HD66712SA00FS [HITACHI]

Dot-Matrix Liquid Crystal Display Controller/Driver; 点阵式液晶显示控制器/驱动器
HD66712SA00FS
型号: HD66712SA00FS
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Dot-Matrix Liquid Crystal Display Controller/Driver
点阵式液晶显示控制器/驱动器

驱动器 显示控制器
文件: 总88页 (文件大小:659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD66712U  
(Dot-Matrix Liquid Crystal Display Controller/Driver)  
Description  
The HD66712 dot-matrix liquid crystal display controller and driver LSI displays alphanumerics,  
numbers, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control  
of a serial or a 4- or 8-bit microprocessor. Since all the functions such as display RAM, character  
generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally  
provided on one chip, a minimum system can be interfaced with this controller/driver.  
A single HD66712 is capable of displaying a single 24-character line, two 24-character lines, or four 12-  
character lines.  
The HD66712 software is upwardly compatible with the LCDII (HD44780) which allows the user to  
easily replace an LCD-II with an HD66712. In addition, the HD66712 is equipped with functions such as  
segment displays for icon marks, a 4-line display mode, and a horizontal smooth scroll, and thus supports  
various display forms. This achieves various display forms. The HD66712 character generator ROM is  
extended to generate 240 5 × 8 dot characters.  
The low-voltage operation (2.7V) of the HD66712, combined with a low-power mode, is suitable for any  
portable battery-driven product requiring low power consumption.  
Features  
5 × 8 dot matrix possible  
Clock-synchronized serial interface capability; can interface with 4- or 8-bit MPU  
Low-power operation support:  
2.7 to 5.5V (low voltage)  
Wide liquid-crystal voltage range: 2.7 to 11.0V max.  
Booster for liquid crystal voltage  
Two/three times (13V max.)  
High-speed MPU bus interface  
(2MHz at 5-V operation)  
364  
HD66712U  
Extension driver interface  
Character display and independent 60-icon mark display possible  
Horizontal smooth scroll by 6-dot font width display possible  
80 × 8-bit display RAM (80 characters max.)  
9,600-bit character generator ROM  
240 characters (5 × 8 dot)  
64 × 8-bit character generator RAM  
8 characters (5 × 8 dot)  
16 × 8-bit segment icon mark  
96-segment icon mark  
34-common × 60-segment liquid crystal display driver  
Programmable duty cycle  
(See List 1)  
Software upwardly compatible with HD44780  
Wide range of instruction functions:  
Functions compatible with LCD-II: Display clear, cursor home, display on/off, cursor on/off,  
display character blink, cursor shift, display shift  
Additional functions: Icon mark control, 4-line display, horizontal smooth scroll, 6-dot character  
width control, white-black inverting blinking cursor  
Automatic reset circuit that initializes the controller/driver after power on (standard version only)  
Internal oscillator with an external resistor  
Low power consumption  
TCP-128 pin, bare-chip  
List 1 Programmable Duty Cycles  
5-Dot Font Width  
6-Dot Font Width  
Displayed Characters  
Number  
of Lines  
Duty Ratio  
Displayed Characters  
Icons  
Icons  
1
1/17  
One 24-character  
line  
60  
One 20-character  
lines  
60  
2
3
1/33  
1/33  
Two 24-character  
lines  
60  
60  
Two 20-character  
lines  
60  
60  
Four 12-character  
lines  
Four 10-character  
lines  
365  
HD66712U  
Ordering Information  
Type No.  
Package  
CGROM  
HD66712SA00FS  
HD66712SA01FS  
HD66712SA02FS  
HCD66712UA02  
HD66712UA02TA0  
HD66712UA03TA0  
HCD66712UA03  
HCD66712UA03BP  
QFP1420-128 (FP-128)  
QFP1420-128 (FP-128)  
QFP1420-128 (FP-128)  
Chip  
Japanese standard  
Communication  
European font  
Standard TCP-128  
Standard TCP-128  
Chip  
Japanese + European font  
Chip with bump  
366  
HD66712U  
LCD-II Family Comparison  
Item  
HD66702  
HD66710  
HD66712S  
HD66712U  
Power supply voltage  
5V ±10 %  
2.7V to 5.5V  
2.7V to 5.5V  
(standard)  
2.7V to 5.5V  
(low voltage)  
Liquid crystal drive  
voltage  
3.0V to 8.3V  
3.0V to 13.0V  
3.0V to 13.0V  
2.7V to 11.0V  
Maximum display digits  
per chip  
20 characters  
× 2 lines  
16 characters ×  
2 lines/  
24 characters ×  
2 lines/  
8 characters ×  
4 lines  
12 characters ×  
4 lines  
Segment display  
Display duty cycle  
CGROM  
None  
40 segments  
60 segments  
1/17 and 1/33  
1/8, 1/11, and 1/16 1/17 and 1/33  
7,200 bits  
9,600 bits  
9,600 bits  
(160 5 × 7 dot  
characters and 32 characters)  
5 × 10 dot  
(240 5 × 8 dot  
(240 5 × 8 dot  
characters)  
characters)  
CGRAM  
64 bytes  
80 bytes  
None  
100  
64 bytes  
80 bytes  
8 bytes  
40  
64 bytes  
80 bytes  
16 bytes  
60  
DDRAM  
SEGRAM  
Segment signals  
Common signals  
16  
33  
34  
Liquid crystal drive  
waveform  
B
B
B
Bleeder resistor for LCD External  
External  
(adjustable)  
External  
(adjustable)  
power supply  
(adjustable)  
Clock source  
External resistor or External resistor or External resistor or  
external clock  
external clock  
external clock  
Rf oscillation frequency  
(frame frequency)  
320 kHz ±30%  
(70 to 130 Hz for  
1/8 and 1/16 duty  
270 kHz ±30%  
(56 to 103 Hz for  
1/17 duty cycle;  
270 kHz ±30%  
(56 to 103 Hz for  
1/17 duty cycle;  
57 to 106 Hz for  
1/33 duty cycle)  
cycle; 51 to 95 Hz 57 to 106 Hz for  
for 1/11 duty cycle) 1/33 duty cycle)  
Rf resistance  
68 k: 5-V  
operation;  
56 k: (3-V  
operation)  
91 k: 5-V  
operation;  
75 k: 3-V  
operation  
91 k: 5-V  
operation;  
75 k: 3-V  
operation  
130 k: 5-V  
operation  
110 k: 3-V  
operation  
367  
HD66712U  
Item  
HD66702  
HD66710  
HD66712S  
HD66712U  
Liquid crystal voltage  
booster circuit  
None  
2-3 times step-up  
circuit  
2-3 times step-up  
circuit  
Extension driver control Independent  
Used in common  
Independent control  
signal  
control signal  
with a driver output signal  
pin  
Reset function  
Instructions  
Power on automatic Power on automatic Power on automatic  
reset  
reset  
reset or Reset input  
Fully compatible  
with the LCD-II  
Uppercompatible  
with the LCD-II  
Upper compatible  
with the LCD-II  
Number of displayed  
lines  
1 or 2  
1, 2, or 4  
1, 2, or 4  
Low power mode  
Horizontal scroll  
Bus interface  
None  
Available  
Dot unit  
Available  
Dot unit  
Character unit  
4 bits/8 bits  
4 bits/8 bits  
Serial;  
4 bits/8 bits  
CPU bus timing  
1 MHz  
2 MHz: 5-V  
operation;  
1 MHz: 3-V  
operation  
2 MHz: 5-V  
operation;  
1 MHz: 3-V  
operation  
Current consumption  
150 µA (typ)  
150 µA (typ)  
150 µA (typ)  
120 µA (typ)  
100 µA (LP mode, 85 µA (LP mode,  
1/33 duty)  
1/33 duty)  
75 µA (LP mode,  
1/17 duty)  
60 µA (LP mode,  
1/17 duty)  
Package  
LQFP-2020–144  
144-pin bare chip  
QFP-1420-100  
TQFP-1414-100  
100-pin bare chip  
QFP-1420-128  
TCP-128  
128-pin bare chip  
TCP-128  
128-pin bare  
chip  
368  
HD66712U  
HD66712 Block Diagram  
EXT  
OSC1  
OSC2  
CPG  
CL1  
CL2  
M
Reset circuit  
ACL  
Timing generator  
RESET*  
7
Instruction register  
(I R)  
Instruction  
decoder  
COM0–  
COM33  
Display data RAM  
(DDRAM)  
80 × 8 bits  
Common  
signal  
34-bit  
shift  
8
driver  
register  
Address counter  
7
System  
interface  
• Serial  
• 4 bits  
• 8 bits  
RS/CS*  
R/SCLK  
RW/SID  
D
7
8
SEG1–  
SEG60  
60-bit  
shift  
register  
60-bit  
latch  
circuit  
8
8
Data  
register  
(DR)  
Segment  
signal  
driver  
DB4–DB7  
Input/  
output  
buffer  
8
DB3–DB0  
DB0–SOD  
8
8
3
7
Busy  
flag  
LCD drive  
voltage  
selector  
Cursor and  
bling  
controller  
Segment  
RAM  
(SGRAM)  
16 bytes  
Character  
generator RAM  
(CGRAM)  
Character  
generator ROM  
(CGROM)  
64 bytes  
9,600 bytes  
Vci  
C1  
C2  
Booster  
5
5/6  
V5OUT2  
V5OUT3  
Parallel/serial  
converter  
and smooth scroll circuit  
VCC  
GND  
V1  
V2  
V3  
V4  
V5  
369  
HD66712U  
HCD66712  
2
1 128  
101  
Dummy  
3
Dummy  
100  
Chip size (X × Y) : 4.95 × 5.27 mm  
Coordinate : Pad Center  
Y
Origin : Chip Center  
Pad size (X × Y) : 80 × 80 µm  
Bump size (X × Y) : 70 × 70 µm  
Type code  
HD66712  
36  
67  
Dummy  
Dummy  
37  
66  
X
370  
HD66712U  
HCD66712U Pad Coordinate  
Coordinate  
Coordinate  
Y
Coordinate  
Y
Pad  
No. Function  
Pad  
No. Function  
Pad  
No. Function  
X
Y
X
X
1
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
Vcc  
–1960  
2437  
2437  
2293  
2149  
1872  
1728  
1600  
1472  
1344  
1216  
1088  
960  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
TEST  
GND  
–1064  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2426  
–2402  
–2446  
–2446  
–2446  
–2446  
–2446  
–2304  
–2162  
–1856  
–1728  
–1600  
–1472  
–1344  
–1216  
–1088  
–960  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2120  
1960  
1800  
1656  
1512  
1368  
1224  
1080  
936  
704  
832  
2
–2120  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2277  
–2286  
–2286  
–2120  
–1968  
–1832  
–1704  
–1576  
–1448  
–1320  
–1192  
–936  
–792  
–656  
–520  
–384  
–248  
–112  
24  
3
RS/CS  
RW/SiD  
E/SCLK  
DB0/SOD  
DB1  
960  
4
1088  
1216  
1344  
1472  
1600  
1728  
1872  
2149  
2293  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
2437  
–2446  
–2446  
2437  
5
6
7
8
DB2  
9
DB3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
DB4  
160  
DB5  
296  
DB6  
432  
100 SEG15  
101 SEG16  
102 SEG17  
103 SEG18  
104 SEG19  
105 SEG20  
106 SEG21  
107 SEG22  
108 SEG23  
109 SEG24  
110 SEG25  
111 SEG26  
112 SEG27  
113 SEG28  
114 SEG29  
115 SEG30  
116 SEG31  
117 SEG32  
118 SEG33  
119 SEG34  
120 SEG35  
121 SEG36  
122 SEG37  
123 SEG38  
124 SEG39  
125 SEG40  
126 SEG41  
127 SEG42  
128 SEG43  
832  
DB7  
568  
704  
Vci  
704  
576  
C2  
850  
448  
C1  
1001  
1141  
1376  
1640  
1800  
1960  
2120  
2302  
2302  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
2277  
320  
GND  
192  
V5OUT2  
V5OUT3  
V5  
64  
–64  
–192  
–320  
–448  
–576  
–704  
–832  
–960  
V4  
V3  
792  
V2  
648  
V1  
504  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
SEG1  
SEG2  
SEG3  
360  
216  
72  
–1088  
–1216  
–1344  
–1472  
–1600  
–1728  
–1856  
–2158  
–2302  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–2446  
–72  
–216  
–360  
–504  
–648  
–792  
–936  
–832  
–704  
–576  
–1080  
–1224  
–1368  
–1512  
–1656  
–1800  
–2277  
–2286  
2302  
OSC2  
OSC1  
CL1  
–448  
–320  
–192  
CL2  
–64  
D
64  
M
192  
Dummy1  
Dummy2  
Dummy3  
Dummy4  
RESET*  
IM  
320  
448  
EXT  
576  
2277  
371  
HD66712U  
HD66712 Pin Arrangement  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
VCC  
1
2
3
4
5
6
7
8
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
V1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
HD66712S  
(Top view)  
OSC2  
OSC1  
CL1  
V2  
V3  
V4  
372  
HD66712U  
TCP Dimensions  
LCD driver output side  
0.24-mm pitch  
0.65-mm pitch  
I/O/power supply side  
373  
HD66712U  
HCD66712U Pad Arrangement  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
COM9  
3
100 SEG15  
4
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
V1  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
HCD66712U  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
VCC  
(Top view)  
HD66712  
Type code  
OSC2  
V2  
374  
HD66712U  
Pin Functions  
Table 1  
Pin Functional Description  
Number  
of Pins  
Device  
Interfaced with  
Signal  
I/O  
Function  
IM  
1
1
I
Selects interface mode with the MPU;  
Low: Serial mode  
High: 4-bit/8-bit bus mode  
(Bus width is specified by instruction.)  
RS/CS*  
I
I
MPU  
Selects registers during bus mode:  
Low: Instruction register (write);  
Busy flag, address counter (read)  
High: Data register (write/read)  
Acts as chip-select during serial mode:  
Low: Select (access enable)  
High: Not selected (access disable)  
RW/SID  
E/SCLK  
1
MPU  
Selects read/write during bus mode;  
Low: Write  
High: Read  
Inputs serial data during serial mode.  
1
4
I
MPU  
MPU  
Starts data read/write during bus mode;  
Inputs (Receives) serial clock during serial mode.  
DB4 to  
DB7  
I/O  
Four high-order bidirectional tristate data bus pins.  
Used for data transfer between the MPU and the  
HD66712. DB7 can be used as a busy flag. Open  
these pins during serial mode since those signals.  
DB1 to  
DB3  
3
1
I/O  
MPU  
MPU  
Three low order bidirectional tristate data bus pins.  
Used for data transfer between the MPU and the  
HD66712. Open these pins during 4-bit operation or  
serial mode since they are not used.  
DB0/ SOD  
I/O  
/O  
The lowest bidirectional data bit (DB0) during 8-bit bus  
mode. Open these pins during 4-bit mode since they  
are not used.  
Outputs (transfers) serial data during serial mode.  
Open this pin if reading (transfer) is not performed.  
COM0 to  
COM33  
34  
O
LCD  
Common signals; those that are not used become non-  
selected waveforms. At 1/17 duty rate, COM1 to  
COM16 are used for character display, COM0 and  
COM17 for icon display, and COM18 to COM33  
become non-selected waveforms. At 1/33 duty rate,  
COM1 to COM32 are used for character display, and  
COM0 and COM33 for icon display. Because two COM  
signals output the same level simultaneously, apply  
them according to the wiring pattern of the display  
device.  
SEG1 to  
SEG60  
60  
O
LCD  
Segment output signals  
375  
HD66712U  
Table 1  
Pin Functional Description (cont)  
Number  
of Pins  
Device  
Interfaced with  
Signal  
I/O  
Function  
CL1  
1
1
1
1
1
O
Extension driver When EXT = high, outputs the extension driver latch  
pulse.  
CL2  
D
O
O
O
I
Extension driver When EXT = high, outputs the extension driver shift  
clock.  
Extension driver When EXT = high, outputs extension driver data; data  
from the 61st dot on is output.  
M
Extension driver When EXT = high, outputs the extension driver AC  
signal.  
EXT  
When EXT = high, outputs the extension driver  
control signal. When EXT = low, the signal becomes  
tristate and can suppress consumption current.  
V1 to V5  
VCC/GND  
5
Power supply  
Power supply  
Power supply for LCD drive  
VCC –V5 = 11V (max)  
2
2
VCC: +2.7V to +5.5V, GND: 0V  
OSC1/  
OSC2  
Oscillation resistor When crystal oscillation is performed, an external  
clock  
resistor must be connected. When the pin input is an  
external clock, it must be input to OSC1.  
Vci  
1
1
I
Inputs voltage to the booster to generate the liquid  
crystal display drive voltage.  
Vci is reference voltage and power supply for the  
booster.  
Vci = 1.0V to 5.0V VCC  
V5OUT2  
O
V5 pin/ booster  
capacitance  
Voltage input to the Vci pin is boosted twice and  
output. When the voltage is boosted three times, the  
same capacitance as that of C1–C2 should be  
connected here.  
V5OUT3  
C1/C2  
1
2
O
V5 pin  
Voltage input to the Vci pin is boosted three times and  
output.  
Booster  
capacitance  
External capacitance should be connected here when  
using the booster.  
RESET*  
TEST  
1
1
I
I
Reset pin. Initialized to “low.”  
Test pin. Should be wired to ground.  
376  
HD66712U  
Function Description  
System Interface  
The HD66712 has three types of system interfaces: synchronized serial, 4-bit bus, and 8-bit bus. The  
serial interface is selected by the IM-pin, and the 4/8-bit bus interface is selected by the DL bit in the  
instruction register.  
The HD66712 has two 8-bit registers: an instruction register (IR) and a data register (DR).  
The IR stores instruction codes, such as display clear and cursor shift, and address information for the  
display data RAM (DDRAM), the character generator RAM (CGRAM), and the segment RAM  
(SEGRAM). The MPU can only write to IR, and cannot be read from.  
The DR temporarily stores data to be written into DDRAM, CGRAM, or SEGRAM. Data written into the  
DR from the MPU is automatically written into DDRAM, CGRAM, or SEGRAM by an internal  
operation. The DR is also used for data storage when reading data from DDRAM, CGRAM, or  
SEGRAM. When address information is written into the IR, data is read and then stored into the DR from  
DDRAM or CGRAM by an internal operation. Data transfer between the MPU is then completed when  
the MPU reads the DR. After the read, data in DDRAM, CGRAM, or SEGRAM at the next address is  
sent to the DR for the next read from the MPU.  
These two registers can be selected by the registor selector (RS) signal in the 4/8 bit bus interface, and by  
the RS bit in start byte data in synchronized serial interface (Table 2).  
Busy Flag (BF)  
When the busy flag is 1, the HD66712 is in the internal operation mode, and the next instruction will not  
be accepted. When RS = 0 and R/W = 1 (Table 2), the busy flag is output from DB7. The next instruction  
must be written after ensuring that the busy flag is 0.  
Address Counter (AC)  
The address counter (AC) assigns addresses to DDRAM, CGRAM, or SEGRAM. When an address of an  
instruction is written into the IR, the address information is sent from the IR to the AC. Selection of  
DDRAM, CGRAM, and SEGRAM is also determined concurrently by the instruction.  
After writing into (reading from) DDRAM, CGRAM, or SEGRAM, the AC is automatically incremented  
by 1 (decremented by 1). The AC contents are then output to DB0 to DB6 when RS = 0 and R/ = 1  
(Table 2).  
377  
HD66712U  
Table 2  
Resistor Selection  
RS  
0
R/  
0
Operation  
IR write as an internal operation (display clear, etc.)  
Read busy flag (DB7) and address counter (DB0 to DB6)  
DR write as an internal operation (DR to DDRAM, CGRAM, or SEGRAM)  
DR read as an internal operation (DDRAM, CGRAM, or SEGRAM to DR)  
0
1
1
0
1
1
Display Data RAM (DDRAM)  
Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its capacity is 80 ×  
8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used  
as general data RAM.  
The DDRAM address (ADD) is set in the address counter (AC) as a hexadecimal number, as shown in  
Figure 1.  
The relationship between DDRAM addresses and positions on the liquid crystal display is described and  
shown on the following pages for a variety of cases.  
MSB  
LSB  
Example: DDRAM address 4E  
AC AC6 AC5 AC4 AC3 AC2 AC1 AC0  
1
0
0
1
1
1
0
Figure 1 DDRAM Address  
378  
HD66712U  
1-line display (N = 0, and NW = 0)  
Case 1: When there are fewer than 80 display characters, the display begins at the beginning of  
DDRAM. For example, when 24 5-dot font-width characters are displayed using one HD66712,  
the display is generated as shown in Figure 2.  
When a display shift is performed, the DDRAM addresses shift as well as shown in the figure.  
When 20 6-dot font-width characters are displayed using one HD66712, the display is generated as  
shown in Figure 3. Note that COM9 to COM16 begins at address (0A)H in this case 20 characters  
are displayed.  
When a display shift is performed, the DDRAM addresses shift as well as shown in the figure.  
Case 2: Figure 4 shows the case where the EXT pin is fixed high and the HD66712 and the 40-  
output extension driver are used to display 24 6-dot font-width characters. In this case, COM9 to  
COM16 begins at (0A)H.  
When a display shift is performed, the DDRAM addresses shift as well as shown in the figure.  
1
2 3 4 5 6 7 8 9  
10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24  
0C 0D 0E 0F 10 11 12 13 14 15 16 17  
Display position  
COM9 to 16  
DDRAM address  
00 01 02 03 04 05 06 07 08 09 0A 0B  
COM1 to 8  
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24  
0D 0E 0F 10 11 12 13 14 15 16 17 18  
COM9 to 16  
(Left shift display)  
01 02 03 04 05 06 07 08 09 0A 0B 0C  
COM1 to 8  
COM1 to 8  
COM9 to 16  
(Right shift display)  
4F 00 01 02 03 04 05 06 07 08 09 0A  
0B 0C 0D 0E 0F 10 11 12 13 14 15 16  
Figure 2 1-Line by 24-Character Display (5-Dot Font Width)  
1
2 3 4 5 6 7 8 9  
10  
11 12 13 14 15 16 17 18 19 20  
0A 0B 0C 0D 0E 0F 10 11 12 13  
Display position  
COM9 to 16  
DDRAM address  
00 01 02 03 04 05 06 07 08 09  
COM1 to 8  
1
2
3
4
5
6
7
8
9
10  
11 12 13 14 15 16 17 18 19 20  
0B 0C 0D 0E 0F 10 11 12 13 14  
COM9 to 16  
(Left shift display)  
01 02 03 04 05 06 07 08 09 0A  
COM1 to 8  
COM1 to 8  
COM9 to 16  
(Right shift display)  
4F 00 01 02 03 04 05 06 07 08  
09 0A 0B 0C 0D 0E 0F 10 11 12  
Figure 3 1-Line by 20-Character Display (6-Dot Font Width)  
379  
HD66712U  
1
2
3
4
5
6
7
8
9 10 11121314151617181920 21222324  
Display position  
COM9 to 16  
DDRAM address  
00 01 02 03 04 05 06 07 08 09  
0A 0B 0C 0D 0E 0F 10 11 12 13  
14 15 16 17  
COM1 to 8  
HD66712  
SEG1 to SEG60  
HD66712  
SEG1 to SEG60  
Extension driver  
SEG1 to SEG24  
1
2 3 4 5 6 7 8 9 10 11121314151617181920 21222324  
COM9 to 16  
(Left shift display)  
01 02 03 04 05 06 07 08 09 0A  
0B 0C 0D 0E 0F 10 11 12 13 14  
15 16 17 18  
COM1 to 8  
COM1 to 8  
COM9 to 16  
(Right shift display)  
4F 00 01 02 03 04 05 06 07 08  
09 0A 0B 0C 0D 0E 0F 10 11 12  
13 14 15 16  
Figure 4 1-Line by 24-Character Display (6-Dot Font Width)  
380  
HD66712U  
2-line display (N = 1, and NW = 0)  
Case 1: The first line is displayed from COM1 to COM16, and the second line is displayed from  
COM17 to COM32. Note that the last address of the first line and the first address of the second  
line are not consecutive. Figure 5 shows an example where a 5-dot font-width 24 × 2-line display  
is performed using one HD66712. Here, COM9 to COM16 begins at (0C)H, and COM25 to  
COM32 at (4C)H. When a display shift is performed, the DDRAM addresses shift as shown.  
Figure 6 shows an example where a 6-dot font-width 20 × 2-line display is performed using one  
HD66712. COM9 to COM16 begins at (0A)H, and COM25 to COM32 at (4A)H.  
1
2 3 4 5 6 7 8 9  
10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24  
0C 0D 0E 0F 10 11 12 13 14 15 16 17  
Display position  
COM1 to  
COM8  
00 01 02 03 04 05 06 07 08 09 0A 0B  
COM9 to COM16  
COM17 to  
COM24  
40 41 42 43 44 45 46 47 48 49 4A 4B  
4C 4D 4E 4F 50 51 52 53 54 55 56 57  
COM25 to COM32  
DDRAM address  
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24  
0D 0E 0F 10 11 12 13 14 15 16 17 18  
COM9 to  
COM16  
COM1 to  
COM8  
01 02 03 04 05 06 07 08 09 0A 0B 0C  
(Left shift  
display)  
COM25 to  
COM32  
COM17 to  
COM24  
41 42 43 44 45 46 47 48 49 4A 4B 4C  
4D 4E 4F 50 51 52 53 54 55 56 57 58  
COM9 to  
COM16  
COM1 to  
COM8  
27 00 01 02 03 04 05 06 07 08 09 0A  
67 40 41 42 43 44 45 46 47 48 49 4A  
0B 0C 0D 0E 0F 10 11 12 13 14 15 16  
4B 4C 4D 4E 4F 50 51 52 53 54 55 56  
(Right shift  
display)  
COM25 to  
COM32  
COM17 to  
COM24  
Figure 5 2-Line by 24-Character Display (5-Dot Font Width)  
1
2 3 4 5 6 7 8 9  
10  
11 12 13 14 15 16 17 18 19 20  
0A 0B 0C 0D 0E 0F 10 11 12 13  
Display position  
COM1 to  
COM8  
00 01 02 03 04 05 06 07 08 09  
COM9 to COM16  
COM17 to  
COM24  
40 41 42 43 44 45 46 47 48 49  
4A 4B 4C 4D 4E 4F 50 51 52 53  
COM25 to COM32  
DDRAM address  
Figure 6 2-Line by 20-Character Display (6-Dot Font Width)  
381  
HD66712U  
Case 2: Figure 7 shows the case where the EXT pin is fixed high and the HD66712 and the 40-  
output extension driver are used to extend the number of display characters to 32 5-dot font-width  
characters.  
In this case, COM9 to COM16 begins at (0C)H, and COM25 to COM32 at (4C)H.  
When a display shift is performed, the DDRAM addresses shift as shown.  
Display position  
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24  
0C 0D 0E 0F 10 11 12 13 14 15 16 17  
25 26 27 28 29 30 31 32  
18 19 1A 1B 1C 1D 1E 1F  
COM1 to  
COM8  
00 01 02 03 04 05 06 07 08 09 0A 0B  
COM9 to COM16  
COM17 to  
COM24  
40 41 42 43 44 45 46 47 48 49 4A 4B  
4C 4D 4E 4F 50 51 52 53 54 55 56 57  
58 59 5A 5B 5C 5D 5E 5F  
COM25 to COM32  
DDRAM address  
HD66712  
SEG1–SEG60  
HD66712  
SEG1–SEG60  
Extension driver  
Seg1–Seg40  
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15 16 17 18 19 20 21 22 23 24  
0D 0E 0F 10 11 12 13 14 15 16 17 18  
25 26 27 28 29 30 31 32  
19 1A 1B 1C 1D 1E 1F 20  
(Left shift display)  
COM9 to COM16  
COM1 to  
COM8  
01 02 03 04 05 06 07 08 09 0A 0B 0C  
COM17 to  
COM24  
41 42 43 44 45 46 47 48 49 4A 4B 4C  
4D 4E 4F 50 51 52 53 54 55 56 57 58  
59 5A 5B 5C 5D 5E 5F 60  
COM25 to COM32  
(Right shift display)  
COM9 to COM16  
COM1 to  
COM8  
27 00 01 02 03 04 05 06 07 08 09 0A  
67 40 41 42 43 44 45 46 47 48 49 4A  
0B 0C 0D 0E 0F 10 11 12 13 14 15 16  
4B 4C 4D 4E 4F 50 51 52 53 54 55 56  
17 18 19 1A 1B 1C 1D 1E  
57 58 59 5A 5B 5C 5D 5E  
COM17 to  
COM24  
COM25 to COM32  
Figure 7 2-Line by 32 Character Display (5-Dot Font Width)  
382  
HD66712U  
4-line display (NW = 1)  
Case 1: The first line is displayed from COM1 to COM8, the second line is displayed from COM9  
to COM16, the third line is displayed from COM17 to COM24, and the fourth line is displayed  
from COM25 to COM32.  
Note that the DDRAM addresses of each line are not consecutive. Figure 8 shows an example  
where a 12 × 4-line display is performed using one HD66712.  
When a display shift is performed, the DDRAM addresses shift as shown.  
1
2 3 4 5 6 7 8 9 10 11 12  
Display position  
DDRAM address  
00 01 02 03 04 05 06 07 08 09 0A 0B  
20 21 22 23 24 25 26 27 28 29 2A 2B  
40 41 42 43 44 45 46 47 48 49 4A 4B  
60 61 62 63 64 65 66 67 68 69 6A 6B  
COM1 to 8  
COM9 to 16  
COM17 to 24  
COM25 to 32  
(Left shift display)  
COM1 to 8  
(Right shift display)  
1
2 3 4 5 6 7 8 9 10 11 12  
1
2 3 4 5 6 7 8 9 10 11 12  
01 02 03 04 05 06 07 08 09 0A 0B 0C  
21 22 23 24 25 26 27 28 29 2A 2B 2C  
41 42 43 44 45 46 47 48 49 4A 4B 4C  
61 62 63 64 65 66 67 68 69 6A 6B 6C  
13 00 01 02 03 04 05 06 07 08 09 0A  
33  
20 21 22 23 24 25 26 27 28 29 2A  
COM9 to 16  
53 40 41 42 43 44 45 46 47 48 49 4A  
73 60 61 62 63 64 65 66 67 68 69 6A  
COM17 to 24  
COM25 to 32  
Figure 8 4-Line Display  
383  
HD66712U  
Case 2: Figure 9 shows the case where the EXT pin is fixed high and the HD66712 and the 40-  
output extension driver are used to extend the number of display characters.  
When a display shift is performed, the DDRAM addresses shift as shown.  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20  
Display position  
DDRAM address  
COM1 to 8  
COM9 to 16  
COM17 to 24  
COM25 to 32  
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13  
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33  
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53  
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73  
HD66712  
Extension driver  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 00  
21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 20  
41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 40  
13 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12  
33 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32  
53 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52  
73 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72  
61 62 63 64 65  
67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 60  
66  
(Left shift display)  
(Right shift display)  
Figure 9 4-Line by 20-Character Display  
384  
HD66712U  
Character Generator ROM (CGROM)  
The character generator ROM generates 5 × 8 dot character patterns from 8-bit character codes (Table 3  
to 6). It can generate 240 5 × 8 dot character patterns. User-defined character patterns are also available  
using a mask-programmed ROM (see “Modifying Character Patterns.”)  
Character Generator RAM (CGRAM)  
The character generator RAM allows the user to redefine the character patterns. In the case of 5 × 8  
characters, up to eight may be redefined.  
Write the character codes at the addresses shown as the left column of Table 3 to 6 to show the character  
patterns stored in CGRAM.  
See Table 7 for the relationship between CGRAM addresses and data and display patterns.  
Segment RAM (SEGRAM)  
The segment RAM (SEGRAM) is used to enable control of segments such as an icon and a mark by the  
user program.  
For a 1-line display, SEGRAM is read from the COM0 and the COM17 output, and for 2- or 4-line  
displays, it is read from the COM0 and the COM33 output, to perform 60-segment display (80-segment  
display when using the extension driver).  
As shown in Table 8, bits in SEGRAM corresponding to segments to be displayed are directly set by the  
MPU, regardless of the contents of DDRAM and CGRAM.  
SEGRAM data is stored in eight bits. The lower six bits control the display of each segment, and the  
upper two bits control segment blinking.  
Timing Generation Circuit  
The timing generation circuit generates timing signals for the operation of internal circuits such as  
DDRAM, CGROM, CGRAM, and SEGRAM. RAM read timing for display and internal operation timing  
by MPU access are generated separately to avoid interfering with each other. Therefore, when writing  
data to DDRAM, for example, there will be no undesirable interferences, such as flickering, in areas  
other than the display area.  
385  
HD66712U  
Liquid Crystal Display Driver Circuit  
The liquid crystal display driver circuit consists of 34 common signal drivers and 60 segment signal  
drivers. When the character font and number of lines are selected by a program, the required common  
signal drivers automatically output drive waveforms, while the other common signal drivers continue to  
output non-selection waveforms.  
Character pattern data is sent serially through a 60-bit shift register and latched when all needed data has  
arrived. The latched data then enables the driver to generate drive waveform outputs.  
Sending serial data always starts at the display data character pattern corresponding to the last address of  
the display data RAM (DDRAM).  
Since serial data is latched when the display data character pattern corresponding to the starting address  
enters the internal shift register, the HD66712 drives from the head display.  
Cursor/Blink Control Circuit  
The cursor/blink (or white-black inversion) control is used to produce a cursor or a flashing area on the  
display at a position corresponding to the location in stored in the address counter (AC).  
For example (Figure 10), when the address counter is (08)H, a cursor is displayed at a position  
corresponding to DDRAM address (08)H.  
Scroll Control Circuit  
The scroll control circuit is used to perform a smooth-scroll in the unit of dot. When the number of  
characters to be displayed is greater than that possible at one time on the liquid crystal module, this  
horizontal smooth scroll can be used to display all characters.  
AC = (08)16  
Display position  
DDRAM address  
1
2
3
4
5
6
7
8
9 10 11  
00 01 02 03 04 05 06 07 08 09 0A  
Cursor position  
Figure 10 Cursor/Blink Display Example  
386  
HD66712U  
Table 3  
Relationship between Character Codes and Character Patterns (ROM Code: A00)  
Upper  
Bits  
Lower  
Bits  
0001  
0000  
0010 0011 0100 0101 0110 0111 1000 1001  
1010 1011 1100 1101 1110 1111  
CG  
RAM  
(1)  
xxxx0000  
xxxx0001  
xxxx0010  
xxxx0011  
xxxx0100  
xxxx0101  
xxxx0110  
xxxx0111  
xxxx1000  
xxxx1001  
xxxx1010  
xxxx1011  
xxxx1100  
xxxx1101  
xxxx1110  
xxxx1111  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
CG  
RAM  
(1)  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
387  
HD66712U  
Table 4  
Relationship between Character Codes and Character Pattern (ROM Code: A01)  
Upper  
Bits  
Lower  
Bits  
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
CG  
RAM  
(1)  
xxxx0000  
xxxx0001  
xxxx0010  
xxxx0011  
xxxx0100  
xxxx0101  
xxxx0110  
xxxx0111  
xxxx1000  
xxxx1001  
xxxx1010  
xxxx1011  
xxxx1100  
xxxx1101  
xxxx1110  
xxxx1111  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
CG  
RAM  
(1)  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
388  
HD66712U  
Table 5  
Relationship between Character Codes and Character Patterns (ROM Code: A02)  
Upper  
Bits  
Lower  
Bits  
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
CG  
RAM  
(1)  
xxxx0000  
xxxx0001  
xxxx0010  
xxxx0011  
xxxx0100  
xxxx0101  
xxxx0110  
xxxx0111  
xxxx1000  
xxxx1001  
xxxx1010  
xxxx1011  
xxxx1100  
xxxx1101  
xxxx1110  
xxxx1111  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
CG  
RAM  
(1)  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
Note: The character codes of the characters enclosed in the bold frame are the same as those of the first  
edition of the ISO8859 and the character code compatible.  
389  
HD66712U  
Table 6  
Relationship between Character Codes and Character Pattern (ROM Code: A03)  
Upper  
Bits  
Lower  
Bits  
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
CG  
RAM  
(1)  
xxxx0000  
xxxx0001  
xxxx0010  
xxxx0011  
xxxx0100  
xxxx0101  
xxxx0110  
xxxx0111  
xxxx1000  
xxxx1001  
xxxx1010  
xxxx1011  
xxxx1100  
xxxx1101  
xxxx1110  
xxxx1111  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
CG  
RAM  
(1)  
CG  
RAM  
(2)  
CG  
RAM  
(3)  
CG  
RAM  
(4)  
CG  
RAM  
(5)  
CG  
RAM  
(6)  
CG  
RAM  
(7)  
CG  
RAM  
(8)  
390  
HD66712U  
Table 7  
Example of Relationships between Character Code (DDRAM) and Character  
Pattern(CGRAM Data)  
a) When character pattern is 5 × 8 dots  
Character code (DDRAM data)  
D7 D6 D5 D4 D3 D2 D1 D0  
CGRAM address  
CGRAM data  
MSB  
LSB  
A5 A4 A3 A2 A1 A0 O7 O6 O5 O4 O3 O2 O1 O0  
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
*
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(1)  
0
0
0
0
*
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
*
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(8)  
a) When character pattern is 6 × 8 dots  
Character code (DDRAM data)  
CGRAM address  
CGRAM data  
MSB  
LSB  
D7 D6 D5 D4 D3 D2 D1 D0  
A5 A4 A3 A2 A1 A0 O7 O6 O5 O4 O3 O2 O1 O0  
*
*
0 0 0 0 * 0 0 0  
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(1)  
0
0
0
0
*
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
*
*
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
0
0
Character  
pattern  
(8)  
391  
HD66712U  
Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).  
2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the  
cursor position and its display is formed by a logical OR with the cursor.  
3. The character data is stored with the rightmost character element in bit 0, as shown in the  
figure above. Characters of 5 dots in width (FW = 0) are stored in bits 0 to 4, and characters of  
6 dots in width (FW = 1) are stored in bits 0 to 5.  
4. When the upper four bits (bits 7 to 4) of the character code are 0, CGRAM is selected.  
Bit 3 of the character code is invalid (*). Therefore, for example, the character codes (00)H and  
(08)H correspond to the same CGRAM address.  
5. A set bit in the CGRAM data corresponds to display selection, and 0 to non-selection.  
6. When the BE bit of the function set register is 1, pattern blinking control of the lower six bits is  
controlled using the upper two bits (bits 7 and 6) in CGRAM.  
When bit 7 is 1, of the lower six bits, only those which are set are blinked on the display.  
When bit 6 is 1, a bit 4 pattern can be blinked as for a 5-dot font width, and a bit 5 pattern  
can be blinked as for a 6-dot font width.  
*
Indicates no effect.  
392  
HD66712U  
Table 8  
Relationship between SEGRAM Addresses and Display Patterns  
SEGRAM data  
SEGRAM  
address  
a) 5-dot font width  
D7 D6 D5 D4 D3 D2 D1 D0  
S1 S2 S3 S4 S5  
b) 6-dot font width  
A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
B1 B0 S1 S2 S3 S4 S5 S6  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
B1 B0  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
S6 S7 S8 S9 S10 B1 B0 S7 S8 S9 S10 S11 S12  
S11 S12 S13 S14 S15 B1 B0 S13 S14 S15 S16 S17 S18  
S16 S17 S18 S19 S20 B1 B0 S19 S20 S21 S22 S23 S24  
S21 S22 S23 S24 S25 B1 B0 S25 S26 S27 S28 S29 S30  
S26 S27 S28 S29 S30 B1 B0 S31 S32 S33 S34 S35 S36  
S31 S32 S33 S34 S35 B1 B0 S37 S38 S39 S40 S41 S42  
S36 S37 S38 S39 S40 B1  
S41 S42 S43 S44 S45 B1  
S46 S47 S48 S49 S50 B1  
S51 S52 S53 S54 S55 B1  
S56 S57 S58 S59 S60 B1  
S61 S62 S63 S64 S65 B1  
S66 S67 S68 S69 S70 B1  
S71 S72 S73 S74 S75 B1  
S76 S77 S78 S79 S80 B1  
B0  
B0  
B0  
B0  
B0  
B0  
B0  
B0  
B0  
S43 S44 S45 S46 S47 S48  
S49 S50 S51 S52 S53 S54  
S55 S56 S57 S58 S59 S60  
S61 S62 S63 S64 S65 S66  
S67 S68 S69 S70 S71 S72  
S73 S74 S75 S76 S77 S78  
S79 S80 S81 S82 S83 S84  
S85 S86 S87 S88 S89 S90  
S91 S92 S93 S94 S95 S96  
Pattern on/off  
Pattern on/off  
Blinking control  
Blinking control  
Notes: 1. Data set to SEGRAM is output when COM0 and COM17 are selected, as for a 1-line display,  
and output when COM0 and COM33 are selected, as for a 2-line or a 4-line display. COM0  
and COM17 for a 1-line display and COM0 and COM33 for a 2-line or a 4-line display are the  
same signals.  
2. S1 to S96 are pin numbers of the segment output driver. S1 is positioned to the left of the  
display. When the HD66712 is used by one chip, segments from S1 to S60 are displayed. An  
extension driver displays the segments after S61.  
3. After S80 output at 5-dot font and S96 output at 6-dot font, S1 output is repeated again.  
4. As for a 5-dot font width, lower five bits (D4 to D0) are display on.off information of each  
segment. For a 6-dot character width, the lower six bits (D5 to D0) are the display information  
for each segment.  
5. When the BE bit of the function set register is 1, pattern blinking of the lower six bits is  
controlled using the upper two bits (bits 7 and 6) in SEGRAM.  
When bit 7 is 1, only a bit set to “1” of the lower six bits is blinked on the display.  
When bit 6 is 1, only a bit 4 pattern can be blinked as for a 5-dot font width, and only a bit 5  
pattern can be blinked as for 6-dot font width.  
6. Bit 5 (D5) is invalid for a 5-dot font width.  
7. Set bits in the SEGRAM data correspond to display selection, and zeros to non-selection.  
393  
HD66712U  
i) 5-dot font width (FW = 0)  
S65  
S60  
S10  
S5  
S1  
S2  
S3  
S6  
S7  
S8  
S56 S57 S58  
S61 S62 S63  
S9  
S4  
S59  
S64  
Displayed by HD66712  
Displayed by extension driver  
ii) 6-dot font width (FW = 1)  
S59  
S65  
S11  
S5  
S1  
S2  
S3  
S6  
S7  
S8  
S9  
S12  
S55 S56 S57  
S60 S61 S62 S63  
S66  
S4  
S10  
S58  
S64  
Displayed by HD66712  
Displayed by extension driver  
Figure 11 Correspondence between SEGRAM and Segment Display  
394  
HD66712U  
Modifying Character Patterns  
Character pattern development procedure  
The following operations correspond to the numbers listed in Figure 12:  
a. Determine the correspondence between character codes and character patterns.  
b. Create a listing indicating the correspondence between EPROM addresses and data.  
c. Program the character patterns into an EPROM.  
d. Send the EPROM to Hitachi.  
e. Computer processing of the EPROM is performed at Hitachi to create a character pattern listing,  
which is sent to the user.  
f. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and  
samples are sent to the user for evaluation. When it is confirmed by the user that the character  
patterns are correctly written, mass production of the LSI will proceed at Hitachi.  
395  
HD66712U  
Hitachi  
User  
Start  
Computer  
processing  
Determine  
character patterns  
1
2
3
4
Create character  
pattern listing  
Create EPROM  
address data listing  
5
Evaluate  
character  
patterns  
Write EPROM  
EPROM Hitachi  
No  
OK?  
Yes  
Art work  
M/T  
Masking  
Trial  
Sample  
Sample  
evaluation  
6
No  
OK?  
Yes  
Mass  
production  
Figure 12 Character Pattern Development Procedure  
396  
HD66712U  
Programming Character Patterns  
This section explains the correspondence between addresses and data used to program character patterns  
in EPROM.  
Programming to EPROM  
The HD66712 character generator ROM can generate 240 5 × 8 dot character patterns. Table 9 shows  
correspondence between the EPROM address data and the character pattern.  
Handling Unused Character Patterns  
1. EPROM data outside the character pattern area: This is ignored by the character generator ROM for  
display operation so any data is acceptable.  
2. EPROM data in CGRAM area: Always fill with zeros.  
3. Treatment of unused user patterns in the HD66712 EPROM: According to the user application, these  
are handled in either of two ways:  
a
When unused character patterns are not programmed: If an unused character code is written into  
DDRAM, all its dots are lit, because the EPROM is filled with 1s after it is erased.  
b
When unused character patterns are programmed as 0s: Nothing is displayed even if unused  
character codes are written into DDRAM. (This is equivalent to a space.)  
Table 9  
Example of Correspondence between EPROM Address Data and Character Pattern  
(5 × 8 Dots)  
EPROM Address  
Data  
O4 O3 O2 O1 O0  
MSB  
LSB  
A3 A2 A1 A0  
0
A11 A10A9 A8 A7 A6 A5 A4  
0
1
0
1
1
0
0
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
Character code  
Line position  
“0”  
Notes: 1. EPROM addresses A11 to A4 correspond to a character code.  
2. EPROM addresses A2 to A0 specify the line position of the character pattern. EPROM address  
A3 should be set to “0.”  
3. EPROM data O4 to O0 correspond to character pattern data.  
4. Areas which are lit (indicated by shading) are stored as “1,” and unlit areas as “0.”  
5. The eighth line is also stored in the CGROM, and should also be programmed. If the eighth line  
is used for a cursor, this data should all be set to zero.  
6. EPROM data bits 07 to 05 are invalid. 0 should be written in all bits.  
397  
HD66712U  
Reset Function  
Initializing by Internal Reset Circuit  
An internal reset circuit automatically initializes the HD66712 when the power is turned on. The  
following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state  
until the initialization ends (BF = 1). The busy state lasts for 15 ms after VCC rises to 4.5V or 40 ms after  
the VCC rises to 2.7V.  
1. Display clear:  
(20)H to all DDRAM  
2. Set functions:  
DL = 1: 8-bit interface data  
N = 1: 2-line display  
RE = 0: Extension register write disable  
BE = 0: CGRAM/SEGRAM blink off  
LP = 0: Not in low power mode  
3. Control display on/off:  
D = 0: Display off  
C = 0: Cursor off  
B = 0: Blinking off  
4. Set entry mode:  
I/D = 1: Increment by 1  
S = 0: No shift  
5. Set extension function:  
FW = 0: 5-dot character width  
B/W = 0: Normal cursor (eighth line)  
NW = 0: 1- or 2-line display (depending on N)  
6. Enable scroll:  
HSE = 0000: Scroll unable  
7. Set scroll amount:  
HDS = 000000: Not scroll  
Note: If the electrical characteristics conditions listed under the Table Power Supply Conditions Using  
Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail  
to initialize the HD66712.  
Initializing by Hardware Reset Input  
The HD66712 also has a reset input pin: RESET*. If this pin is made low during operation, an internal  
reset and initialization is performed. This pin is ignored, however, during the internal reset period at  
power-on.  
398  
HD66712U  
Interfacing to the MPU  
The HD66712 can send data in either two 4-bit operations or one 8-bit operation, thus allowing  
interfacing with 4- or 8-bit MPUs.  
For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3  
are disabled. The data transfer between the HD66712 and the MPU is completed after the 4-bit data  
has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit  
operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to  
DB3).  
The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two  
more 4-bit operations then transfer the busy flag and address counter data.  
For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.  
When the IM pin is low, the HD66712 uses a serial interface. See “Transferring Serial Data.”  
RS  
R/W  
E
DB7  
DB6  
DB5  
DB4  
IR7  
IR6  
IR5  
IR4  
IR3  
IR2  
IR1  
IR0  
BF  
AC3  
AC2  
AC1  
AC0  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
AC6  
AC5  
AC4  
Instruction register (IR)  
write  
Busy flag (BF) and  
address counter (AC)  
read  
Data register (DR)  
read  
Figure 13 4-Bit Transfer Example  
399  
HD66712U  
Transferring Serial Data  
When the IM pin (interface mode) is low, the HD66712 enters serial interface mode. A three-line clock-  
synchronous transfer method is used. The HD66712 receives serial input data (SID) and transmits serial  
output data (SOD) by synchronizing with a transfer clock (SCLK) sent from the master side.  
When the HD66712 interfaces with several chips, chip select pin (CS*) must be used. The transfer clock  
(SCLK) input is activated by making chip select (CS*) low. In addition, the transfer counter of the  
HD66712 can be reset and serial transfer synchronized by making chip select (CS*) high.  
Here, since the data which was being sent at reset is cleared, restart the transfer from the first bit of this  
data. In the case of a minimum 1 to 1 transfer system with the HD66712 used as a receiver only, an  
interface can be established by the transfer clock (SCLK) and serial input data (SID). In this case, chip  
select (CS*) should be fixed to low.  
The transfer clock (SCLK) is independent from operational clock (CLK) of the HD66712. However,  
when several instructions are continuously transferred, the instruction execution time determined by the  
operational clock (CLK) (see continuous transfer) must be considered since the HD66712 does not have  
an internal transmit/receive buffer.  
To begin with, transfer the start byte. By receiving five consecutive bits (synchronizing bit string) at the  
beginning of the start byte, the transfer counter of the HD66712 is reset and serial transfer is  
synchronized. The 2 bits following the synchronizing bit string (5 bits) specify transfer direction (R/  
bit) and register select (RS bit). Be sure to transfer 0 in the 8th bit.  
After receiving the start byte, instructions are received and the data/busy flag is transmitted. When the  
transfer direction and register select remain the same, data can be continuously transmitted or received.  
The transfer protocol is described in detail below.  
Receiving (write)  
After receiving the start synchronization bits, the R/ bit (= 0), and the RS bit with the start byte, an  
8-bit instruction is received in 2 bytes: the lower 4 bits of the instruction are placed in the LSB of the  
first byte, and the higher 4 bits of the instruction are placed in the LSB of the second byte. Be sure to  
transfer 0 in the following 4 bits of each byte. When instructions are continuously received with R/  
bit and RS bit unchanged, continuous transfer is possible (see “Continuous Transfer” below).  
400  
HD66712U  
a) Basic transfer serial data input (receive)  
CS*  
(input)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
SCLK  
(input)  
SID  
(input)  
1
1
1
1
1
R/W RS  
0
D0 D1 D2 D3  
0
0
0
0
D4 D5 D6 D7  
0
0
0
0
Synchronizing  
bit string  
Lower  
data  
Upper  
data  
1st byte  
2nd byte  
Starting byte  
Instruction  
b) Basic transfer of serial data output (transmit)  
CS*  
(input)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCLK  
(input)  
SID  
(input)  
0
0
0
0
0
0
0
0
0
1
1
1
1
1 R/W RS  
SOD  
(output)  
D0 D1 D2 D3 D4 D5 D6 D7  
Synchronizing  
bit string  
Lower  
data  
Upper  
data  
Starting byte  
Busy flag/data read  
Figure 14 Basic Procedure for Transferring Serial Data  
401  
HD66712U  
Transmitting (read)  
After receiving the start synchronization bits, the R/ bit (= 1), and the RS bit with the start byte, 8-  
bit read data is transmitted in the same way as receiving. When read data is continuously transmitted  
with R/ bit and RS bit unchanged, continuous transfer is possible (see “Continuous Transfer”  
below).  
Even at the time of the transmission (the data output), since the HD66712 monitors the start  
synchronization bit string (“11111”) by the SID input, the HD66712 receives the R/W bit and RS bit  
after detecting the start synchronization. Therefore, in the case of a continuous transfer, fix the SID  
input “0.”  
Continuous transfer  
When instructions are continuously received with the R/ bit and RS bit unchanged, continuous  
receive is possible without inserting a start byte between instructions.  
After receiving the last bit (the 8th bit in the 2nd byte) of an instruction, the system begins to execute  
it.  
To execute the next instruction, the instruction execution time of the HD66712 must be considered. If  
the last bit (the 8th bit in the 2nd byte) of the next instruction is received during execution of the  
previous instruction, the instruction will be ignored.  
In addition, if the next unit of data is read before read execution of previous data is completed for  
busy flag/address counter/RAM data, normal data is not sent. To transfer data normally, the busy flag  
must be checked. However, it is possible to transfer without reading the busy flag if wiring for  
transmission (SOD pin) needs to be reduced or if the burden of polling on the MPU needs to be  
removed. In this case, insert a transfer wait so that the current instruction first completes execution  
during instruction transfer.  
402  
HD66712U  
i) Continuous data write by boring processing  
SCLK  
(input)  
Instruction (1)  
1st byte 2nd byte  
Instruction (2)  
1st byte 2nd byte  
Start  
byte  
Start  
byte  
Start  
byte  
SID  
(input)  
SOD  
(output)  
Busy  
read  
Instruction (1)  
Execution  
time  
Instruction waiting time (not busy state)  
ii) Continuous data write by CPU wait insert  
Wait  
Wait  
SCLK  
(input)  
Instruction (1)  
1st byte 2nd byte  
Instruction (2)  
1st byte 2nd byte  
Instruction (1)  
Execution time  
Instruction (3)  
Start  
byte  
SID  
(input)  
1st byte 2nd byte  
Instruction (2)  
Execution time  
Instruction (3)  
Execution time  
iii) Continuous data read by CPU wait insert  
Wait  
Wait  
SCLK  
(input)  
Start  
byte  
SID  
(input)  
SOD  
(output)  
Data  
read (1)  
Data  
read (2)  
Instruction (1)  
Execution time  
Instruction (2)  
Execution time  
Figure 15 Procedure for Continuous Data Transfer  
403  
HD66712U  
Instructions  
Outline  
Only the instruction register (IR) and the data register (DR) of the HD66712 can be controlled by the  
MPU. Before starting internal operation of the HD66712, control information is temporarily stored in  
these registers to allow interfacing with various MPUs, which operate at different speeds, or various  
peripheral control devices. The internal operation of the HD66712 is determined by signals sent from the  
MPU. These signals, which include register selection (RS), read/write (R/ ), and the data bus (DB0 to  
DB7), make up the HD66712 instructions (Table 12). There are four categories of instructions that:  
Designate HD66712 functions, such as display format, data length, etc.  
Set internal RAM addresses  
Perform data transfer with internal RAM  
Perform miscellaneous functions  
Normally, instructions that perform data transfer with internal RAM are used the most. However, auto-  
incrementation by 1 (or auto-decrementation by 1) of internal HD66712 RAM addresses after each data  
write can lighten the program load of the MPU. Since the display shift instruction (Table 10) can perform  
concurrently with display data write, the user can minimize system development time with maximum  
programming efficiency.  
When an instruction is being executed for internal operation, no instruction other than the busy  
flag/address read instruction can be executed.  
Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0  
before sending another instruction from the MPU.  
Note: Be sure the HD66712 is not in the busy state (BF = 1) before sending an instruction from the  
MPU to the HD66712. If an instruction is sent without checking the busy flag, the time between  
the first instruction and next instruction will take much longer than the instruction time itself.  
Refer to Table 12 for the list of each instruction execution time.  
404  
HD66712U  
Instruction Description  
Clear Display  
Clear display writes space code (20)H (character pattern for character code (20)H must be a blank  
pattern) into all DDRAM addresses. It then sets DDRAM address 0 into the address counter, and returns  
the display to its original status if it was shifted. In other words, the display disappears and the cursor or  
blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1  
(increment mode) in entry mode. S of entry mode does not change.  
Return Home  
Return home sets DDRAM address 0 into the address counter, and returns the display to its original status  
if it was shifted. The DDRAM contents do not change.  
The cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). In  
addition, flicker may occur in a moment at the time of this instruction issue.  
Entry Mode Set  
I/D: Increments (I/D = 1) or decrements (I/D = 0) the DDRAM address by 1 when a character code is  
written into or read from DDRAM.  
The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1.  
The same applies to writing and reading of CGRAM and SEGRAM.  
S: Shifts the entire display either to the right (I/D = 0) or to the left (I/D = 1) when S is 1 during DDRAM  
write. The display does not shift if S is 0.  
If S is 1, it will seem as if the cursor does not move but the display does. The display does not shift when  
reading from DDRAM. Also, writing into or reading out from CGRAM and SEGRAM does not shift the  
display. In a low power mode (LP = 1), do not set S = 1 because the whole display does not normally  
shift.  
Display On/Off Control  
When extension register enable bit (RE) is 0, bits D, C, and B are accessed.  
D: The display is on when D is 1 and off when D is 0. When off, the display data remains in DDRAM,  
but can be displayed instantly by setting D to 1.  
C: The cursor is displayed when C is 1 and not displayed when C is 0. Even if the cursor disappears, the  
function of I/D or other specifications will not change during display data write. The cursor is displayed  
using 5 dots in the 8th line for 5 × 8 dot character font.  
405  
HD66712U  
B: The character indicated by the cursor blinks when B is 1. The blinking is displayed as switching  
between all blank dots and displayed characters at a speed of 370-ms intervals when fcp or fOSC is 270 kHz.  
The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according  
to fOSC or the reciprocal of fcp. For example, when fcp is 300 kHz, 370 × 270/300 = 333 ms.)  
Extended Function Set  
When the extended register enable bit (RE) is 1, FW, B/W, and NW bit shown below are accessed.  
Once these registers are accessed, the set values are held even if the RE bit is set to zero.  
FW: When FW is 1, each displayed character is controlled with a 6-dot width. The user font in CGRAM  
is displayed with a 6-bit character width from bits 5 to 0. As for fonts stored in CGROM, no display area  
is assigned to the left most bit, and the font is displayed with a 5-bit character width. If the FW bit is  
changed, data in DDRAM and CGRAM SEGRAM is destroyed. Therefore, set FW before data is written  
to RAM. When font width is set to 6 dots, the frame frequency decreases to 5/6 compared to 5-dot time.  
See “Oscillator Circuit” for details.  
B/W: When B/W is 1, the character at the cursor position is cyclically displayed with black-white  
inversion. At this time, bits C and B in display on/off control register are “Don’t care.” When fCP or fOSC is  
270 kHz, display is changed by switching every 370 ms.  
NW: When NW is 1, 4-line display is performed. At this time, bit N in the function set register is “Don’t  
care.”  
Alternating  
display  
ii) Blink display example  
i) Cursor display example  
Alternating  
display  
iii) White-black inverting  
display example  
a) Cursor blink width control  
i) 5-dot character width  
ii) 6-dot character width  
b) Font width control  
Figure 16 Example of Display Control  
406  
HD66712U  
Cursor or Display Shift  
Cursor or display shift shifts the cursor position or display to the right or left without writing or reading  
display data (Table 10). This function is used to correct or search the display. In a 2-line display, the  
cursor moves to the second line when it passes the 40th digit of the first line. In a 4-line display, the  
cursor moves to the second line when it passes the 20th character of the line. Note that, all line displays  
will shift at the same time. When the displayed data is shifted repeatedly each line moves only  
horizontally. The second line display does not shift into the first line position. When this instruction is  
executed, extended register enable bit (RE) is reset.  
The address counter (AC) contents will not change if the only action performed is a display shift. In low  
power mode (LP = 1), whole-display shift cannot be normally performed.  
Scroll Enable  
When extended register enable bit (RE) is 1, scroll enable bits can be set.  
This HSE resister specifies scrolled line with the scroll quantity register. This register consists of 4 bits  
for each display line, so a specified line can be shifted by dot unit. When the bit 0 of HSE is 1 in four line  
mode (NW = 1), the first line can be shifted, and the bit 1 is specified to shift the second line, the bit 2 is  
specified for the third line, and bit 3 is specified for the fourth line. When it shifts the first line in two line  
mode (N = 1, NW = 0), both the bit 0 and bit 1 should be set to 1. The bit 2 and bit 3 is specified for the  
second line.  
In 1 line mode (N = 0, NW = 0), the bit 0 and bit 1 should be specified.  
Function Set  
Only when the extended register enable bit (RE) is 1, the BE and the LP bits shown below can be  
accessed. Bits DL and N can be accessed regardless of RE.  
DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB7 to DB0) when DL is 1,  
and in 4-bit lengths (DB7 to DB4) when DL is 0. When 4-bit length is selected, data must be sent or  
received twice.  
N: When bit NW in the extended function set is 0, a 1- or a 2-line display is set. When N is 0, 1-line  
display is selected; when N is 1, 2-line display is selected. When NW is 1, a 4-line display is set. At this  
time, N is “Don’t care.”  
Note: After changing the N or NW or LP bit, please issue the Return Home or Clear Display instruction  
to cancel to shift display.  
407  
HD66712U  
RE: When bit RE is 1, bit BE in the extended function set register, the SEGRAM address set register,  
and the function set register can be accessed. When bit RE is 0, the registers described above cannot be  
accessed, and the data in these registers is held.  
To maintain compatibility with the HD44780, the RE bit should be fixed to 0.  
Table 10  
Shift Function  
S/C  
0
R/L  
0
Shifts the cursor position to the left. (AC is decremented by one.)  
Shifts the cursor position to the right. (AC is incremented by one.)  
Shifts the entire display to the left. The cursor follows the display shift.  
Shifts the entire display to the right. The cursor follows the display shift.  
0
1
1
0
1
1
BE: When the RE bit is 1, this bit can be rewritten. When this bit is 1, the user font in CGRAM and the  
segment in SEGRAM can be blinked according to the upper two bits of CGRAM and SEGRAM.  
LP: When bit RE is 1, this bit can be rewritten. When LP is set to 1 and the EXT pin is low (without an  
extended driver), the HD66712 operates in low power mode. In 1-line display mode, the HD66712  
operates on a 4-division clock, and in a 2-line or a 4-line display mode, the HD66712 operates on a 2-  
division clock. According to these operations, instruction execution takes four times or twice as long.  
Note that in low power mode, display shift cannot be performed. The frame frequency is reduced to 5/6  
that of normal operation. See “Oscillator Circuit” for details.  
Note: Perform the DL, N, NW, and FW fucntions at the head of the program before executing any  
instructions (except for the read busy flag and address instruction). From this point, if bits N,  
NW, or FW are changed after other instructions are executed, RAM contents may be broken.  
Set CGRAM Address  
A CGRAM address can be set while the RE bit is cleared to 0.  
Set CGRAM address into the address counter displayed by binary AAAAAA. After this address set, data  
is written to or read from the MPU for CGRAM.  
Set SEGRAM Address  
Only when the extended register enable (RE) bit is 1, HS2 to HS0 and the SEGRAM address can be set.  
The SEGRAM address in the binary form AAAA is set to the address counter. After this address set,  
SEGRAM can be written to or read from by the MPU.  
408  
HD66712U  
Set DDRAM Address  
A DDRAM address can be set while the RE bit is cleared to 0. Set DDRAM address sets the DDRAM  
address binary AAAAAAA into the address counter.  
After this address set, data is written to or read from the MPU for DDRAM.  
However, when N and NW is 0 (1-line display), AAAAAAA can be (00)H to (4F)H. When N is 1 and  
NW is 0 (2-line display), AAAAAAA is (00)H to (27)H for the first line, and (40)H to (67)H for the  
second line. When NW is 1 (4-line display), AAAAAAA is (00)H to (13)H for the first line, (20)H to  
(33)H for the second line, (40)H to (53)H for the third line, and (60)H to (73)H for the fourth line.  
Set Scroll Quantity  
When extended registor enable bit (RE) is 1, HDS5 to HDS0 can be set.  
HDS5 to HDS0 specifies horizontal scroll quantity to the left of the display in dot units. The HD66712  
uses the unused DDRAM area to execute a desired horizontal smooth scroll from 1 to 48 dots.  
Note: When performing a horizontal scroll as described above by connecting an extended driver, the  
maximum number of characters per line decreases by the quantity set by the above horizontal  
scroll. For example, when the maximum 24-dot scroll quantity (4 characters) is used with 6-dot  
font width and 4-line display, the maximum numbers of characters is 20 – 4 = 16. Notice that in  
low power mode (LP = 1), display shift and scroll cannot be performed.  
Read Busy Flag and Address  
Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating  
on a previously received instruction. If BF is 1, the internal operation is in progress. The next instruction  
will not be accepted until BF is reset to 0. Check the BF status before the next write operation. At the  
same time, the value of the address counter in binary AAAAAAA is read out. This address counter is  
used by both CG, DD, and SEGRAM addresses, and its value is determined by the previous instruction.  
The address contents are the same as for CGRAM, DDRAM, and SEGRAM address set instructions.  
Write Data to CG, DD, or SEGRAM  
This instruction writes 8-bit binary data DDDDDDDD to CG, DD or SEGRAM. CG, DD or SEGRAM is  
selected by the previous specification of the address set instruction (CGRAM address set / DDRAM  
address set / SEGRAM address set). After a write, the address is automatically incremented or  
decremented by 1 according to the entry mode. The entry mode also determines the display shift  
direction.  
409  
HD66712U  
Read Data from CG, DD, or SEG RAM  
This instruction reads 8-bit binary data DDDDDDDD from CG, DD, or SEGRAM. CG, DD or SEGRAM  
is selected by the previous specification of the address set instruction. If no address is specified, the first  
data read will be invalid. When executing serial read instructions, the next address is normally read from  
the next address. An address set instruction need not be executed just before this read instruction when  
shifting the cursor by a cursor shift instruction (when reading from DDRAM). A cursor shift instruction is  
the same as a set DDRAM address instruction.  
After a read, the entry mode automatically increases or decreases the address by 1. However, a display  
shift is not executed regardless of the entry mode.  
Note: The address counter (AC) is automatically incremented or decremented after write instructions to  
CG, DD or SEGRAM. The RAM data selected by the AC cannot be read out at this time even if  
read instructions are executed. Therefore, to read data correctly, execute either an address set  
instruction or a cursor shift instruction (only with DDRAM), or alternatively, execute a  
preliminary read instruction to ensure the address is correctly set up before accessing the data.  
Table 11  
HS5 to HS0 Settings  
HDS5 HDS4 HDS3 HDS2 HDS1 HDS0 Description  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
No shift  
Shift the display position to the left by one dot.  
Shift the display position to the left by two dots.  
Shift the display position to the left by three dots.  
.
.
.
1
1
0
1
1
*
1
*
1
*
1
*
Shift the display position to the left by forty-seven dots.  
Shift the display position to the left by forty-eight dots.  
410  
HD66712U  
Table 12  
Instructions  
Execution  
Time (max)  
(when fcp or  
fOSC is  
Code  
RE  
Instruction Bit RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description  
270 kHz)  
Clear  
display  
0/1  
0
0
0
0
0
0
0
0
0
0
1
Clears entire display and 1.52 ms  
sets DDRAM address 0  
in address counter.  
Return  
home  
0/1  
0
0
0
0
0
0
0
1
Sets DDRAM address 0 1.52 ms  
IN address counter. Also  
returns display from  
being shifted to original  
position. DDRAM  
contents remain  
unchanged.  
Entry  
mode set  
0/1  
0
0
0
0
0
0
0
1
I/D  
C
S
B
Sets cursor move  
direction and specifies  
display shift. These  
operations are  
performed during data  
write and read.  
37 µs  
Display  
on/off  
control  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
D
Sets entire display (D)  
on/off, cursor on/off (C),  
and blinking of cursor  
position character (B).  
37 µs  
37 µs  
Extension  
function set  
1
FW  
R/L  
B/W NW  
Sets a font width, a  
black-white inverting  
cursor (B/W), and a 4-  
line display (NW).  
Cursor or  
display shift  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
S/C  
Moves cursor and shifts 37 µs  
display without changing  
DDRAM contents.  
Scroll  
enable  
1
HSE HSE HSE HSE Specifies which display 37 µs  
lines to undergo  
horizontal smooth scroll.  
Function  
set  
DL  
N
RE  
Sets interface data  
length(DL), number of  
display lines (L), and  
extension register write  
enable (RE).  
37 µs  
1
0
0
0
0
1
DL  
N
RE  
BE  
LP  
Sets CGRAM/SEGRAM 37 µs  
blinking enable (BE), and  
power-down mode (LP).  
LP is available when the  
EXT pin is low.  
Set  
CGRAM  
address  
0
1
0
0
0
0
0
0
1
1
ACG ACG ACG ACG ACG Ay  
Sets CGRAM address. 37 µs  
CGRAM data is sent and  
received after this  
setting.  
Set  
*
*
ASEG ASEG ASEG ASEG Sets SEGRAM address. 37 µs  
SEGRAM  
address set  
SEGRAM data is sent  
and received after this  
setting.  
411  
HD66712U  
Table 12  
Instructions (cont)  
Execution  
Time (max)  
(when fcp or  
fOSC is  
Code  
RE  
Instruction Bit RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description  
270 kHz)  
Set  
0
0
0
1
ADD ADD ADD ADD ADD ADD ADD Sets DDRAM address. 37 µs  
DDRAM  
address  
DDRAM data is sent and  
received after this  
setting.  
Set scroll  
quantity  
1
0
0
0
1
1
*
HDS HDS HDS HDS HDS HDS Sets horizontal dot scroll 37 µs  
quantity.  
Read busy 0/1  
flag &  
address  
BF AC AC AC AC  
AC  
AC  
AC  
Reads busy flag (BF)  
indicating internal  
operation is being  
performed and reads  
address counter  
contents.  
0 µs  
Write data 0/1  
to RAM  
1
1
0
1
Write data  
Writes data into  
DDRAM, CGRAM, or  
SEGRAM.  
7 µs  
tADD = 5.5 µs*  
Read data 0/1  
from RAM  
Read data  
Reads data from  
DDRAM, CGRAM, or  
SEGRAM.  
37 µs  
tADD = 5.5 µs*  
I/D = 1: Increment  
I/D = 0: Decrement  
DDRAM: Display data RAM  
ADD:  
DDRAM address  
(corresponds  
S
D
C
B
= 1: Accompanies display shift  
= 1: Display on  
= 1: Cursor on  
= 1: Blink on  
to cursor address)  
CGRAM: Character generator RAM  
ACG: CGRAM address  
SEGRAM: Segment RAM  
FW = 1: 6-dot font width  
B/W = 1: Black-white inverting cursor on  
NW = 1: Four lines  
NW = 0: One or two lines  
S/C = 1: Display shift  
ASEG:  
HSE:  
Segment RAM address  
Specifies horizontal scroll  
lines  
Horizontal dot scroll  
quantity  
Address counter used for  
both DD, CG, and  
SEGRAM addresses.  
HDS:  
AC:  
S/C = 0: Cursor move  
R/L = 1: Shift to the right  
R/L = 0: Shift to the left  
DL = 1: 8 bits, DL = 0: 4 bits  
N
= 1: 2 lines, N = 0: 1 line  
RE = 1: Extension register access enable  
BE = 1: CGRAM/SEGRAM blinking enable  
LP = 1: Low-power mode  
BF = 1: Internally operating  
BF = 0:  
Instructions acceptable  
Note: 1. — indicates no effect.  
* After execution of the CGRAM/DDRAM data write or read instruction, the RAM address  
counter is incremented or decremented by 1. The RAM address counter is updated after the  
busy flag turns off. In Figure 17, tADD is the time elapsed after the busy flag turns off until the  
address counter is updated.  
2. Extension time changes as frequency changes. For example, when f is 300 kHz, the execution  
time is: 37 µs × 270/300 = 33 µs.  
3. Execution time in a low-power mode (LP = 1 and EXT = low) becomes four times for a 1-line  
mode, and twice for a 2- or 4-line mode.  
412  
HD66712U  
Busy state  
(DB7 pin)  
Busy state  
Address counter  
(DB0 to DB6 pins)  
A
A + 1  
tADD  
t ADD depends on the operation frequency.  
t ADD = 1.5/(fcp or fOSC ) seconds  
Figure 17 Address Counter Update  
413  
HD66712U  
Interfacing the HD66712  
Interface with 8-Bit MPUs: The HD66712 can interface directly with an 8-bit MPU using the E clock,  
or with an 8-bit MCU through an I/O port.  
When the number of I/O ports in the MCU, or the interfacing bus width, if limited, a 4-bit interface  
function is used.  
RS  
R/W  
E
Internal  
signal  
Internal operation  
Busy  
Not  
Busy  
DB7  
Data  
Data  
Busy  
Instruction  
write  
Instruction  
write  
Busy flag check Busy flag check Busy flag check  
Figure 18 Example of 8-Bit Data Transfer Timing Sequence  
I/O port interface  
C0  
C1  
C2  
E
RS  
R/W  
H8/325  
HD66712  
8
A0–A7  
DB0–DB7  
Figure 19 8-Bit MPU Interface  
414  
HD66712U  
Interface with 4-Bit MPUs: The HD66712 can interface with a 4-bit MCU through an I/O port. 4-bit  
data representing high and low order bits must be transferred sequentially.  
The DL bit in function-set selects 4-bit or 8-bit interface data length.  
RS  
R/W  
E
Internal  
signal  
Internal operation  
Not  
Busy  
Busy AC3  
AC3  
D7  
D3  
DB7  
IR7 IR3  
Instruction  
write  
Instruction  
write  
Busy flag check  
Busy flag check  
Figure 20 Example of 4-Bit Data Transfer Timing Sequence  
HMCS4019R  
HD66712  
D15  
D14  
D13  
RS  
R/W  
E
4
R10–R13  
DB4–DB7  
Figure 21 4-bit MPU Interface  
415  
HD66712U  
Oscillator Circuit  
1) When an external clock is used  
2) When an internal oscillator is used  
The oscillator frequency can be  
adjusted by oscillator resistance  
(Rf). If Rf is increased or power  
supply voltage is decreased, the  
oscillator frequency decreases.  
The recommended oscillator  
resistor is as follows.  
Clock  
OSC1  
OSC1  
Rf  
OSC2  
HD66712  
HD66712  
i) HD66712S  
• Rf = 91 k± 2% (VCC = 5V)  
• Rf = 75 k± 2% (VCC = 3V)  
ii) HD66712U  
• Rf = 130 k± 2% (VCC = 5V)  
• Rf = 110 k± 2% (VCC = 3V)  
Figure 22 Oscillator Circuit  
(1) 1 /17 duty cycle  
1-line selection period  
1
2
3
4
16 17  
1
2
3
16 17  
VCC  
V1  
COM1  
V4  
V5  
1 frame  
1 frame  
Normal Display Mode (LP = 0)  
5-Dot Font Width 6-Dot Font Width  
Low Power Mode (LP = 1)  
5-Dot Font Width 6-Dot Font Width  
Item  
Line selection period 200 clocks  
Frame frequency  
240 clocks  
66.2 Hz  
60 clocks  
66.2 Hz  
72 clocks  
55.1 Hz  
79.4 Hz  
Note: At the calculation example above for displayed frame frequency, all oscillator frequencies are  
270 kHz (1 clock = 3.7 µs).  
(2) 1 /33 duty cycle  
1-line selection period  
1
2
3
4
32 33  
1
2
3
32 33  
VCC  
V1  
COM1  
V4  
V5  
1 frame  
1 frame  
Normal Display Mode (LP = 0)  
5-Dot Font Width 6-Dot Font Width  
Low Power Mode (LP = 1)  
5-Dot Font Width 6-Dot Font Width  
Item  
Line selection period 100 clocks  
Frame frequency  
120 clocks  
68.2 Hz  
60 clocks  
68.2 Hz  
72 clocks  
56.8 Hz  
81.8 Hz  
Note: At the calculation example above for displayed frame frequency, all oscillator frequencies are  
270 kHz (1 clock = 3.7 µs).  
Figure 23 Frame Frequency  
416  
HD66712U  
Power Supply for Liquid Crystal Display Drive  
1) When an external power supply is used  
VCC  
VCC  
V1  
V2  
V3  
V4  
V5  
R
R
R0  
R
R
VR  
VEE  
2) When an internal booster is used  
(Boosting twice)  
(Boosting three times)  
VCC  
VCC  
VCC  
VCC  
Vci  
NTC-type  
thermistor  
Vci  
NTC-type  
thermistor  
R
R
R
V1  
V2  
V3  
V4  
V5  
V1  
GND  
GND  
R
V2  
GND  
GND  
R0  
R
R0  
R
C1  
C2  
C1  
V3  
C2  
1µF  
1µF  
1µF  
+
+
V4  
V5OUT2  
V5OUT3  
V5OUT2  
R
R
V5  
1µF  
V5OUT3  
+
1µF  
+
+
GND  
GND  
Notes: 1. Boosting output voltage should not exceed the power supply voltage (2) (13V max.)  
in the absolute maximum ratings. Especially, voltage of over 4.3V should not be input  
to the reference voltage (Vci) when boosting three times.  
2. Vci input terminal is used for reference voltage and power supply for the internal booster.  
Input current into the Vci pin needs three times or more of load current through the  
bleeder resistor for LCD. So, when it adjusts LCD driving voltage (Vlcd), input voltage  
should be controlled with transistor to supply LCD load current. Please notice  
connection (+/–) when it uses capacitors with poler.  
3. The Vci must be set below the power supply (VCC).  
417  
HD66712U  
Table 13  
Duty Factor and Power Supply for Liquid Crystal Display Drive  
Item  
Data  
2, 4  
1/33  
1/6.7  
R
Number of Lines  
Duty factor  
Bias  
1
1/17  
1/5  
R
Divided resistance  
R
R0  
R
2.7R  
Note: R changes depending on the size of liquid crystal panel. Normally, R must be 4.7 kto 20 k.  
418  
HD66712U  
Extension Driver LSI Interface  
By bringing the EXT pin high, extended driver interface signals (CL1, CL2, D, and M) are output.  
Table 14  
Relationships between the Number of Display Lines and 40-Output Extension Driver  
Controller  
HD66712  
HD66710  
HD44780  
HD66702  
Display Lines  
16 × 2 lines  
20 × 2 lines  
24 × 2 lines  
40 × 2 lines  
12 × 4 lines  
16 × 4 lines  
20 × 4 lines  
5-Dot Width 6-Dot Width  
Not required Not required  
Not required Not required  
Not required 1  
5-Dot Width 6-Dot Width 5-Dot Width 5-Dot Width  
Not required 1  
1
Not required  
Not required  
1
1
1
2
1
2
2
Disabled  
Disabled  
Disabled  
Disabled  
4
3
Not required 1  
1
1
2
1
2
3
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
1
1
1
2
Note: The number of display lines can be extended to 32 × 2 lines or 20 × 4 lines in the LCD-II/F12.  
The number of display lines can be extended to 30 × 2 lines or 20 × 4 lines in the LCD-II/F8.  
a) 1-chip operation  
(EXT = Low, 5-dot font width)  
b) When using the extension driver  
(EXT = High, 5-dot font width)  
VCC  
EXT  
GND  
EXT  
HD66712  
COM0–  
COM33  
32 × 2-line display  
SEG1–  
SEG60  
COM0–  
COM33  
HD66712  
24 × 2-line display  
SEG1–  
SEG60  
M
D
Seg1–  
Seg40  
SEG1–SEG60  
CL2  
CL1  
Extension driver  
Figure 24 HD66712 and the Extension Driver Connection  
419  
HD66712U  
Table 15  
Display Start Address in Each Mode  
Number of Lines  
2-Line Mode  
1-Line Mode  
6 Dot  
D00±1  
D0A±1  
4-Line Mode  
5 Dot/6 Dot  
D00±1  
D20±1  
D40±1  
D60±1  
Output  
5 Dot  
D00±1  
D0C±1  
5 Dot  
D00±1  
D0C±1  
D40±1  
D4C±1  
6 Dot  
D00±1  
D0A±1  
D40±1  
D4A±1  
COM1–COM8  
COM9–COM16  
COM17–COM24  
COM25–COM32  
COM0/COM17  
COM0/COM33  
S00  
S00  
S00  
S00  
S00  
Notes: 1. The number of display lines is determined by setting the N/NW bit. The font width is  
determined by the FW bit.  
2. D** is the start address of display data RAM (DDRAM).  
3. S** is the start address of segment RAM (SEGRAM).  
4. ±1 following D** indicates increment or decrement at display shift.  
420  
HD66712U  
Interface to Liquid Crystal Display  
Example of 5-dot font width connection  
1
12  
13  
24  
HD66712  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
(COM0)  
±
+ – x ÷ = ≠  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG60  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
EXT  
Note: COM0 and COM17 output the same signals. Apply them according to the wiring pattern.  
Figure 25 24 × 1-Line + 60-Segment Display (5-Dot Font, 1/17 Duty)  
1
12  
13  
24  
HD66712  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM33  
(COM0)  
SEG1  
±
+ – x ÷ = ≠  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG60  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
EXT  
Note: COM0 and COM33 output the same signals. Apply them according to the wiring pattern.  
Figure 26 24 × 1-Line + 60-Segment Display (5-Dot Font, 1/33 Duty)  
421  
HD66712U  
1
2
12  
HD66712  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
(COM0)  
±
+ – x ÷ = ≠  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
COM56  
COM57  
COM58  
COM59  
COM60  
EXT  
Note: COM0 and COM33 output the same signals. Apply them according to the wiring pattern.  
Figure 27 12 × 4-Line + 60 Segment Display (5-Dot Font, 1/33 Duty)  
1
10  
11  
20  
HD66712  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM33  
(COM0)  
±
+ – x ÷ = ≠  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
EXT  
Note: COM0 and COM33 output the same signals. Apply them according to the wiring pattern.  
Figure 28 20 × 2-Line + 60 Segment Display (6-Dot Font, 1/33 Duty)  
422  
HD66712U  
Instruction and Display Correspondence  
8-bit operation, 24-digit × 1-line display with internal reset  
Refer to Table 16 for an example of an 24-digit × 1-line display in 8-bit operation. The HD66712  
functions must be set by the function set instruction prior to the display. Since the display data RAM  
can store data for 80 characters, a character unit scroll can be performed by a display shift instruction.  
A dot unit smooth scroll can also be performed by a horizontal scroll instruction. Since data of display  
RAM (DDRAM) is not changed by a display shift instruction, the display can be returned to the first  
set display when the return home operation is performed.  
4-bit operation, 24-digit × 1-line display with internal reset  
The program must set all functions prior to the 4-bit operation (see Table 17.) When the power is  
turned on, 8-bit operation is automatically selected and the first write is performed as an 8-bit  
operation. Since DB0 to DB3 are not connected, a rewrite is then required. However, since one  
operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions.  
Thus, DB4 to DB7 of the function set instruction is written twice.  
8-bit operation, 24-digit × 2-line display with internal reset  
For a 2-line display, the cursor automatically moves from the first to the second line after the 40th  
digit of the first line has been written. Thus, if there are only 16 characters in the first line, the  
DDRAM address must be again set after the 16th character is completed. (See Table 18.)  
The display shift is performed for the first and second lines. If the shift is repeated, the display of the  
second line will not move to the first line. The same display will only shift within its own line for the  
number of times the shift is repeated.  
8-bit operation, 12-digit × 4-line display with internal reset  
The RE bit must be set by the function set instruction and then the NW bit must be set by an  
extension function set instruction. In this case, 4-line display is always performed regardless of the N  
bit setting (see Table 19).  
In a 4-line display, the cursor automatically moves from the first to the second line after the 20th digit  
of the first line has been written. Thus, if there are only 8 characters in the first line, the DDRAM  
address must be set again after the 8th character is completed. Display shifts are performed on all  
lines simultaneously.  
Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using  
Internal Reset Circuit Table must be satisfied. If not, the HD66712 must be initialized by  
instructions. See the section, Initializing by Instruction.  
423  
HD66712U  
Table 16  
8-Bit Operation, 24-Digit × 1-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
1
Power supply on (the HD66712 is initialized by the internal reset  
circuit)  
Initialized. No display.  
2
Function set  
Sets to 8-bit operation and  
selects 1-line display.  
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
1
*
*
Bit 2 must always be cleared.  
3
4
5
Return home  
Return both display and cursor  
to the original position(address  
0).  
0
0
1
1
1
0
0
0
Display on/off control  
Turns on display and cursor.  
Entire display is in space mode  
because of initialization.  
_
_
0
0
0
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the RAM. Display is not  
shifted.  
0
0
0
0
6
Write data to CGRAM/DDRAM  
Writes H. DDRAM has already  
been selected by initialization  
when the power was turned on.  
H_  
1
0
0
1
0
0
0
1
1
0
0
0
0
0
1
7
8
Write data to CGRAM/DDRAM  
Writes I.  
HI_  
1
0
0
1
0
·
·
·
·
·
·
·
·
·
·
9
Write data to CGRAM/DDRAM  
Writes I.  
HITACHI_  
HITACHI_  
1
0
0
1
0
0
0
0
1
0
0
0
1
0
0
1
0
1
1
0
10  
11  
Entry mode set  
Sets mode to shift display at the  
time of write.  
0
0
0
0
0
Write data to CGRAM/DDRAM  
Writes a space.  
ITACHI  
_
1
0
0
0
1
424  
HD66712U  
Table 16  
8-Bit Operation, 24-Digit × 1-Line Display Example with Internal Reset (cont)  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
12  
Write data to CGRAM/DDRAM  
Writes M.  
TACHI M_  
1
0
0
1
0
0
1
1
0
1
13  
·
·
·
·
·
·
·
·
·
14  
15  
16  
17  
18  
19  
20  
21  
Write data to CGRAM/DDRAM  
Writes O.  
MICROKO_  
1
0
0
1
0
0
1
0
1
0
0
1
1
0
1
0
0
0
1
0
1
1
0
*
1
*
1
*
Cursor or display shift  
Shifts only the cursor position to  
the left.  
MICROKO_  
MICROK_O  
ICROCO_  
0
0
0
0
Cursor or display shift0  
Shifts only the cursor position to  
the left.  
0
0
0
0
*
Write data to CGRAM/DDRAM  
Writes C over K.  
1
0
0
1
0
0
0
0
1
1
1
1
*
1
*
The display moves to the left.  
Cursor or display shift  
Shifts the display and cursor  
position to the right.  
MICROCO_  
0
0
0
0
Cursor or display shift  
Shifts the display and cursor  
position to the right.  
MICROCO_  
ICROCOM_  
0
0
0
0
*
*
Write data to CGRAM/DDRAM  
0 1 0  
Writes M.  
1
0
0
1
·
·
·
·
·
·
·
·
·
·
22  
Return home  
Returns both display and cursor  
to the original position (address  
0).  
H_ITACHI  
0
0
0
0
0
0
0
0
1
0
425  
HD66712U  
Table 17  
4-Bit Operation, 24-Digit × 1-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
1
Power supply on (the HD66712 is initialized by  
the internal reset circuit)  
Initialized. No display.  
2
Function set  
Sets to 4-bit operation. Clear bit  
2. In this case, operation is  
handled as 8 bits by  
initialization. *1  
0
0
0
0
1
0
3
Function set  
Sets 4-bit operation and  
selects1-line display. Clear BE,  
LP bits. 4-bit operation starts  
from this step.  
0
0
0
0
0
0
0
1
1
0
0
0
4
5
6
7
Function set  
Sets 4-bit operation and  
selects1 line display. Clear bit 2  
(RE).  
0
0
0
0
0
0
0
0
1
*
0
*
Return home  
Returns both display and cursor  
to the original position (address  
0).  
0
0
0
0
0
0
0
0
0
1
0
0
Display on/off control  
Turns on display and cursor.  
Entire display is in space mode  
because of initialization.  
_
_
0
0
0
0
0
1
0
1
0
1
0
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the DD/CGRAM.  
Display is not shifted.  
0
0
0
0
0
0
0
1
0
1
0
0
8
9
Write data to CGRAM/DDRAM  
Writes H.  
H_  
1
1
0
0
0
1
1
0
0
0
0
0
DDRAM has already been  
selected by initialization.  
·
·
·
·
·
Based on 8-bit operation after  
this instruction  
·
·
·
·
·
Note: The control is the same as for 8-bit operation beyond step #8.  
1. When DB3 to DB0 pins are open in 4-bit mode, the RE, BE, LP bits are set to “1” at step #2.  
So, these bits are clear to “0” at step #3.  
426  
HD66712U  
Table 18  
8-Bit Operation, 24-Digit × 2-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
1
2
Power supply on (the HD66712 is initialized by the internal reset  
circuit)  
Initialized. No display.  
Function set  
Sets to 8-bit operation and  
selects 2-line display.  
Clear bit 2.  
0
0
0
0
1
0
0
1
0
0
1
1
0
0
1
1
*
*
3
4
Display on/off control  
Turns on display and cursor. All  
display is in space mode  
because of initialization.  
_
_
0
0
0
0
1
1
0
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right at the time of  
write to the RAM. Display is not  
shifted.  
0
0
0
0
5
6
Write data to CGRAM/DDRAM  
Writes “H.” DDRAM has already  
been selected by initialization at  
power-on.  
H_  
1
0
0
1
0
0
1
0
0
0
·
·
·
·
·
·
·
·
·
·
7
8
Write data to CGRAM/DDRAM  
Writes I.  
HITACHI_  
1
0
0
1
0
0
0
1
0
0
0
0
0
1
0
Set DDRAM address  
Sets DDRAM address so that  
the cursor is positioned at the  
head of the second line.  
HITACHI  
_
0
0
1
1
0
427  
HD66712U  
Table 18  
8-Bit Operation, 24-Digit × 2-Line Display Example with Internal Reset (cont)  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
9
Write data to CGRAM/DDRAM  
Writes a space.  
HITACHI  
M_  
1
0
0
1
0
0
1
1
0
1
10  
·
·
·
·
·
·
·
·
·
·
11  
12  
13  
14  
Write data to CGRAM/DDRAM  
Writes O.  
HITACHI  
1
0
0
1
0
0
0
0
1
0
1
1
1
1
1
1
0
1
1
1
MICROCO_  
Entry mode set  
Sets mode to shift display at the  
time of write.  
HITACHI  
0
0
0
0
0
MICROCO_  
Write data to CGRAM/DDRAM  
0 1 0  
Writes M.  
ITACHI  
1
0
ICROCOM_  
·
·
·
·
·
·
·
·
·
·
17  
Return home  
Returns both display and cursor  
to the original position (address  
0).  
H_ITACHI  
MICROCOM  
0
0
0
0
0
0
0
0
1
0
428  
HD66712U  
Table 19  
8-Bit Operation, 12-Digit × 4-Line Display Example with Internal Reset  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
1
Power supply on (the HD66712 is initialized by the internal reset  
circuit)  
Initialized. No display.  
2
3
4
5
6
Function set  
Sets 8-bit operation and enables  
write to the extension register.  
0
0
0
0
0
1
0
1
0
1
1
1
0
*
*
4-line mode set  
Sets 4-line operation.  
0
0
0
0
1
Function set  
Inhibit write to extension register  
Inhibits write to extension  
register. Invalidates selection of  
1-line/2-line by bit 3.  
0
0
0
0
1
1
0
0
1
0
1
*
*
Display on/off control  
Turns on display and cursor.  
Entire display is cleared  
because of initialization.  
_
_
0
0
0
0
0
1
0
Entry mode set  
Sets mode to increment the  
address by one and to shift the  
cursor to the right when writing  
to RAM. Display is not shifted.  
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
7
8
Write data to CGRAM/DDRAM  
Writes H. DDRAM has already  
been selected by initialization.  
_
1
0
0
1
0
·
·
·
·
·
·
·
·
·
·
429  
HD66712U  
Table 19  
8-Bit Operation, 12-Digit × 4-Line Display Example with Internal Reset (cont)  
Instruction  
Step  
No. RS R/  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display  
Operation  
9
Write data to CGRAM/DDRAM  
Writes I.  
HITACHI_  
1
0
0
1
0
1
0
0
1
0
0
0
0
0
1
0
10  
Set DDRAM address  
Sets DDRAM address to (20)H  
so that the cursor is positioned  
at the beginning of the second  
line.  
HITACHI  
_
0
0
1
0
11  
Write data to CGRAM  
Writes 0.  
HITACHI  
0_  
1
0
0
0
1
1
0
0
0
0
430  
HD66712U  
Initializing by Instruction  
If the power supply conditions for correctly operating the internal reset circuit are not met, initialization  
by instructions becomes necessary.  
Initializing when a length of interface is 8-bit system. (See Figure 29.)  
Initializing when a length of interface is 4-bit system. (See Figure 30.)  
Power on  
• Wait for more than 15 ms  
after VCC rises to 4.5V  
(VCC = 5V during operation)  
• Wait for more than 40 ms  
after VCC rises to 2.7V  
(VCC = 3V during operation)  
BF cannot be checked before this instruction.  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
*
*
*
*
Function set (Interface is 8 bits long.)  
Wait for more than 4.1 ms  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
*
*
*
*
Wait for more than 100 µs  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
1
1
*
*
*
*
BF can be checked after the following instructions.  
When BF is not checked, the waiting time between  
instructions is longer than the execution instruction  
time. (See Table 12.)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Function set  
0
0
0
0
1
1
N
0
*
0
*
0
1
S
Display off  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
Display clear  
Entry mode set  
I/D  
Initialization ends  
Figure 29 Initializing Flow of 8-Bit Interface  
431  
HD66712U  
Power on  
Important Notice  
Notes: 1. When DB3 to DB0 pins are open in 4-bit mode,  
the N, RE, BE, LP bits are set to “1.” In this case,  
instruction time becomes four times in a low  
power mode (LP = “1”).  
• Wait for more than 15 ms  
after VCC rises to 4.5V  
2. The low power mode is available in this step, so  
instruction time takes four times.  
(VCC = 5V during operation)  
• Wait for more than 40 ms  
after VCC rises to 2.7V  
(VCC = 3V during operation)  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long)  
RS R/W DB7 DB6 DB5 DB4  
0
0
0
0
1
1
Wait for more than 4.1 ms  
RS R/W DB7 DB6 DB5 DB4  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long)  
0
0
0
0
1
1
Wait for more than 100 µs  
BF cannot be checked before this instruction.  
Function set (Interface is 8 bits long)  
RS R/W DB7 DB6 DB5 DB4  
*1  
0
0
0
0
1
1
BF can be checked after the following instructions.  
When BF is not checked, the waiting time between  
instructions is longer than the execution instruction  
time. (See Table 12.)*1  
RS R/W DB7 DB6 DB5 DB4  
*1  
*2  
0
0
0
0
1
0
Function set (4-bit mode)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N
0
N
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
*
Function set (4-bit mode, N specification)  
BE, LP are clear to 0  
1
Function set (4-bit mode, N specification)  
*
0
0
0
0
1
0
S
Display off  
0
0
Display clear  
0
0
Entry mode set (I/D, S specification)  
I/D  
Initialization ends  
Figure 30 Initializing Flow of 4-Bit Interface  
432  
HD66712U  
Horizontal Dot Scroll  
Dot unit scrolls are performed by setting the horizontal dot scroll quantity resister (HDS) when the  
extension register is enabled (RE = “1”). And the shifted line can be selected with the scroll enable  
register (HDE). So, it can control dot unit shifts by each display line.  
To scroll smoothly, HD66712 supports 6 dots-font width mode (FW = 1). The below figures are examples  
of scroll display.  
When 6-dots font width (FW = 1)  
No shift performed  
When 5-dots font width (FW = 0)  
No shift performed  
One dot shift to the left  
Two dots shift to the left  
One dot shift to the left  
Two dots shift to the left  
Three dots shift to the left  
Four dots shift to the left  
Five dots shift to the left  
Three dots shift to the left  
Four dots shift to the left  
Example of 10 digits × 4 lines with 6-dots fonts width mode  
ICON mark and 1st to 3rd line are fixed,  
and only 4th line is sifted  
HDS = 1000  
(4th line scroll enable)  
Figure 31 Example of Dot Scroll Display  
433  
HD66712U  
6-dots font width mode (FW = 1)  
4 line display mode (NW = 1)  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
2
3
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
DL  
1
N
1
0
1
0
0
BE LP Enable extension resistor.  
0
0
0
1
4th line scroll enable.  
0
One dot shift in 4th line to the left.  
CPU Wait  
4
0
0
1
0
0
0
0
0
1
0
Two dots shift in 4th line to the left.  
CPU Wait  
5
6
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
1
0
Three dots shift in 4th line to the left.  
Four dots shift in 4th line to the left.  
CPU Wait  
0
0
CPU Wait  
49  
50  
0
0
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
47 dots shift in 4th line to the left.  
48 dots shift in 4th line to the left.  
CPU Wait  
1
1
Note: When perfoming a dot scroll with an extended driver, the maximum number or characters  
per line decreases by quantity set by the dot scroll. For example, when the maximum  
24-dot scroll quantity (4 characters) is used with 6-dot font width and 4-line display,  
the maximum numbers of character is 20 – 4 = 16. Notice that in low power mode (LP = 1),  
display shift and dot scroll cannot be performed.  
Figure 32 Method of Smooth Scroll Display  
434  
HD66712U  
Low Power Mode  
When the extension driver is not used (EXT = Low) with extension register enabled (RE = 1), the  
HD66712 enters low power mode by setting the low-power mode bit (LP) to 1. During low-power mode,  
as the internal operation clock is divided by 2 (2-line/4-line display mode) or by 4 (1-line display mode),  
the execution time of each instruction becomes two times or four times longer than normal. In addition,  
as the frame frequency decreases to 5/6, display quality might be affected.  
In addition, since the display is not shifted in low power mode, display shift must be cleared with the  
return home instruction before setting low power mode. The amount of horizontal scroll must also be  
cleared (HDS = 000000). Moreover, because the display enters a shift state after clearing low-power  
mode, the home return instruction must be used to clear display shift at that time.  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Return home  
0
0
0
0
0
0
0
1
0
0
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Extended register enable  
0
0
0
0
1
DL  
N
BE  
0
1
RS  
0
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R/W  
0
Clear horizontal scroll quantity  
HDS = 000000  
1
0
0
0
0
0
0
0
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DL BE  
Set a low power mode  
Return home  
0
0
0
0
1
N
1
1
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
1
Note: The execution time of an instruction in low-power  
mode becomes two times or four times longer  
then normal. The frame frequency also  
decreases by 5/6.  
Low power operation  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Clear low power mode  
0
0
0
0
1
DL  
N
BE  
1
0
Note: Up until this instruction, execution time is two  
times or four times longer than normal.  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Return home  
0
0
0
0
0
0
0
0
0
1
Note: Because the display enters a shift state, be sure  
to execute this instruction.  
Figure 33 Usage of Low Power Mode  
435  
HD66712U  
Absolute Maximum Ratings*  
Item  
Symbol  
Unit  
V
Value  
Notes  
Power supply voltage (1)  
Power supply voltage (2)  
Input voltage  
VCC  
–0.3 to +7.0  
–0.3 to +13.0  
–0.3 to VCC +0.3  
–20 to +75  
–55 to +125  
1
VCC–V5  
Vt  
V
1, 2  
1
V
Operating temperature  
Storage temperature  
Topr  
°C  
°C  
Tstg  
4
Note:  
*
If the LSI is used above these absolute maximum ratings, it may become permanently  
damaged. Using the LSI within the following electrical characteristic limits is strongly  
recommended for normal operation. If these electrical characteristic conditions are also  
exceeded, the LSI will malfunction and cause poor reliability.  
436  
HD66712U  
DC Characteristics (VCC = 2.7V to 5.5V, Ta = –20 to +75°C*3)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Notes*  
Input high voltage (1)  
(except OSC1)  
VIH1  
0.7VCC  
VCC  
V
6
Input low voltage (1)  
(except OSC1)  
VIL1  
–0.3  
0.2VCC  
0.6  
V
V
V
VCC = 2.7 to 3.0V  
CC = 3.0 to 4.5V  
6
–0.3  
V
Input high voltage (2)  
(OSC1)  
VIH2  
VIL2  
0.7VCC  
VCC  
15  
15  
7
Input low voltage (2)  
(OSC1)  
2
0.2VCC  
V
Output high voltage (1) VOH1  
(D0–D7)  
0.75VCC  
V
–IOH = 0.1 mA  
IOL = 0.1 mA  
–IOH = 0.04 mA  
IOL = 0.04 mA  
Output low voltage (1) VOL1  
(D0–D7)  
0.2VCC  
V
7
Output high voltage (2) VOH2  
(except D0–D7)  
0.8VCC  
V
8
Output low voltage (2) VOL2  
(except D0–D7)  
0.2VCC  
20  
V
8
Driver ON resistance  
(COM)  
RCOM  
kΩ  
±Id = 0.05 mA  
(COM)  
13  
VLCD = 4V  
Driver ON resistance  
(SEG)  
RSEG  
2
30  
kΩ  
±Id = 0.05 mA  
(SEG)  
VLCD = 4V  
13  
9
I/O leakage current  
ILI  
–1  
10  
1
µA  
µA  
VIN = 0 to VCC  
Pull-up MOS current  
(D0–D7, RESET* pin)  
–Ip  
50  
120  
VCC = 3V  
VIN = 0V  
Current  
consumption display  
(HD66712U)  
Normal  
ICC  
130  
90  
300  
µA  
µA  
µA  
Rf oscillation  
external clock  
VCC = 3V  
10, 14  
LP mode1 ILP1  
(1/33duty)  
fosc = 270 kHz  
LP mode2 ILP2  
(1/17duty)  
65  
LCD voltage  
VLCD1 2.7  
VLCD2 2.7  
11.0  
11.0  
V
V
VCC–V5, 1/5 bias  
16  
VCC–V5, 1/6.7 bias 16  
Note:  
*
Refer to Electrical Characteristics Notes following these tables.  
437  
HD66712U  
Booster Characteristics  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Notes*  
Output voltage  
(V5OUT2 pin)  
VUP2  
VUP3  
VCi  
7.5  
7.0  
1.0  
8.7  
V
Vci = 4.5V, I0 = 0.25 mA, 18, 19  
C = 1 µF, fOSC = 270 kHz  
Ta = 25°C  
Output voltage  
(V5OUT3 pin)  
7.7  
V
V
Vci = 2.7V, I0 = 0.25 mA, 18, 19  
C = 1 µF, fOSC = 270 kHz  
Ta = 25°C  
Input voltage  
5.0  
Vci VCC  
18, 19  
Ta = 25°C  
Note:  
*
Refer to Electrical Characteristics Notes following these tables.  
AC Characteristics (VCC = 2.7V to 5.5V, Ta = –20 to +75°C*3)  
Clock Characteristics (VCC = 2.7V to 5.5V, Ta = –20 to +75°C*3)  
Item  
Symbol Min Typ Max Unit Test Condition Notes*  
External External clock frequency  
fcp  
125 270 410 kHz  
11  
clock  
operation  
External clock duty  
Duty  
trcp  
45  
50  
55  
%
External clock rise time  
0.2  
0.2  
µs  
µs  
External clock fall time  
trcp  
Rf  
Clock oscillation frequency fOSC  
190 270 350 kHz Rf = 130 k,  
HD66712U  
12  
oscillation  
VCC = 5V  
Note:  
*
Refer to the Electrical Characteristics Notes section following these tables.  
438  
HD66712U  
System Interface Timing Characteristics (1) (VCC = 2.7V to 4.5V, Ta = –20 to  
+75°C*3)  
Bus Write Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
tcycE  
PWEH  
tEr, tEf  
tAS  
1000  
450  
ns  
Figure 34  
Enable pulse width (high level)  
Enable rise/fall time  
Address set-up time (RS, R/W to E)  
Address hold time  
Data set-up time  
25  
60  
tAH  
20  
tDSW  
tH  
195  
10  
Data hold time  
Bus Read Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
tcycE  
PWEH  
tEr, tEf  
tAS  
1000  
450  
ns  
Figure 35  
Enable pulse width (high level)  
Enable rise/fall time  
Address set-up time (RS, R/W to E)  
Address hold time  
Data delay time  
25  
60  
tAH  
20  
tDDR  
tDHR  
360  
Data hold time  
5
439  
HD66712U  
Serial Interface Operation  
Item  
Symbol  
tSCYC  
tSCH  
Min  
1
Typ  
Max  
20  
Unit  
µs  
Test Condition  
Serial clock cycle time  
Serial clock (high level width)  
Serial clock (low level width)  
Serial clock rise/fall time  
Chip select set-up time  
Chip select hold time  
Figure 36  
400  
400  
ns  
tSCL  
tSCr, tSCf  
tCSU  
50  
60  
tCH  
200  
200  
200  
Serial input data set-up time  
Serial input data hold time  
Serial output data delay time  
Serial output data hold time  
tSISU  
tSIH  
tSOD  
360  
tSOH  
0
440  
HD66712U  
System Interface Timing Characteristics (2) (VCC = 4.5V to 5.5V, Ta = –20 to  
+75°C*3)  
Bus Write Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Enable pulse width (high level)  
Enable rise/fall time  
tcycE  
500  
230  
ns  
Figure 34  
PWEH  
tEr, tEf  
20  
Address set-up time (RS, R/W to E) tAS  
40  
Address hold time  
Data set-up time  
Data hold time  
tAH  
tDSW  
tH  
10  
80  
10  
Bus Read Operation  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Enable cycle time  
Enable pulse width (high level)  
Enable rise/fall time  
tcycE  
500  
230  
ns  
Figure 35  
PWEH  
tEr, tEf  
20  
Address set-up time (RS, R/W to E) tAS  
40  
10  
Address hold time  
Data delay time  
Data hold time  
tAH  
tDDR  
tDHR  
160  
5
441  
HD66712U  
Serial Interface Sequence  
Item  
Symbol  
tSCYC  
tSCH  
Min  
0.5  
200  
200  
Typ  
Max  
20  
Unit  
µs  
Test Condition  
Serial clock cycle time  
Serial clock (high level width)  
Serial clock (low level width)  
Serial clock rise/fall time  
Chip select set-up time  
Chip select hold time  
Figure 36  
ns  
tSCL  
tSCr, tSCf  
tCSU  
50  
60  
tCH  
100  
100  
100  
Serial input data set-up time  
Serial input data hold time  
Serial output data delay time  
Serial output data hold time  
tSISU  
tSIH  
tSOD  
160  
tSOH  
0
Segment Extension Signal Timing (VCC = 2.7V to 5.5V, Ta = –20 to +75°C*3)  
Item  
Symbol Min  
Typ  
Max  
Unit  
Test Condition  
Clock pulse width High level tCWH  
800  
800  
500  
300  
300  
–1000  
ns  
Figure 37  
Low level  
tCWL  
tCSU  
tSU  
tDH  
tDM  
tct  
Clock set-up time  
Data set-up time  
Data hold time  
M delay time  
1000  
100  
Clock rise/fall time  
Reset Timing (VCC = 2.7V to 5.5V, Ta = –20 to +75°C*3)  
Item  
Symbol Min  
tRES 10  
Typ  
Max  
Unit  
Test Condition  
Reset low-level width  
ms  
Figure 38  
Power Supply Conditions Using Internal Reset Circuit  
Item  
Symbol Min  
Typ  
Max  
10  
Unit  
Test Condition  
Power supply rise time  
Power supply off time  
trCC  
0.1  
1
ms  
Figure 39  
tOFF  
442  
HD66712U  
Electrical Characteristics Notes  
1. All voltage values are referred to GND = 0V. If the LSI is used above the absolute maximum ratings,  
it may become permanently damaged. Using the LSI within the following electrical characteristic is  
strongly recommended to ensure normal operation. If these electrical characteristic are also exceeded,  
the LSI may malfunction or exhibit poor reliability.  
2. VCC V1 V2 V3 V4 V5 must be maintained.  
3. For die products, specified up to 75°C.  
4. For die products, specified by the die shipment specification.  
5. The following four circuits are I/O pin configurations except for liquid crystal display output.  
Input pin  
Output pin  
Pin: E/SCLK, RS/CS*, RW/SID, IM,  
EXT, TEST (MOS without pull-up)  
VCC  
Pins: RESET* (MOS with pull-up)  
VCC VCC  
Pins: CL1, CL2, M, D  
VCC  
PMOS  
PMOS  
PMOS  
PMOS  
NMOS  
(pull-up MOS)  
NMOS  
NMOS  
I/O Pin  
Pins: DB0/SOD–DB7  
VCC  
VCC  
(MOS with pull-up)  
(input circuit)  
PMOS  
(pull-up MOS)  
PMOS  
Input enable  
NMOS  
VCC  
NMOS  
PMOS  
Output enable  
Data  
NMOS  
(output circuit)  
(tristate)  
6. Applies to input pins and I/O pins, excluding the OSC1 pin.  
7. Applies to I/O pins.  
8. Applies to output pins.  
9. Current flowing through pull-up MOSs, excluding output drive MOSs.  
443  
HD66712U  
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive  
current flows through the input circuit to the power supply. To avoid this from happening, the input  
level must be fixed high or low.  
11. Applies only to external clock operation.  
Th  
Tl  
Oscillator  
Open  
OSC1  
OSC2  
0.7 VCC  
0.5 VCC  
0.3 VCC  
tfcp  
× 100%  
tfcp  
Th  
h + Tl  
Duty =  
T
12. Applies only to the internal oscillator operation using oscillation resistor Rf.  
i) HD66712S  
Rf : 75 k± 2% (when VCC = 3V to 4V)  
OSC1  
Rf : 91 k± 2% (when VCC = 4V to 5V)  
Rf  
ii) HD66712U  
Rf : 110 kΩ ± 2% (when VCC = 3V to 4V)  
Rf : 130 kΩ ± 2% (when VCC = 4V to 5V)  
OSC2  
Since the oscillation frequency varies depending on the OSC1 and  
OSC2 pin capacitance, the wiring length to these pins should be minimized.  
Referential data  
VCC = 5V  
VCC = 3V  
400  
400  
300  
270  
300  
270  
HD66712U (typ.)  
HD66712S (typ.)  
HD66712U (typ.)  
HD66712S (typ.)  
200  
200  
130  
91 100  
150  
50  
100110  
150  
75  
50  
Rf (k)  
Rf (k)  
444  
HD66712U  
13. RCOM is the resistance between the power supply pins (VCC, V1, V4, V5) and each common signal pin  
(COM0 to COM33).  
RSEG is the resistance between the power supply pins (VCC, V2, V3, V5) and each segment signal pin  
(SEG1 to SEG60).  
14. The following graphs show the relationship between operation frequency and current consumption.  
VCC = 5V  
VCC = 3V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
max.  
typ.  
max.  
(normal mode)  
typ.  
(normal mode)  
typ.  
(low power mode)  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fOSC or fcp (kHz)  
fOSC or fcp (kHz)  
15. Applies to the OSC1 pin.  
16. Each COM and SEG output voltage is within ±0.15V of the LCD voltage (VCC, V1, V2, V3, V4, V5)  
when there is no load.  
17. The TEST pin must be fixed to ground, and the IM or EXT pin must also be connected to VCC or  
ground.  
18. Booster characteristics test circuits are shown below.  
(Boosting twice)  
(Boosting three times)  
VCC  
VCC  
Vci  
C1  
C2  
Rload  
IO  
Vci  
C1  
C2  
Rload  
IO  
1 µF  
1 µF  
+
+
V5OUT2  
V5OUT2  
1 µF  
1 µF  
1 µF  
+
+
+
V5OUT3  
V5OUT3  
GND  
GND  
445  
HD66712U  
19. Reference data  
The following graphs show the liquid crystal voltage booster characteristics.  
VUP2 = VCC–V5OUT2  
VUP3 = VCC–V5OUT3  
(1) VUP2, VUP3 vs Vci  
Boosting twice  
Boosting three times  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
typ.  
typ.  
8
7
6
8
7
5
4
6
2.0  
3.0  
4.0  
Vci (V)  
5.0  
2.0  
3.0  
4.0  
Vci (V)  
5.0  
Test condition: Vci = VCC, fcp = 270 kHz,  
Test condition: Vci = VCC, fcp = 270 kHz,  
Ta = 25°C, Rload = 25 kΩ  
Ta = 25°C, Rload = 25 kΩ  
(2) VUP2, VUP3 vs Io  
Boosting twice  
9.0  
Boosting three times  
8.0  
8.5  
7.5  
7.0  
6.5  
typ.  
min.  
8.0  
7.5  
7.0  
6.5  
6.0  
typ.  
6.0  
5.5  
5.0  
min.  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Io (mA)  
Io (mA)  
Test condition: Vci = VCC = 4.5V,  
Rf = 91 k, Ta = 25°C  
Test condition: Vci = VCC = 2.7V,  
Rf = 75 k, Ta = 25°C  
(3) VUP2, VUP3 vs Ta  
Boosting twice  
Boosting three times  
9.0  
8.5  
8.0  
7.5  
7.0  
8.0  
7.5  
7.0  
6.5  
6.0  
typ.  
typ.  
min.  
min.  
–60 –20  
0
20  
60  
100  
–60 –20  
0
20  
60 100  
Ta (°C)  
Ta (°C)  
Test condition: Vci = VCC = 4.5V,  
Rf = 91 k, Io = 0.25 mA  
Test condition: Vci = VCC = 2.7V,  
Rf = 75 k, Io = 0.25 mA  
446  
HD66712U  
(4) VUP2, VUP3 vs capacitance  
Boosting twice  
9.0  
Boosting three times  
typ.  
min.  
8.0  
7.5  
7.0  
6.5  
6.0  
typ.  
min.  
8.5  
8.0  
7.5  
7.0  
0.5  
1.0  
1.5  
0.5  
1.0  
1.5  
C (µF)  
C (µF)  
Test condition: Vci = VCC = 4.5V,  
Rf = 91 k, Io = 0.25 mA  
Test condition: Vci = VCC = 2.7V,  
Rf = 75 k, Io = 0.25 mA  
20. Must maintain (“High”) VCC Vci (“Low”).  
447  
HD66712U  
Load Circuits  
AC Characteristics Test Load Circuits  
Data bus: DB0–DB7, SOD  
Segment extension signals: CL1, CL2, D, M  
Test  
point  
Test  
point  
30 pF  
50 pF  
448  
HD66712U  
Timing Characteristics  
VIH1  
VIL1  
VIH1  
VIL1  
RS  
tAS  
tAH  
R/W  
VIL1  
VIL1  
PWEH  
tAH  
tEf  
VIH1  
VIL1  
VIH1  
VIL1  
E
VIL1  
tEr  
tDSW  
tH  
VIH1  
VIL1  
VIH1  
VIL1  
Valid data  
tCYCE  
DB0 to DB7  
Figure 34 Bus Write Operation  
VIH1  
VIL1  
VIH1  
VIL1  
RS  
R/W  
E
tAS  
tAH  
VIH1  
VIH1  
PWEH  
tAH  
tEf  
VIH1  
VIL1  
VIH1  
VIL1  
VIL1  
tEr  
tDDR  
tDHR  
VOH1  
VOL1  
VOH1  
VOL1  
Valid data  
tCYCE  
DB0 to DB7  
Figure 35 Bus Read Operation  
449  
HD66712U  
tSCYC  
VIL1  
CS*  
VIL1  
tCSU  
tCH  
tSCf  
tSCr  
tSCH  
tCWL  
VIH1  
VIH1  
VIH1  
SCLK  
VIL1  
VIL1  
tSISU  
VIL1  
VIL1  
tSIH  
VIH1  
VIL1  
VIH1  
VIL1  
SID  
tSOD  
tSOH  
VOH1  
VOL1  
VOH1  
VOL1  
SOD  
Figure 36 Serial Interface Timing  
tct  
VOH2  
VOH2  
CL1  
VOL2  
tCWH  
tCWH  
VOH2  
VOL2  
CL2  
D
tCSU  
tCWL  
tct  
VOH2  
VOL2  
tDH  
tSU  
M
VOL2  
tDM  
Figure 37 Interface Timing with Extension Driver  
450  
HD66712U  
tRES  
RESET*  
VIL1  
VIL1  
Note: When power is supplied, initializing by the internal reset circuit has priority. Accordingly,  
the above RESET* input is ignored during internal reset period.  
Figure 38 Reset Timing  
*2  
2.7V/4.5V  
VCC  
0.2V  
0.2V  
0.2V  
trcc  
tOFF*1  
tOFF 1 ms  
0.1 ms trcc 10 ms  
Notes: 1. tOFF compensates for the power oscillation period caused by momentary power  
supply oscillations.  
2. Specified at 4.5V for 5-volt operation, and at 2.7V for 3-volt operation.  
3. If the above electrical conditions are not satisfied, the internal reset circuit will not  
operate normally. In this case, initialized by instruction. (Refer to the Initializing by  
Instruction section.)  
Figure 39 Power Supply Sequence  
451  

相关型号:

HD66712SA01FS

Dot-Matrix Liquid Crystal Display Controller/Driver
HITACHI

HD66712SA01FS

DOT MAT LCD DRVR AND DSPL CTLR, PQFP128, 14 X 20 MM, QFP-128
RENESAS

HD66712SA02FS

Dot-Matrix Liquid Crystal Display Controller/Driver
HITACHI

HD66712SA03FS

DOT MAT LCD DRVR AND DSPL CTLR, PQFP128, 14 X 20 MM, QFP-128
RENESAS

HD66712T

LCD Display Driver
ETC

HD66712U

Low-Power Dot-Matrix Liquid Crystal Display Controller/Driver with Key Scan Function
HITACHI

HD66712UA02TA0

Dot-Matrix Liquid Crystal Display Controller/Driver
HITACHI

HD66712UA02TA0L

Dot Matrix LCD Driver, CMOS, TCP-128
RENESAS

HD66712UA03TA0

Dot-Matrix Liquid Crystal Display Controller/Driver
HITACHI

HD66712UA03TA0L

Dot Matrix LCD Driver, CMOS, TCP-128
RENESAS

HD66717

(Low-Power Dot-Matrix Liquid Crystal Display Controller/Driver)
HITACHI

HD66717A03TA0

(Low-Power Dot-Matrix Liquid Crystal Display Controller/Driver)
HITACHI