HCD66002 [HITACHI]

Liquid Crystal Driver, 80-Segment, CMOS, DIE;
HCD66002
型号: HCD66002
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Liquid Crystal Driver, 80-Segment, CMOS, DIE

文件: 总21页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD66002  
(80-Channel General-purpose Driver for Middle- or Small-sized  
Liquid Crystal Panel)  
ADE-207-277(Z)  
'99.9  
Rev. 0.0  
Description  
The HD66002 is an 80-channel column driver, which drives a middle-or small-sized liquid crystal panel.  
This product can be used to expand the display of small portable equipment when connected to LCD-II  
controllers. In addition, it can be applied to middle-sized dot-matrix liquid crystal displays with sizes such  
as 128 × 240 or 128 × 480 dots.  
Features  
Logic power supply voltage: 2.7 to 5.5V  
Display duty: 1/16 (1/5 bias) to 1/128  
80 liquid crystal display drive circuits  
Liquid crystal display drive voltage: 6 to 17V  
Data transfer speed: 2.5 MHz max  
Serial/parallel conversion function  
Chip enable signal automatic generation  
Controllers that can be used with  
HD44780U, HD66710, HD66712, HD66720, and HD66730 (LCD-II series)  
HD61830B (LCDC series)  
Packages  
FP-100A  
TFP-100B  
No package (bare chip)  
CMOS process  
1
HD66002  
Ordering information  
Type name  
HD66002FS  
HD66002TE  
HCD66002  
Package  
FP-100A  
TFP-100B  
Bare chip  
2
HD66002  
Pin Arrangement  
Y 51  
Y 52  
Y 53  
Y 54  
Y 55  
1
80  
79  
78  
77  
76  
75  
Y 30  
Y 29  
Y 28  
Y 27  
Y 26  
2
3
4
5
6
Y 56  
Y 57  
Y 25  
Y 24  
7
8
74  
73  
Y 58  
Y 59  
Y 60  
Y 23  
Y 22  
Y 21  
9
72  
71  
10  
11  
70  
69  
68  
Y 61  
Y 62  
Y 20  
Y 19  
12  
13  
Y 63  
Y 64  
Y 65  
Y 66  
Y 18  
Y 17  
Y 16  
Y 15  
14  
15  
16  
17  
67  
66  
65  
64  
63  
62  
61  
HD66002FS  
(FP-100A)  
Y 67  
Y 68  
Y 14  
Y 13  
18  
19  
(Top view)  
Y 69  
Y 70  
Y 71  
Y 12  
Y 11  
Y 10  
20  
21  
22  
60  
59  
58  
57  
56  
Y 72  
Y 73  
Y 9  
Y 8  
23  
24  
Y 74  
Y 75  
Y 7  
Y 6  
25  
26  
27  
55  
54  
Y 76  
Y 77  
Y 5  
Y 4  
Y 78  
Y 79  
Y 80  
28  
29  
53  
52  
Y 3  
Y 2  
Y 1  
30  
51  
Figure 1 Pin Arrangement (HD66002FS)  
3
HD66002  
1
2
75  
74  
Y27  
Y26  
Y25  
Y24  
Y23  
Y22  
Y21  
Y20  
Y19  
Y18  
Y17  
Y16  
Y15  
Y14  
Y13  
Y12  
Y11  
Y10  
Y9  
Y53  
Y54  
Y55  
Y56  
Y57  
Y58  
Y59  
Y60  
Y61  
Y62  
Y63  
Y64  
Y65  
Y66  
Y67  
Y68  
Y69  
Y70  
Y71  
Y72  
Y73  
Y74  
Y75  
Y76  
Y77  
3
4
73  
72  
5
6
7
71  
70  
69  
8
9
68  
67  
10  
11  
12  
66  
65  
64  
63  
HD66002TE  
(TFP-100B)  
13  
14  
62  
61  
15  
16  
17  
18  
60  
59  
58  
(Top view)  
19  
20  
57  
56  
Y8  
Y7  
Y6  
Y5  
Y4  
Y3  
21  
22  
23  
55  
54  
53  
52  
51  
24  
25  
Figure 2 Pin Arrangement (HD66002TE)  
4
HD66002  
Block Diagram  
Y80Y79Y78Y77Y76  
Y1  
V1  
V2  
V3  
Liquid crystal display drive circuit  
V4  
M
80-bit latch circuit  
CL1  
DIOL  
DIOR  
DR  
80-bit bi-directional shift register  
(also used as a latch circuit)  
DL  
S/P  
Selector  
Counter  
FCS  
Operating mode  
switching circuit  
E
CAR  
TEST1  
TEST2  
Test input  
CL2  
SHL  
Figure 3 Block Diagram  
5
HD66002  
Block Functions  
Liquid crystal display drive circuit  
Generates one of four levels V1 to V4 to the output pin to drive the liquid crystal display according to the  
combination of data of the 80-bit latch circuit and the M signal.  
80-bit latch circuit  
Latches data of the 80-bit bi-directional shift register (also used as a latch circuit) at the falling edge of  
CL1, and transmits it to the liquid crystal display drive circuit.  
80-bit bi-directional shift register (also used as a latch circuit)  
When FCS is low, this register functions as an 80-bit shift register. At this time, DIOL and DIOR are used  
as data input/output pins. When FCS is high, this register functions as a 20 × 4-bit latch circuit. At this  
time, data that is input in serial to data input pin DR or DL is converted to 4-bit data, and then is latched to  
this register according to the latch signal generated by the selector.  
S/P  
Converts serial data into 4-bit parallel data.  
Selector  
Decodes output data from the counter and generates a latch signal. Functions when latching data at serial-  
latch operation (when FCS is high). At this time, after 80 bits of data Y1 to Y80 are completely latched,  
the operation of the selector terminates. Even if input data changes, data in the latch circuit is maintained.  
Operating mode switching circuit  
Switches shift register operation (when FCS is low) and serial-latch operation (when FCS is high).  
6
HD66002  
Pin Functions  
Table 1  
Pin Functions  
Input/  
Classification Symbol Pin No. Pin Name Output Function  
Power supply  
VCC  
GND  
VEE  
41 (39) VCC  
39 (37) GND  
36 (34) VEE  
V
V
CCGND: Logic power supply  
CCVEE: Power supply for driving the liquid  
crystal display.  
V1  
V2  
V3  
V4  
32 (30) V1  
33 (31) V2  
34 (32) V3  
35 (33) V4  
Input  
Power supply voltage for liquid crystal display  
drive level.  
See Figure 4.  
Control signal  
CL1  
CL2  
M
38 (36) Clock 1  
Input  
Input  
Input  
Input  
Display data latch signal. Data is latched at the  
falling edge of this signal.  
49 (47) Clock 2  
Display data latch and shift signal. This signal is  
valid at its falling edge.  
37 (35)  
M
AC conversion signal for liquid crystal display  
drive output.  
SHL  
40 (38) Shift left  
Control signal for inverting data output  
destination.  
1. Operating mode: Serial-latch operation  
When serial data is input in order from D1 to  
D80, the relationship between data and  
output Y are as shown in Table 2.  
When SHL is low, data is input from the DL pin,  
and the DR pin is set low.  
When SHL is high, data is input from the DR  
pin, and DL pin is set low.  
2. Operating mode: Shift register operation  
When serial data is input in order from D1 to  
D80, the relationship between data and  
output Y are as shown in Table 3.  
When SHL is low, data is input to the DIOL pin,  
and output from the DIOR pin.  
When SHL is high, the relationships between  
DIOL and DIOR are reverse.  
E
31 (29) Enable  
Input  
When FCS is high, data latch starts by setting  
the E signal low.  
When FCS is low, set the E signal high.  
The relationships between the E signal, the  
FCS signal, and data latch operation are as  
shown in Table 4.  
7
HD66002  
Pin Functions  
Table 1  
Pin Functions (cont)  
Input/  
Classification Symbol  
Pin No.  
Pin Name Output Function  
Control signal CAR  
50 (48)  
Carry  
Output When FCS is high, a chip enable signal is  
transferred to the next IC from this pin.  
Connect this pin to the next IC.  
When FCS is low, open this pin.  
DIOL  
DIOR  
48 (46)  
47 (45)  
Data I/O (L) Input/ In serial-latch operation, DIOL, DIOR, DR,  
Data I/O (R) output and DL are display data input and open pins.  
When the SHL pin is high, DL is low and DR  
is input, and when it is low, DL is input and  
DR is low. At this time, set the DIOL and  
DIOR pins low.  
DR  
DL  
46 (44)  
45 (43)  
Data (R)  
Data (L)  
Input  
In shift register operation, DIOL, DIOR, DR,  
and DL are display data input and output  
pins. When the SHL pin is high, DIOL and  
DIOR are output and input, respectively, and  
vice versa when the SHL pin is low. At this  
time, set the DR and DL pins low.  
When display data is high, liquid crystal  
display drive output is selection level and the  
liquid crystal display is on, and when display  
data is low, they are non-selection and off,  
respectively.  
FCS  
42 (40)  
Function  
select  
Input  
Input  
Control signal to select each operating mode.  
When the FCS pin is low, the operating mode  
is shift register, and when it is high, the  
operating mode is serial latch.  
TEST1  
TEST2  
43 (41)  
44 (42)  
Test 1  
Test 2  
Test pins. Set these pins high.  
Liquid crystal Y1 to Y80 51 to 100 Y1 to Y80 Output Each Y pins outputs one of the four voltage  
display drive  
output  
(49 to 100)  
1 to 30  
(1 to 28)  
levels V1, V2, V3, or V4 according to the  
combination of M and display data. The  
combination is differently between serial latch  
operation and shift register operation. See  
Figure 5. In case of using at display expanse  
of LCD-II family, use in shift register operation  
(FCS = L).  
Note: Pin numbers of the HD66002TE are enclosed in parentheses ( ).  
8
HD66002  
V1  
V3  
V1 and V2: Selection level  
V3 and V4: Non-selection level  
V4  
V2  
Figure 4 Liquid Crystal Display Drive level  
Serial Latch Operation (FCS = H)  
Shift Register Operation (FCS = L)  
0
0
1
1
M
M
0
0
0
0
1
1
1
1
Data  
Display Data  
Output level  
V1  
V2  
Output level  
V3 V2 V4  
V4 V1 V3  
Figure 5 Liquid Crystal Display Drive Output  
Table 2  
Relationship between Data and Output Y in Serial-Latch Operation  
SHL  
Low  
High  
Y1  
Y2  
...............  
...............  
...............  
Y79  
D79  
D2  
Y80  
D80  
D1  
D1  
D2  
D80  
D79  
Table 3  
Relationship between Data and Output Y in Shift Register Operation  
SHL  
Low  
High  
Y1  
Y2  
...............  
...............  
...............  
Y79  
D2  
Y80  
D1  
D80  
D1  
D79  
D2  
D79  
D80  
Table 4  
Relationship between FCS, E, and Data Latch Operation  
FCS  
E
Data Latch Operation  
High  
Low  
High  
High  
Enabled  
Disabled  
Low  
9
HD66002  
Application Examples  
Example 1 (Shift Register Operating Mode 1)  
Figure 6 shows an example when configuring the 16 × 200-dot LCD panel using the HD66002 (when using  
the HD44780U as a controller).  
F C S  
s e g 2 0 0  
T E S T 2  
s e g 1 9 9  
T E S T 1  
s e g 1 9 8  
D R , D L  
M
C L 2  
C L 1  
V 2  
V 4  
V 3  
V 1  
F C S  
T E S T 2  
T E S T 1  
D R , D L  
M
C L 2  
C L 1  
V 2  
V 4  
V 3  
V 1  
s e g 3  
s e g 2  
s e g 1  
G N D  
C C  
V
V 5  
Figure 6 Application Example 1 (Shift Register Operating Mode 1)  
10  
HD66002  
Example 2 (Shift Register Operating Mode 2)  
Figure 7 shows an example when configuring the 228 × 25-dot LCD panel using the HD66002 (when using  
the HD66730 as a controller).  
F C S  
s e g 2 2 8  
T E S T 2  
s e g 2 2 7  
T E S T 1  
s e g 2 2 6  
D R , D L  
M
C L 2  
C L 1  
V 2  
V 4  
V 3  
V 1  
F C S  
T E S T 2  
T E S T 1  
D R , D L  
M
C L 2  
C L 1  
V 2  
V 4  
V 3  
V 1  
s e g 3  
s e g 2  
s e g 1  
G N D  
C C  
V
V 5  
Figure 7 Application Example 2 (Shift Register Operating Mode 2)  
11  
HD66002  
Example 3 (Serial-Latch Operating Mode)  
Figure 8 shows an example when configuring the 64 × 240-dot LCD panel using the HD66002 (when using  
the HD61203U as a common driver).  
F C S  
T E S T 2  
s e g 2 4 0  
T E S T 1  
s e g 2 3 9  
s e g 2 3 8  
D I O L , D I O R  
D R  
M
C L 2  
C L 1  
V 2  
V 4  
V 3  
V 1  
F C S  
T E S T 2  
T E S T 1  
D I O L , D I O R  
D R  
M
C L 2  
C L 1  
V 2  
V 4  
V 3  
V 1  
F C S  
T E S T 2  
T E S T 1  
D I O L , D I O R  
D R  
M
C L 2  
C L 1  
s e g 3  
s e g 2  
s e g 1  
V 2  
V 4  
V 3  
V 1  
G N D  
C C  
V
E E  
V
Figure 8 Application Example (Serial-Latch Operating Mode)  
12  
HD66002  
Absolute Maximum Ratings  
Item  
Symbol Ratings  
Unit  
V
Note  
Power supply Logic circuit  
voltage  
VCC  
VEE  
–0.3 to +7.0  
1
Liquid crystal  
VCC – 19.0 to VCC + 0.3  
V
display drive circuit  
Input voltage (1)  
VT1  
VT2  
Topr  
–0.3 to VCC + 0.3  
VEE – 0.3 to VCC + 0.3  
–20 to +75  
V
1 and 2  
1 and 3  
Input voltage (2)  
V
Operating temperature  
Storage temperature  
°C  
°C  
Tstg  
–55 to +125  
Notes: 1. Measured relative to GND (0V).  
2. Applies to CL1, CL2, M, SHL, E, DIOL, DIOR, DR, DL, TEST1, TEST2, and FCS pins.  
3. Applies to V1 to V4 pins.  
4. If the LSI is used beyond its absolute maximum rating, it may be permanently damaged. It  
should always be used within the limits of its electrical characteristics in order to prevent  
malfunction or unreliability.  
13  
HD66002  
Electrical Characteristics  
DC Characteristics (VCC = 2.7 to 5.5V, GND = 0V, VCC – VEE = 6 to 17V, and Ta = –20 to 75 °C,  
unless otherwise stated)  
Item  
Symbol Applicable Pin  
Min.  
Typ. Max.  
Unit Conditions  
Note  
Input high level VIH  
voltage  
CL1, CL2, M, SHL, E,  
DIOL, DIOR, DR, DL,  
FCS, TEST1, and TEST2  
0.8 × VCC  
VCC  
V
VCC = 2.7 to 4.5V  
0.7 × VCC  
VCC = 4.5 to 5.5V  
VCC = 2.7 to 4.5V  
VCC = 4.5 to 5.5V  
IOH = –0.4 mA  
Input low level  
voltage  
VIL  
0
0.2 × VCC  
0.3 × VCC  
Output high  
level voltage  
VOH  
CAR, DIOL, and DIOR  
CAR, DIOL, and DIOR  
Y1 to Y80, and V1 to V4  
VCC – 0.4  
V
V
Output low level VOL  
voltage  
–5  
0.4  
20  
7.5  
5
IOL = 0.4 mA  
Vi-Yj on  
RON1  
RON2  
IIL1  
kION = 50 µA  
VCC – VEE = 6 to 8V  
1
1
resistance  
kION = 100 µA  
VCC – VEE = 8 to 17V  
Input leakage  
current (1)  
CL1, CL2, M, SHL, E,  
DIOL, DIOR, DR, DL,  
FCS, TEST1, and TEST2  
µA VIN = VCC–GND  
Input leakage  
current (2)  
IIL2  
V1 to V4  
–25  
25  
µA VIN = VCC–VEE  
Consumption  
current (1)  
IGND1  
1.0  
mA fCL2 = 2.5 MHz  
fCL1 = 4.48 kHz  
fM = 35 Hz  
2 and 3  
2 and 3  
VCC = 3V  
Consumption  
current (2)  
IEE1  
100  
µA  
VCC – VEE = 17V  
FCS = high  
Consumption  
current (3)  
IGND2  
500  
20  
µA fCL2 = 400 kHz  
2 and 4  
2 and 4  
fCL1 = 1 kHz  
VCC = 3V  
Consumption  
current (4)  
IEE2  
µA  
VCC – VEE = 13V  
FCS = low  
Notes: 1. Indicates the resistance between one pin from Y1 to Y80 and another pin from V pins V1 to V4  
(Figure 9), when a load current is applied to the Y pin; defined under the following conditions:  
V
CC – VEE = 6 to 8V  
V1 and V3 = VCC – 2/5 (VCC – VEE)  
V4 and V2 = VEE + 2/5 (VCC – VEE)  
14  
HD66002  
VCC–VEE = 8 to 17V  
V1 and V3 = VCC – 2/7 (VCC – VEE)  
V4 and V2 = VEE + 2/7 (VCC – VEE)  
V1 and V3 should be near the VCC level, and V4 and V2 should be near the VEE level. All these  
voltage pairs should be separated by less than V, which is the range within which RON, the  
LCD drive circuits’ output impedance, is stable. Note that V depends on power supply voltage  
V
CC – VEE. See Figure 10.  
2. Input and output currents are excluded. When a CMOS input is floating, excess current flows  
from the power supply through to the input circuit. To avoid this, VIH and VIL must be held to  
V
CC and GND levels, respectively.  
3. Applies to serial-latch operation.  
4. Applies to shift register operation.  
RON  
V1  
V3  
V4  
V2  
Y pins (Y1 to Y80)  
One of four points is on.  
Figure 9 RON Resistance  
3.2  
VCC  
V1  
2.4  
V
V
V3  
6
8
(V)  
VCC – VEE  
5.5  
3.2  
V4  
V2  
VEE  
8
17  
(V)  
VCC – VEE  
Figure 10 Relationship between Driver Output Waveform and Level Voltages  
15  
HD66002  
Pin Configuration  
Each pin configuration is shown below.  
VCC  
Applicable pin:  
CL1, CL2, SHL  
Applicable pin:  
DR and DL  
M, E, FCS  
TEST1, and TEST2  
PMOS  
DL  
DR  
NMOS  
Input enable  
GND  
Figure 11 Input Pin Configuration  
V
CC  
PMOS  
PMOS  
NMOS  
NMOS  
Output data  
Applicable pin:  
DIOL and DIOR  
Output enable  
DIOL  
V
CC  
Output data  
PMOS  
PMOS  
NMOS  
NMOS  
GND  
Output enable  
DIOR  
Input enable  
GND  
Figure 12 Input/Output Pin Configuration  
VCC  
Applicable pin:  
CAR  
Applicable pin:  
Y1–Y80  
PMOS  
NMOS  
PMOS  
PMOS  
NMOS  
NMOS  
V1  
V3  
V4  
V2  
VCC  
VCC  
VEE  
VEE  
Yn  
GND  
Figure 13 Output Pin Configuration  
16  
HD66002  
AC Characteristics 1 (In Serial-Latch Operation, FCS = VCC) (VCC = 2.7 to 5.5V, GND = 0V,  
VCC – VEE = 8 to 17V, and Ta = –20 to +75 ° C, unless otherwise stated)  
Item  
Symbol Applicable Pins  
Min.  
400  
150  
150  
100  
100  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
Clock cycle time  
Clock high level width  
Clock low level width  
Clock setup time  
Clock hold time  
tCYC  
tCWH  
tCWL  
tSCL  
tHCL  
tct  
CL2  
CL2 and CL1  
CL2  
CL1 and CL2  
CL1 and CL2  
CL1 and CL2  
CL1 and CL2  
DR, DL and CL2  
DR, DL, and CL2  
E and CL2  
Clock rise and fall time  
Clock phase difference  
Data setup time  
30  
tCL  
100  
80  
tDSU  
tDH  
Data hold time  
100  
200  
Enable setup time  
Output delay time  
M phase difference  
tESU  
tDCAR  
tCM  
CAR, CL2, CL1  
M and CL1  
300  
300  
1
Note: Defined by connecting the load circuit shown in Figure 14.  
Test point  
30 pF  
Figure 14 Load Circuit  
17  
HD66002  
AC Characteristics 2 (In Shift Register Operation, FCS = GND) (VCC = 2.7 to 5.5V, GND = 0V,  
VCC – VEE = 6 to 13V, and Ta = –20 to +75 ° C, unless otherwise stated)  
Item  
Symbol Applicable pins  
Min.  
2.5  
Max.  
Unit  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
Clock cycle time  
Clock high level width  
Clock low level width  
Data setup time  
Data hold time  
tCYC  
tCWH  
tCWL  
tSU  
tDH  
tSL  
CL2  
CL2 and CL1  
CL2  
800  
800  
300  
300  
500  
500  
DIOL and DIOR  
DIOL and DIOR  
CL1and CL2  
CL1and CL2  
DIOL and DIOR  
CL1and CL2  
Clock setup time  
Clock setup time  
Output delay time  
Clock rise and fall time  
1
2
3
tLS  
tpd  
500  
200  
tct  
Notes: 1. Setup time from CL2 fall to CL1 fall.  
2. Setup time from CL1 fall to CL2 fall  
3. Defined by connecting the load circuit shown in Figure 15.  
Test point  
30 pF  
Figure 15 Load Circuit  
18  
HD66002  
tct  
tCWH  
tct  
VIH  
CL1  
VIL  
tCYC  
tCL  
tSCL  
tHCL  
VIH  
CL2  
VIL  
tDSU  
tDH  
tCWH  
tCWL  
tct  
tct  
V
IH  
IL  
DR, DL  
V
VIH  
CL1  
CL2  
VIL  
Last  
data  
tDCAR  
tDCAR  
VOH  
CAR  
E
V
OL  
tESU  
VIL  
V
IH  
IL  
M
V
tCM  
Figure 16 Serial-Latch Operation Timing  
19  
HD66002  
tCYC  
VIH  
VIH  
tCWL  
CL2  
VIL  
tCWH  
tct  
tct  
tDH  
tSU  
tSL  
VIH  
Data in  
VIL  
DIOL and DIOR  
tpd  
Data out  
DIOL and DIOR  
V
OH  
tLS  
V
OL  
tLS  
tct  
VIH  
CL1  
V
IL  
tCWH  
tct  
Figure 17 Shift Register Operation Timing  
20  
HD66002  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straße 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
21  

相关型号:

HCD660AT10MHZ

Sine Output Oscillator, 10MHz Nom
GOLLEDGE

HCD660ATFREQ

Sine Output Oscillator, 5MHz Min, 10MHz Max
GOLLEDGE

HCD660SC10MHZ

Sine Output Oscillator, 10MHz Nom
GOLLEDGE

HCD660SC5MHZ

Sine Output Oscillator, 5MHz Nom
GOLLEDGE

HCD660SCFREQ

Sine Output Oscillator, 5MHz Min, 10MHz Max
GOLLEDGE

HCD660_18

High Performance OCXO with Sine Output and European pin-out
GOLLEDGE

HCD661

OCXO HCMOS Output High Performance
GOLLEDGE
GOLLEDGE

HCD661/DRANFREQ

HCMOS/TTL Output Clock Oscillator, 5MHz Min, 20MHz Max
GOLLEDGE
GOLLEDGE

HCD661/DRCN10.0MHZ

HCMOS/TTL Output Clock Oscillator
GOLLEDGE

HCD661/DRCN20.0MHZ

HCMOS/TTL Output Clock Oscillator
GOLLEDGE