A  
Bump  
x36  
x18  
x36  
x18  
x36  
x18  
x36 x18  
x36 x18  
1
2
3
4
5
6
7
8
9
PE  
PH = 0  
A10  
7R  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
A9  
A8  
60  
61  
62  
63  
64  
65  
DP  
3J  
n/a  
5A  
PH = 1  
n/a  
3T 2T  
4T 3T  
5T  
A17  
4G  
DQD1  
DQD2  
DQD5  
DQD6  
DQB5  
DQB6  
DQB7  
DQB8  
2K  
A11  
NC = 0  
ADV  
G
4A  
1L  
A12  
4B  
2M  
A13  
6R  
4F  
1N  
A14  
5C  
CKE  
W
4M  
x18 = DQB9  
x16 = NA = 0  
66  
DQD3  
1K 2P  
A15  
5B  
4H  
67  
68  
69  
DQD4  
DQD7  
DQD8  
NC = 1  
NC = 1  
NC = 1  
2L  
2N  
1P  
A16  
6C  
CK  
4K  
x36 = DQA9  
x32 = NA = 0  
PH = 0  
PH = 1  
CE3  
BA  
n/a  
10  
NC = 1  
6P  
n/a  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DQA8  
DQA4  
DQA3  
DQA7  
DQA6  
DQA5  
DQA2  
DQA1  
NC = 1  
NC = 1  
NC = 1  
NC = 1  
DQA1  
7N  
6M  
7L  
x36 = DQD9  
x32 = NA = 0  
6B  
70  
NC = 1  
2P 1K  
5L  
71  
72  
73  
74  
75  
76  
77  
78  
LBO  
3R  
2C  
3B  
3C  
2R  
4N  
4P  
BB  
BC  
BD  
BB  
5G 3G  
3G 5G  
3L  
A5  
A4  
A3  
A2  
A1  
A0  
ZQ  
6K  
7P  
6N  
6L  
NC = 1  
NC = 1  
DQA2  
CE2  
CE1  
A7  
2B  
DQA3  
4E  
DQA4  
7K  
7T  
5J  
3A  
ZZ  
QE  
A6  
2A  
4D  
x36 =DQC9  
x32 = NA = 0  
BPR 1999.08.11  
50  
NC = 1  
2D  
DQB5  
DQB1  
DQB2  
DQB6  
DQA5  
DQA6  
DQA7  
DQA8  
6H  
7G  
6F  
7E  
51  
52  
53  
54  
55  
56  
57  
58  
59  
DQC8  
DQC4  
DQC3  
DQC7  
DQC6  
DQC5  
DQC2  
DQC1  
NC = 1  
NC = 1  
NC = 1  
NC = 1  
DQB1  
1E  
2F  
1G  
2H  
1D  
2E  
2G  
1H  
5R  
x18 =DQA9  
x16 = NA = 0  
7H 6D  
25  
DQB3  
26  
27  
28  
DQB4  
DQB7  
NC = 1  
NC = 1  
NC = 1  
6G  
6E  
7D  
DQB2  
DQB3  
DQB8  
DQB4  
x36 = DQB9  
x32 = NA = 0  
6D 6T  
29  
A18  
FT  
Note:  
1. The Boundary Scan Register contains a number of registers that are not connected to any pin. They default to the value shown at reset.  
2. Registers are listed in exit order (i.e., Location 1 is the first out of the TDO pin).  
3. NC = No Connect, NA = Not Active  
Rev: 1.15 6/2001  
30/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
FLXDrive Output Driver Characteristics  
120.0  
100.0  
Pull Down Drivers  
80.0  
60.0  
40.0  
20.0  
0.0  
VDD  
I Out  
VOut  
-20.0  
-40.0  
-60.0  
VSS  
Pull Up Drivers  
-80.0  
-100.0  
-120.0  
-140.0  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
V Out (Pull Down)  
VDDQ - V Out (Pull Up)  
3.6V PD HD  
3.1V PU LD  
3.3V PD HD  
3.3V PU LD  
3.1V PD HD  
3.6V PU LD  
3.6V PD LD  
3.1V PU HD  
3.3V PD LD  
3.3V PU HD  
3.1V PD LD  
3.6V PU HD  
BPR 1999.05.18  
Rev: 1.15 6/2001  
31/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Package Dimensions—119-Bump PBGA  
Pin 1  
Corner  
A
7 6 5 4 3 2  
1
A
B
C
D
E
F
G
H
J
G
D
B
P
S
K
L
M
N
P
R
T
U
R
N
Bottom View  
Top View  
Package Dimensions—119-Bump PBGA  
Symbol  
Description  
Width  
Min Nom Max  
13.8 14.0 14.2  
21.8 22.0 22.2  
A
B
Length  
C
Package Height (including ball)  
Ball Size  
2.40  
D
0.60 0.75 0.90  
0.50 0.60 0.70  
E
Ball Height  
F
Package Height (excluding balls)  
Width between Balls  
Package Height above board  
Cut-out Package Width  
Foot Length  
1.46 1.70  
1.27  
G
K
0.80 0.90 1.00  
N
12.00  
19.50  
7.62  
P
R
Width of package between balls  
Length of package between balls  
Variance of Ball Height  
S
T
20.32  
0.15  
Side View  
Unit: mm  
BPR 1999.05.18  
Rev: 1.15 6/2001  
32/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Ordering Information—GSI NBT Synchronous SRAM  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz/ns)  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
512K x 18  
512K x 18  
512K x 18  
512K x 18  
256K x 36  
256K x 36  
256K x 36  
256K x 36  
Notes:  
GS882Z18B-11  
GS882Z18B-100  
GS882Z18B-80  
GS882Z18B-66  
GS882Z36B-11  
GS882Z36B-100  
GS882Z36B-80  
GS882Z36B-66  
GS882Z18B-11I  
GS882Z18B-100I  
GS882Z18B-80I  
GS882Z18B-66I  
GS882Z36B-11I  
GS882Z36B-100I  
GS882Z36B-80I  
GS882Z36B-66I  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
ByteSafe NBT Pipeline/Flow Through  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
100/11  
100/12  
80/14  
C
C
C
C
C
C
C
C
I
66/18  
100/11  
100/12  
80/14  
66/18  
100/11  
100/12  
80/14  
I
I
66/18  
I
100/11  
100/12  
80/14  
I
I
I
66/18  
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS882Z36B-100IT.  
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each  
device is Pipeline/Flow Through mode-selectable by the user.  
3. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some  
of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings  
Rev: 1.15 6/2001  
33/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  
Preliminary.  
GS882Z18/36B-11/100/80/66  
Revision History  
Types of Changes  
Format or Content  
DS/DateRev. Code: Old;  
Page /Revisions/Reason  
New  
• Last Page/Fixed “GSGS..” in Ordering Information  
Note.Document/Changed format of all E’s from EN to EN.  
• Timing Diagrams/Changed format. ex. A0 to A0.  
• Flow Through Timing Diagrams/Upper case “T” in Flow  
Through. thru to Through.  
Format/Typos  
Content  
GS882Z818/36BRev1.04h 5/  
1999;  
• Pin outs/Block Diagrams -Updated format to small caps.  
• Added Rev History.  
1.05 9/1999  
• Pin Outs/Numbered all data I/O’s.  
• Boundary Scan/Ordered Data I/O pins correctly.  
• Speed Bins on Page 1/Last column-changed 12ns to 15ns  
and 15ns to 12ns.  
• Improved Appearance of Timing Diagrams.  
• Minor formatting changes.  
GS882Z818/36B 1.05 9/  
1999K/ 1.06 10/1999  
Format  
• Changed pin 4J to VDD in x 18 Pinout.  
• Took out overbar on NC in PinoutNew GSI Logo.Placed pin  
4A in the No Connect list in the pin description.  
GS882Z818/36B 1.06 9/  
1999K 1.07 1/2000L  
Content  
• Removed 166 and 150 MHz speed bins  
• Used 100 MHz Pipeline numbers for 133 MHz  
• Changed all 133 MHz references to 11 ns  
• Updated format to comply with Technical Publications  
standards  
Rev.1.10; 882Z18_r1_11  
Content/Format  
• Updated Capitance table—removed Input row and changed  
Output row to I/O  
882Z18_r1_11;  
882Z18_r1_12  
Content  
Content  
Content  
• Corrected typo on pinouts  
882Z18_r1_12;  
882Z18_r1_13  
• Removed SCD/DCD reference from Mode Pin Functions table  
on page 11  
882Z18_r1_13;  
882Z18_r1_14  
• Added parity bit references to x36 pad out  
• Updated order of data input and output pins in pin description  
table  
882Z18_r1_14;  
882Z18_r1_15  
Content  
Rev: 1.15 6/2001  
34/34  
© 1998, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com  

相关型号:

GS882Z36B-66

8Mb Pipelined and Flow Through Synchronous NBT SRAMs
ETC

GS882Z36B-66I

8Mb Pipelined and Flow Through Synchronous NBT SRAMs
ETC

GS882Z36B-80

8Mb Pipelined and Flow Through Synchronous NBT SRAMs
ETC

GS882Z36B-80I

8Mb Pipelined and Flow Through Synchronous NBT SRAMs
ETC

GS882Z36B-80IT

ZBT SRAM, 256KX36, 14ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36BB-133

ZBT SRAM, 256KX36, 8.5ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36BB-133I

ZBT SRAM, 256KX36, 8.5ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36BB-133T

ZBT SRAM, 256KX36, 8.5ns, CMOS, PBGA119, PLASTIC, BGA-119
GSI

GS882Z36BB-150

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BB-150I

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BB-150IT

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS882Z36BB-150IV

9Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI