BB402M [HITACHI]

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier; 打造偏置电路MOS FET的IC UHF / VHF射频放大器
BB402M
型号: BB402M
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
打造偏置电路MOS FET的IC UHF / VHF射频放大器

晶体 射频放大器 小信号场效应晶体管 射频小信号场效应晶体管 光电二极管
文件: 总11页 (文件大小:67K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BB402M  
Build in Biasing Circuit MOS FET IC  
VHF RF Amplifier  
ADE-208-716A (Z)  
2nd. Edition  
Dec. 1998  
Features  
Build in Biasing Circuit; To reduce using parts cost & PC board space.  
Low noise characteristics;  
(NF = 1.7 dB typ. at f = 200 MHz)  
Withstanding to ESD;  
Build in ESD absorbing diode. Withstand up to 240V at C=200pF, Rs=0 conditions.  
Provide mini mold packages; MPAK-4R(SOT-143 var.)  
Outline  
MPAK-4R  
3
4
2
1
1. Source  
2. Drain  
3. Gate2  
4. Gate1  
Notes: 1. Marking is “BX–”.  
2. BB402M is individual type number of HITACHI BBFET.  
BB402M  
Absolute Maximum Ratings (Ta = 25°C)  
Item  
Symbol  
VDS  
Ratings  
Unit  
V
Drain to source voltage  
Gate1 to source voltage  
12  
VG1S  
+10  
– 0  
V
Gate2 to source voltage  
Drain current  
VG2S  
ID  
±10  
V
25  
mA  
mW  
°C  
Channel power dissipation  
Channel temperature  
Storage temperature  
Pch  
Tch  
Tstg  
150  
150  
–55 to +150  
°C  
Electrical Characteristics (Ta = 25°C)  
Item  
Symbol Min  
12  
Typ  
Max  
Unit  
V
Test Conditions  
Drain to source breakdown voltage V(BR)DSS  
ID = 200µA, VG1S = VG2S = 0  
IG1 = +10µA, VG2S = VDS = 0  
IG2 = ±10µA, VG1S = VDS = 0  
VG1S = +9V, VG2S = VDS = 0  
VG2S = ±9V, VG1S = VDS = 0  
VDS = 9V, VG2S = 6V, ID = 100µA  
VDS = 9V, VG1S = 9V, ID = 100µA  
Gate1 to source breakdown voltage V(BR)G1SS +10  
V
Gate2 to source breakdown voltage V(BR)G2SS ±10  
V
Gate1 to source cutoff current  
Gate2 to source cutoff current  
Gate1 to source cutoff voltage  
Gate2 to source cutoff voltage  
Drain current  
IG1SS  
0.4  
0.4  
9
+100  
±100  
1.0  
1.0  
18  
nA  
nA  
V
IG2SS  
VG1S(off)  
VG2S(off)  
ID(op)  
0.7  
0.7  
13  
V
mA  
VDS = 9V, VG1 = 9V, VG2S = 6V  
RG = 120kΩ  
Forward transfer admittance  
|yfs|  
15  
20  
mS  
VDS = 9V, VG1 = 9V, VG2S =6V  
RG = 120k, f = 1kHz  
Input capacitance  
Output capacitance  
Reverse transfer capacitance  
Power gain  
ciss  
coss  
crss  
PG  
NF  
2.2  
0.8  
3.0  
1.1  
4.0  
1.5  
pF  
pF  
pF  
dB  
dB  
VDS = 9V, VG1 = 9V  
VG2S =6V, RG = 120kΩ  
f = 1MHz  
0.017 0.04  
22  
26  
VDS = 9V, VG1 = 9V, VG2S =6V  
RG = 120k, f = 200MHz  
Noise figure  
1.7  
2.2  
2
BB402M  
Main Characteristics  
Test Circuit for Operating Items (I  
, |yfs|, Ciss, Coss, Crss, NF, PG)  
D(op)  
V
G1  
V
R
G2  
G
Gate 2  
Gate 1  
Drain  
A
Source  
I
D
Power Gain, Noise Figure Test Circuit  
V
V
G2  
V
T
T
1000p  
1000p  
1000p  
47k  
BBFET  
47k  
1000p  
1SV70  
Output (50)  
47k  
L1  
1000p  
L2  
Input (50)  
10p max  
1000p  
1000p  
RFC  
1SV70  
R
120k  
36p  
G
1000p  
Unit Resistance ()  
V
= V  
G1  
D
Capacitance (F)  
L1: φ1mm Enameled Copper Wire,Inside dia 10mm, 2Turns  
L2: φ1mm Enameled Copper Wire,Inside dia 10mm, 2Turns  
RFC: φ1mm Enameled Copper Wire,Inside dia 5mm, 2Turns  
3
BB402M  
Maximum Channel Power  
Dissipation Curve  
Typical Output Characteristics  
= 6 V  
25  
20  
15  
10  
5
200  
150  
100  
50  
V
V
G2S  
= V  
G1  
DS  
0
0
50  
100  
150  
200  
2
4
6
8
10  
Drain to Source Voltage  
V
(V)  
DS  
Ambient Temperature Ta (¡C)  
Drain Current vs.  
Gate2 to Source Voltage  
Drain Current vs. Gate1 Voltage  
25  
20  
15  
10  
5
20  
16  
12  
8
V
R
= 9 V  
= 100 k  
DS  
6 V  
5 V  
4 V  
G
3 V  
2 V  
4
V
= 1 V  
G2S  
G1  
V
= V = 9 V  
G1  
DS  
0
0
2
4
6
8
10  
1.2  
2.4  
3.8  
4.8  
6.0  
(V)  
Gate2 to Source Voltage  
V
G2S  
Gate1 Voltage  
V
(V)  
4
BB402M  
Drain Current vs. Gate1 Voltege  
Drain Current vs. Gate1 Voltege  
20  
16  
12  
8
20  
16  
12  
8
V
R
= 9 V  
= 150 k  
DS  
V
R
= 9 V  
= 120 k  
DS  
G
G
6 V  
5 V  
4 V  
6 V  
5 V  
4 V  
3 V  
3 V  
2 V  
2 V  
4
4
V
= 1 V  
V
6
= 1 V  
G2S  
G2S  
0
0
2
4
8
10  
2
4
6
8
10  
Gate1 Voltage  
V
(V)  
Gate1 Voltage  
V
(V)  
G1  
G1  
Forward Transfer Admittance  
vs. Gate1 Voltage  
Forward Transfer Admittance  
vs. Gate1 Voltage  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
R
= 9 V  
= 100 k  
f = 1 kHz  
V
R
= 9 V  
6 V  
DS  
6 V  
5 V  
DS  
= 120 k  
G
5 V  
G
f = 1 kHz  
4 V  
3 V  
2 V  
2 V  
V
6
= 1 V  
V
6
= 1 V  
G2S  
G2S  
0
0
2
4
8
10  
2
4
8
10  
Gate1 Voltage  
V
(V)  
Gate1 Voltage  
V
(V)  
G1  
G1  
5
BB402M  
Forward Transfer Admittance  
vs. Gate1 Voltage  
Power Gain vs. Gate Resistance  
30  
25  
20  
15  
10  
25  
20  
15  
10  
5
V
R
= 9 V  
DS  
= 150 k  
f = 1 kHz  
G
4 V  
6 V 5 V  
3 V  
2 V  
V
V
V
= 9 V  
= 9 V  
DS  
G1  
5
0
= 6 V  
G2S  
f = 200 MHz  
20 50 100 200  
Gate Resistance R (k  
V
= 1 V  
G2S  
0
10  
500 1000  
2
4
6
8
10  
Gate1 Voltage  
V
(V)  
G1  
)
G
Noise Figure vs. Gate Resistance  
Power Gain vs. Drain Current  
4
3
2
1
30  
25  
20  
15  
10  
5
V
V
V
= 9 V  
= 9 V  
DS  
G1  
= 6 V  
G2S  
f = 200 MHz  
V
V
V
= 9 V  
= 9 V  
DS  
G1  
= 6 V  
G2S  
R = variable  
G
f = 200 MHz  
0
0
10  
20  
50 100 200  
500 1000  
5
10  
15  
20  
25  
30  
Drain Current I  
(mA)  
Gate Resistance R (k  
)
G
D
6
BB402M  
Noise Figure vs. Drain Current  
Drain Current vs. Gate Resistance  
4
3
2
1
30  
25  
20  
15  
10  
V
V
V
= 9 V  
= 9 V  
DS  
G1  
= 6 V  
G2S  
R = variable  
G
f = 200 MHz  
V
V
V
= 9 V  
= 9 V  
DS  
5
0
G1  
= 6 V  
G2S  
0
5
10  
15  
20  
25  
10  
20  
50 100 200  
500 1000  
30  
Drain Current I  
(mA)  
Gate Resistance R (k  
G
)
D
Gain Reduction vs.  
Gate2 to Source Voltage  
Input Capacitance vs.  
Gate2 to Source Voltage  
60  
50  
40  
30  
20  
10  
6
5
4
3
2
1
0
V
V
V
= 9 V  
= 9 V  
DS  
G1  
= 6 V  
G2S  
R = 120 k  
G
f = 200 MHz  
V
V
= 9 V  
= 9 V  
DS  
G1  
R = 120 k Ω  
G
f = 1 MHz  
0
1
2
3
4
5
6
7
(V)  
1
2
3
4
6
5
Gate2 to Source Voltage V  
Gate2 to Source Voltage V  
(V)  
G2S  
G2S  
7
BB402M  
S21 Parameter vs. Frequency  
S11 Parameter vs. Frequency  
Scale: 1 / div.  
1
90¡  
.8  
1.5  
60¡  
.6  
120¡  
2
.4  
3
30¡  
4
150¡  
.2  
0
5
10  
.2  
.4 .6 .8 1  
1.5 2 3 4 5 10  
180¡  
0¡  
—10  
—5  
—4  
—.2  
—30¡  
—150¡  
—3  
—.4  
—2  
—60¡  
—120¡  
—.6  
—1.5  
—.8  
—90¡  
—1  
Test Condition :  
Test Condition :  
V
V
= 9 V , V = 9 V  
V
V
= 9 V , V = 9 V  
DS  
G1  
DS  
G1  
= 6 V , R = 120 kΩ  
= 6 V , R = 120 kΩ  
G2S  
G2S  
G
G
50 1000 MHz (50 MHz step)  
50 1000 MHz (50 MHz step)  
S12 Parameter vs. Frequency  
S22 Parameter vs. Frequency  
Scale: 0.01 / div.  
1
90¡  
.8  
1.5  
60¡  
.6  
120¡  
2
.4  
3
30¡  
150¡  
4
.2  
5
10  
.2  
.4 .6 .8 1  
1.5 2 3 4 5 10  
0
180¡  
0¡  
—10  
—5  
—4  
—.2  
—30¡  
—150¡  
—3  
—.4  
—2  
—60¡  
—120¡  
—.6  
—1.5  
—.8  
—90¡  
—1  
Test Condition :  
Test Condition :  
V
V
= 9 V , V = 9 V  
G1  
V
V
= 9 V , V = 9 V  
G1  
DS  
DS  
= 6 V , R = 120 kΩ  
= 6 V , R = 120 kΩ  
G2S  
G
G2S  
G
50 1000 MHz (50 MHz step)  
50 1000 MHz (50 MHz step)  
8
BB402M  
Sparameter (VDS = VG1 = 9V, VG2S = 6V, RG = 120k, Zo = 50)  
S11  
S21  
MAG  
2.13  
2.13  
2.12  
2.08  
2.04  
2.00  
1.95  
1.91  
1.86  
1.81  
1.76  
1.70  
1.66  
1.61  
1.56  
1.51  
1.47  
1.42  
1.39  
1.34  
S12  
S22  
f (MHz) MAG  
ANG  
ANG  
174.1  
167.9  
161.6  
155.2  
149.1  
143.0  
137.3  
131.5  
125.7  
120.1  
115.1  
110.1  
104.7  
100.3  
95.4  
MAG  
ANG  
90.0  
72.5  
79.4  
78.4  
71.0  
72.0  
59.0  
66.3  
62.2  
56.6  
61.5  
61.4  
51.1  
57.6  
70.0  
77.5  
114.5  
114.5  
145.8  
164.0  
MAG  
0.985  
0.993  
0.992  
0.990  
0.987  
0.985  
0.982  
0.978  
0.974  
0.970  
0.966  
0.961  
0.957  
0.952  
0.947  
0.943  
0.937  
0.933  
0.927  
0.923  
ANG  
–1.3  
50  
0.988  
0.986  
0.979  
0.964  
0.948  
0.939  
0.920  
0.904  
0.885  
0.864  
0.848  
0.826  
0.808  
0.789  
0.773  
0.755  
0.735  
0.721  
0.703  
0.677  
–5.2  
0.00052  
0.00087  
0.00156  
0.00226  
0.00254  
0.00339  
0.00335  
0.00338  
0.00351  
0.00347  
0.00355  
0.00300  
0.00289  
0.00246  
0.00211  
0.00166  
0.00165  
0.00123  
0.00176  
0.00204  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
–10.4  
–16.0  
–21.5  
–26.9  
–32.0  
–37.3  
–42.3  
–47.1  
–51.7  
–56.5  
–60.9  
–65.0  
–69.4  
–73.7  
–77.9  
–82.1  
–86.3  
–90.7  
–93.9  
–3.6  
–5.5  
–7.5  
–9.6  
–11.4  
–13.3  
–15.3  
–17.1  
–18.9  
–21.0  
–22.7  
–24.5  
–26.6  
–28.3  
–30.2  
–32.2  
–34.1  
–35.9  
–37.9  
90.5  
85.9  
81.3  
76.9  
72.4  
9
BB402M  
Package Dimensions  
Unit: mm  
±0.2  
±0.2  
2.95  
1.9  
0.95 0.95  
+ 0.1  
— 0.06  
0.16  
+ 0.1  
— 0.05  
+ 0.1  
0.4  
0.4  
— 0.05  
4
3
0 0.1  
2
1
+ 0.1  
+ 0.1  
— 0.05  
0.6  
0.4  
— 0.05  
0.85  
1.8  
0.95  
MPAK—4R  
Hitachi Code  
EIAJ  
JEDEC  
10  
BB402M  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright,  
trademark, or other intellectual property rights for information contained in this document. Hitachi bears no  
responsibility for problems that may arise with third party’s rights, including intellectual property rights, in  
connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact  
Hitachi’s sales office before using the product in an application that demands especially high quality and  
reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury,  
such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment  
or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for  
maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and  
other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed  
ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in  
semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating  
Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the  
Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.  
Hitachi, Ltd.  
Semiconductor & IC Div.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Electronic components Group  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
2000 Sierra Point Parkway Dornacher Straße 3  
Brisbane, CA 94005-1897 D-85622 Feldkirchen, Munich  
Tel: <1> (800) 285-1601  
Fax: <1> (303) 297-0447  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
11  

相关型号:

BB403

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
HITACHI

BB403M

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
HITACHI

BB404

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
HITACHI

BB404A

SCHOTTKY DIODES
ETC

BB404B

SCHOTTKY DIODES
ETC

BB404C

SCHOTTKY DIODES
ETC

BB404D

Variable Capacitance Diode, 46pF C(T),
ITT

BB404E

Variable Capacitance Diode, 47pF C(T),
ITT

BB404E

Variable Capacitance Diode, 47pF C(T), Silicon
TDK

BB404M

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
HITACHI

BB405

UHF variable capacitance diode
NXP

BB405

Build in Biasing Circuit MOS FET IC UHF/VHF RF Amplifier
HITACHI