HGT1S3N60C3D [HARRIS]

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes; 6A , 600V , UFS系列N沟道IGBT与反并联二极管超高速
HGT1S3N60C3D
型号: HGT1S3N60C3D
厂家: HARRIS CORPORATION    HARRIS CORPORATION
描述:

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
6A , 600V , UFS系列N沟道IGBT与反并联二极管超高速

晶体 二极管 晶体管 电动机控制 瞄准线 双极性晶体管 栅 超快速恢复二极管
文件: 总7页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP3N60C3D, HGT1S3N60C3D,  
HGT1S3N60C3DS  
S E M I C O N D U C T O R  
6A, 600V, UFS Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diodes  
January 1997  
Features  
Packaging  
JEDEC TO-220AB  
o
• 6A, 600V at T = 25 C  
C
EMITTER  
COLLECTOR  
• 600V Switching SOA Capability  
GATE  
o
• Typical Fall Time . . . . . . . . . . . . . . 130ns at T = 150 C  
J
COLLECTOR (FLANGE)  
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
Description  
JEDEC TO-262AA  
EMITTER  
The HGTP3N60C3D, HGT1S3N60C3D, and HGT1S3N60C3DS  
are MOS gated high voltage switching devices combining the  
best features of MOSFETs and bipolar transistors. These  
devices have the high input impedance of a MOSFET and the  
low on-state conduction loss of a bipolar transistor. The much  
lower on-state voltage drop varies only moderately between  
25 C and 150 C. The IGBT used is the development type  
TA49113. The diode used in anti-parallel with the IGBT is the  
development type TA49055.  
COLLECTOR  
GATE  
COLLECTOR  
(FLANGE)  
o
o
JEDEC TO-263AB  
M
A
The IGBT is ideal for many high voltage switching applications  
operating at moderate frequencies where low conduction losses  
are essential.  
COLLECTOR  
(FLANGE)  
GATE  
EMITTER  
PACKAGING AVAILABILITY  
PART NUMBER  
HGTP3N60C3D  
HGT1S3N60C3D  
HGT1S3N60C3DS  
PACKAGE  
TO-220AB  
BRAND  
G3N60C3D  
G3N60C3D  
G3N60C3D  
Terminal Diagram  
N-CHANNEL ENHANCEMENT MODE  
C
TO-262AA  
TO-263AB  
NOTE: When ordering, use the entire part number. Add the suffix 9A to  
obtain the TO-263AB variant in tape and reel, i.e. HGT1S3N60C3DS9A.  
G
Formerly Developmental Type TA49119.  
E
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTP3N60C3D, HGT1S3N60C3D  
HGT1S3N60C3DS  
UNITS  
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
6
3
24  
±20  
±30  
A
A
A
V
V
C
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Collector Current Pulsed (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Gate-Emitter Voltage Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
Gate-Emitter Voltage Pulsed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Switching Safe Operating Area at T = 150 C, Fig. 14. . . . . . . . . . . . . . . . . . . . . . SSOA  
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Power Dissipation Derating T > 25 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . T , T  
C
C110  
CM  
GES  
GEM  
o
18A at 480V  
33  
0.27  
-40 to 150  
260  
J
o
W
C
D
o
o
W/ C  
C
o
C
J
STG  
o
Maximum Lead Temperature for Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
Short Circuit Withstand Time (Note 2) at V  
NOTES:  
= 10V, Fig 6 . . . . . . . . . . . . . . . . . . . . .t  
8
µs  
GE  
SC  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 82.  
CE(PK)  
J
GE  
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.  
File Number 4140.1  
Copyright © Harris Corporation 1997  
3-9  
HGTP3N60C3D, HGT1S3N60C3D, HGT1S3N60C3DS  
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
MIN  
TYP  
-
MAX  
-
UNITS  
Collector-Emitter Breakdown Voltage  
Collector-Emitter Leakage Current  
I
= 250µA, V  
= 0V  
600  
V
µA  
mA  
V
CES  
C GE  
o
I
V
V
= BV  
= BV  
T
= 25 C  
-
-
250  
2.0  
2.0  
2.2  
6.0  
CES  
CE  
CE  
CES  
C
C
C
C
C
o
T
T
T
T
= 150 C  
-
-
-
CES  
o
Collector-Emitter Saturation Voltage  
Gate-Emitter Threshold Voltage  
V
I
= I  
,
= 25 C  
1.65  
1.85  
5.5  
CE(SAT)  
C
C110  
= 15V  
V
GE  
o
= 150 C  
-
V
o
V
I
= 250µA,  
= 25 C  
3.0  
V
GE(TH)  
C
V
= V  
GE  
CE  
Gate-Emitter Leakage Current  
Switching SOA  
I
V
= ±25V  
-
-
-
-
±250  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C  
V
V
= 480V  
18  
2
-
-
J
CE(PK)  
CE(PK)  
R
= 82Ω  
= 15V  
G
= 600V  
A
V
GE  
L = 1mH  
Gate-Emitter Plateau Voltage  
On-State Gate Charge  
V
I
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8.3  
10.8  
13.8  
5
-
13.5  
17.3  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
V
GEP  
C
Q
IC = IC110,  
VCE = 0.5 BVCES  
V
= 15V  
G(ON)  
GE  
V
= 20V  
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C  
D(ON)I  
J
I
= I  
CE  
C110  
= 0.8 BV  
CES  
t
10  
-
RI  
V
V
R
CE(PK)  
= 15V  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
325  
130  
85  
400  
275  
-
D(OFF)I  
= 82Ω  
G
L = 1mH  
t
FI  
Turn-On Energy  
E
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
245  
2.0  
22  
-
OFF  
V
I
I
I
= 3A  
2.5  
28  
22  
3.75  
3.0  
EC  
EC  
EC  
EC  
t
= 3A, dI /dt = 200A/µs  
EC  
ns  
ns  
RR  
= 1A, dI /dt = 200A/µs  
EC  
17  
o
Thermal Resistance  
R
IGBT  
-
C/W  
θJC  
o
Diode  
-
C/W  
NOTE:  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and  
= 0A). The HGTP3N60C3D, HGT1S3N60C3D, and HGT1S3N60C3DS  
OFF  
ending at the point where the collector current equals zero (I  
CE  
were tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces  
the true total Turn-Off Energy Loss. Turn-On losses include diode losses.  
HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:  
4,364,073  
4,587,713  
4,641,162  
4,794,432  
4,860,080  
4,417,385  
4,598,461  
4,644,637  
4,801,986  
4,883,767  
4,430,792  
4,605,948  
4,682,195  
4,803,533  
4,888,627  
4,443,931  
4,618,872  
4,684,413  
4,809,045  
4,890,143  
4,466,176  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,516,143  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,532,534  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,567,641  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
3-10  
HGTP3N60C3D, HGT1S3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
CE  
PULSE DURATION = 250µs  
= 10V  
12V  
DUTY CYCLE <0.5%  
o
T
= 25 C  
C
10V  
V
= 15V  
GE  
10  
8
o
9.0V  
8.5V  
T
T
T
= 150 C  
C
C
C
o
= 25 C  
6
6
o
= -40 C  
4
4
8.0V  
7.5V  
2
0
2
7.0V  
0
4
6
8
10  
12  
14  
0
2
V , COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
4
6
8
10  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
20  
20  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V = 10V  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
= 15V  
18  
16  
GE  
18  
16  
14  
12  
10  
8
GE  
14  
12  
10  
8
T
= 25  
C
o
T
= -40 C  
C
T
= -40  
C
o
T
= 150 C  
o
C
6
6
T
= 150  
C
T
= 25 C  
C
4
4
2
2
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 4. COLLECTOR-EMITTER ON - STATE VOLTAGE  
FIGURE 3. COLLECTOR-EMITTER ON - STATE VOLTAGE  
14  
12  
10  
8
70  
60  
50  
40  
30  
20  
7
o
V
= 360V, R  
= 82, T = 125 C  
J
V
= 15V  
CE  
GE  
GE  
6
5
4
3
2
1
0
t
SC  
I
SC  
6
4
10  
0
2
0
25  
50  
75  
100  
125  
150  
10  
11  
12  
13  
14  
15  
o
V
, GATE-TO-EMITTER VOLTAGE (V)  
T
, CASE TEMPERATURE ( C)  
GE  
C
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME  
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT AS A  
FUNCTION OF CASE TEMPERATURE  
3-11  
HGTP3N60C3D, HGT1S3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves (Continued)  
500  
400  
20  
o
o
T
= 150 C, R = 82, L = 1mH, V  
CE(PK)  
= 480V  
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
J
G
J
G
V
= 10V  
= 15V  
GE  
10  
300  
200  
V
GE  
V
= 15V  
= 10V  
GE  
V
GE  
3
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR-EMITTER CURRENT (A)  
I
, COLLECTOR-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON DELAY TIME AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
FIGURE 8. TURN-OFF DELAY TIME AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
80  
300  
o
o
= 150 C, R = 82, L = 1mH, V  
T
= 480V  
J
G
CE(PK)  
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
J
G
V
= 10V  
GE  
200  
V
= 10V or 15V  
GE  
V
= 15V  
GE  
10  
5
100  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR-EMITTER CURRENT (A)  
I
, COLLECTOR-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON RISE TIME AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
FIGURE 10. TURN-OFF FALL TIME AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
0.5  
0.4  
0.3  
0.8  
o
o
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
J
G
J
G
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 10V  
GE  
V
= 10V or 15V  
GE  
0.2  
0.1  
0
V
= 15V  
GE  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR-EMITTER CURRENT (A)  
I
CE  
, COLLECTOR-EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-ON ENERGY LOSS AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
FIGURE 12. TURN-OFF ENERGY LOSS AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
3-12  
HGTP3N60C3D, HGT1S3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves (Continued)  
200  
100  
20  
18  
16  
14  
12  
10  
8
o
o
o
T
= 150 C, V  
= 15V, R = 82, L = 1mH  
T
= 150 C, T = 75 C  
C
J
GE G  
J
R
= 82, L = 1mH  
G
f
f
= 0.05/(t  
D(OFF)I  
+ t  
D(ON)I  
)
V
= 15V  
MAX1  
GE  
= (P - P )/(E  
ON  
+ E  
)
OFF  
MAX2  
D
C
6
P
P
= ALLOWABLE DISSIPATION  
D
C
= CONDUCTION DISSIPATION  
4
(DUTY FACTOR = 50%)  
o
V
= 10V  
5
GE  
2
R
= 3.75 C/W  
JC  
θ
10  
0
1
2
3
4
6
0
100  
200  
300  
400  
500  
600  
I
, COLLECTOR-EMITTER CURRENT (A)  
V
CE(PK)  
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
FIGURE 13. OPERATING FREQUENCY AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
FIGURE 14. MINIMUM SWITCHING SAFE OPERATING AREA  
500  
600  
480  
360  
240  
120  
0
15  
12  
FREQUENCY = 1MHz  
400  
300  
200  
100  
0
C
IES  
9
6
V
= 600V  
CE  
V
V
= 400V  
= 200V  
CE  
CE  
C
I
REF = 1.060mA  
OES  
G
3
0
R
= 200Ω  
L
o
C
RES  
T
= 25 C  
C
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
Q , GATE CHARGE (nC)  
G
12  
14  
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
FIGURE 15. CAPACITANCE AS A FUNCTION OF COLLECTOR-  
EMITTER VOLTAGE  
FIGURE 16. GATE CHARGE WAVEFORMS  
0
10  
0.5  
0.2  
t
1
0.1  
-1  
10  
P
D
0.05  
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
JC C  
SINGLE PULSE  
J
D
JC  
θ
θ
-2  
10  
-5  
10  
-4  
10  
-3  
10  
-2  
-1  
0
1
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE  
3-13  
HGTP3N60C3D, HGT1S3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves (Continued)  
30  
25  
20  
15  
10  
5
15  
12  
9
o
T
= 25 C, dI /dt = 200A/µs  
C
EC  
t
rr  
t
A
B
o
100 C  
6
o
o
150 C  
25 C  
t
3
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1
4
I
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 18. DIODE FORWARD CURRENT AS A FUNCTION OF  
FORWARD VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES AS A FUNCTION OF FORWARD  
CURRENT  
Test Circuit and Waveform  
90%  
L = 1mH  
RHRD460  
10%  
V
GE  
E
E
OFF  
ON  
R
= 82Ω  
V
G
CE  
CE  
90%  
+
V
= 480V  
DD  
10%  
D(OFF)I  
-
I
t
t
RI  
t
FI  
t
D(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
Operating Frequency Information  
Operating frequency information for a typical device (Figure 13)  
f
is defined by f  
MAX2  
= (P - P )/(E + E ). The  
OFF ON  
MAX2  
D
C
is presented as a guide for estimating device performance allowable dissipation (P ) is defined by P = (T -  
D
D
JMAX  
for a specific application. Other typical frequency vs collector T )/R  
. The sum of device switching and conduction  
C
θJC  
current (I ) plots are possible using the information shown losses must not exceed P . A 50% duty factor was used  
CE  
D
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating (Figure 13) and the conduction losses (P ) are approxi-  
C
frequency plot (Figure 13) of a typical device shows f  
MAX1  
or mated by P = (V  
x I )/2.  
CE CE  
C
f
whichever is smaller at each point. The information is  
MAX2  
E
and E  
OFF  
are defined in the switching waveforms  
is the integral of the instantaneous  
is the inte-  
ON  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
shown in Figure 21. E  
power loss (I  
ON  
CE  
x V ) during turn-on and E  
CE  
OFF  
). Dead- gral of the instantaneous power loss during turn-off. All tail  
f
is defined by f  
MAX1  
= 0.05/(t  
D(OFF)I  
+ t  
D(ON)I  
MAX1  
time (the denominator) has been arbitrarily held to 10% of losses are included in the calculation for E  
; i.e. the col-  
OFF  
the on- state time for a 50% duty factor. Other definitions are lector current equals zero (I  
CE  
= 0).  
possible. t  
and t  
are defined in Figure 21.  
D(OFF)I  
D(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T  
JMAX  
.
t
is important when controlling output ripple under a  
D(OFF)I  
lightly loaded condition.  
3-14  
HGTP3N60C3D, HGT1S3N60C3D, HGT1S3N60C3DS  
Handling Precautions for IGBTs  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through  
the device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in pro-  
duction by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no dam-  
age problems due to electrostatic discharge. IGBTs can be  
handled safely if the following basic precautions are taken:  
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed from  
circuits with power on.  
5. Gate Voltage Rating - Never exceed the gate-voltage rat-  
ing of V  
. Exceeding the rated V can result in  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
6. Gate Termination - The gates of these devices are essen-  
tially capacitors. Circuits that leave the gate open-circuited  
or floating should be avoided. These conditions can result  
in turn-on of the device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as ECCOSORBD LD26 or equivalent.  
7. Gate Protection - These devices do not have an internal  
monolithic zener diode from gate to emitter. If gate pro-  
tection is required an external zener is recommended.  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at  
any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is  
believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other  
rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.  
Sales Office Headquarters  
For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS  
NORTH AMERICA  
EUROPE  
ASIA  
Harris Semiconductor  
P. O. Box 883, Mail Stop 53-210  
Melbourne, FL 32902  
TEL: 1-800-442-7747  
(407) 729-4984  
Harris Semiconductor  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Harris Semiconductor PTE Ltd.  
No. 1 Tannery Road  
Cencon 1, #09-01  
Singapore 1334  
TEL: (65) 748-4200  
FAX: (65) 748-0400  
FAX: (407) 729-5321  
S E M I C O N D U C T O R  
3-15  

相关型号:

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S3N60C3DS9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3A I(C) | TO-263AB
ETC

HGT1S5N120BNDS

21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S5N120BNDS

21A, 1200V, N-CHANNEL IGBT, TO-263AB
RENESAS

HGT1S5N120BNDS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC

HGT1S5N120BNS

21A, 1200V, NPT Series N-Channel IGBTs
INTERSIL

HGT1S5N120BNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC

HGT1S5N120CNDS

25A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGT1S5N120CNDS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC

HGT1S5N120CNS

25A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGT1S5N120CNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC