HM62V8256BLTSI-10UL [HITACHI]

STANDARD SRAM, PDSO32, 8 X 13.40 MM, PLASTIC, TSOP1-32;
HM62V8256BLTSI-10UL
型号: HM62V8256BLTSI-10UL
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

STANDARD SRAM, PDSO32, 8 X 13.40 MM, PLASTIC, TSOP1-32

静态存储器 光电二极管
文件: 总16页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM62V8256BI Series  
2 M SRAM (256-kword × 8-bit)  
ADE-203-1004 (Z)  
Preliminary, Rev. 0.0  
Jan. 19, 1999  
Description  
The Hitachi HM62V8256BI Series is 2-Mbit static RAM organized 262,144-kword × 8-bit.  
HM62V8256BI Series has realized higher density, higher performance and low power consumption by  
employing Hi-CMOS process technology. The HM62V8256BI Series offers low power standby power  
dissipation; therefore, it is suitable for battery backup systems. It is packaged in standard 32-pin plastic  
TSOPI.  
Features  
Single 3.0 V supply: 2.7 V to 3.6 V  
Access time: 85 ns/100 ns (max)  
Power dissipation  
Active: 15 mW/MHz (typ)  
Standby: 2.4 µW (typ)  
Completely static memory.  
No clock or timing strobe required  
Equal access and cycle times  
Common data input and output  
Three state output  
Directly LV-TTL compatible all inputs  
Battery backup operation  
2 chip selection for battery backup  
Temperature range: –40 to +85°C  
HM62V8256BI Series  
Ordering Information  
Type No.  
Access time Package  
HM62V8256BLTSI-8  
HM62V8256BLTSI-10  
85 ns  
100 ns  
8 × 13.4 mm 32-pin plastic TSOP I (TFP-32DC)  
HM62V8256BLTSI-8SL  
85 ns  
HM62V8256BLTSI-10SL 100 ns  
HM62V8256BLTSI-8UL 85 ns  
HM62V8256BLTSI-10UL 100 ns  
2
HM62V8256BI Series  
Pin Arrangement  
32-pin TSOP (Normal Type TSOP)  
1
A11  
A9  
32  
OE  
2
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A10  
CS1  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
VSS  
I/O2  
I/O1  
I/O0  
A0  
3
A8  
4
A13  
WE  
CS2  
A15  
VCC  
A17  
A16  
A14  
A12  
A7  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A6  
A1  
A5  
A2  
A4  
A3  
(Top view)  
Pin Description  
Pin name  
A0 to A17  
I/O0 to I/O7  
CS1  
Function  
Address input  
Data input/output  
Chip select 1  
Chip select 2  
Write enable  
Output enable  
Power supply  
Ground  
CS2  
WE  
OE  
VCC  
VSS  
NC  
No connection  
3
HM62V8256BI Series  
Block Diagram  
LSB  
A12  
VCC  
VSS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Memory matrix  
512 x 4,096  
Row  
decoder  
A10  
MSB  
I/O0  
I/O7  
Column I/O  
Input  
data  
control  
Column decoder  
LSB  
MSB  
A14A16A15A13 A8 A9 A11 A17  
CS1  
CS2  
Timing pulse generator  
Read/Write control  
WE  
OE  
4
HM62V8256BI Series  
Operation Table  
CS1  
H
L
CS2  
H
WE  
×
OE  
×
I/O  
Operation  
Standby  
Standby  
Standby  
Read  
High-Z  
High-Z  
High-Z  
Dout  
Din  
L
×
×
L
L
×
×
L
H
H
L
L
L
H
H
L
Write  
L
H
L
Din  
Write  
L
H
H
H
High-Z  
Output disable  
Note: H: VIH, L: VIL, ×: VIH or VIL  
Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
Power supply voltage relative to VSS  
Terminal voltage on any pin relative to VSS  
Power dissipation  
VCC  
VT  
–0.5 to +4.6  
–0.5*1 to VCC + 0.3*2  
1.0  
V
V
PT  
W
°C  
°C  
Storage temperature range  
Storage temperature range under bias  
Tstg  
Tbias  
–55 to +125  
–40 to +85  
Notes: 1. VT min: –1.5 V for pulse half-width 30 ns  
2. Maximum voltage is +4.6 V  
DC Operating Conditions  
Parameter  
Symbol  
VCC  
Min  
2.7  
0
Typ  
3.0  
0
Max  
3.6  
Unit  
V
Note  
Supply voltage  
VSS  
0
V
Input high voltage  
VIH  
2.4  
–0.3  
–40  
VCC + 0.3  
0.4  
V
Input low voltage  
VIL  
V
1
Ambient temperature range  
Ta  
+85  
°C  
Note: 1. VIL min: –1.5 V for pulse half-width 30 ns  
5
HM62V8256BI Series  
DC Characteristics  
Parameter  
Symbol Min  
Typ*1  
Max  
1
Unit  
µA  
Test conditions  
Input leakage current  
Output leakage current  
|ILI|  
Vin = VSS to VCC  
|ILO|  
1
µA  
CS1 = VIH or CS2 = VIL or  
OE = VIH or WE = VIL,  
VI/O = VSS to VCC  
Operating current  
ICC  
5
mA  
mA  
CS1 = VIL, CS2 = VIH,  
others = VIH/VIL, II/O = 0 mA  
Average operating current  
ICC1  
30  
Min cycle, duty = 100%  
II/O = 0 mA, CS1 = VIL, CS2  
= VIH, Others = VIH/VIL  
ICC2  
5
10  
mA  
Cycle time = 1 µs,  
duty = 100%,  
II/O = 0 mA, CS1 0.2 V,  
CS2 VCC – 0.2 V,  
VIH VCC – 0.2 V,  
VIL 0.2 V  
Standby current  
ISB  
0.1  
0.8  
0.3  
60  
mA  
(1) CS1 = VIH, CS2 = VIH or  
(2) CS2 = VIL  
2
ISB1  
*
µA  
0 V Vin  
(1) 0 V CS2 0.2 V or  
(2) CS1 VCC – 0.2 V,  
CS2 VCC – 0.2 V  
3
4
ISB1  
*
*
0.8  
0.5  
30  
8
µA  
µA  
V
ISB1  
Output high voltage  
Output low voltage  
VOH  
VCC–0.2 —  
0.4  
0.2  
IOH = –100 µA  
IOH = –1 mA  
IOL = 2.1 mA  
IOL = 100 µA  
2.4  
V
VOL  
V
V
Notes: 1. Typical values are at VCC = 3.0 V, Ta = +25°C and specified loading, and not guaranteed.  
2. This characteristics is guaranteed only for L version.  
3. This characteristics is guaranteed only for L-SL version.  
4. This characteristics is guaranteed only for L-UL version.  
Capacitance (Ta = +25°C, f = 1 MHz)  
Parameter  
Symbol  
Cin  
Typ  
Max  
8
Unit  
pF  
Test conditions  
Vin = 0 V  
Note  
Input capacitance  
Input/output capacitance  
1
1
CI/O  
10  
pF  
VI/O = 0 V  
Note: 1. This parameter is sampled and not 100% tested.  
6
HM62V8256BI Series  
AC Characteristics (Ta = –40 to +85°C, VCC = 2.7 V to 3.6 V, unless otherwise noted.)  
Test Conditions  
Input pulse levels: VIL = 0.4 V, VIH = 2.4 V  
Input rise and fall time: 5 ns  
Input timing reference levels: 1.4 V  
Output timing reference level: 1.4 V  
Output load (Including scope and jig)  
VTM  
R1  
R2  
Dout  
R1 = 3070  
50pF  
R2 = 3150 Ω  
VTM = 2.8 V  
Read Cycle  
HM62V8256BI  
-8  
-10  
Min  
100  
10  
10  
10  
5
Parameter  
Symbol  
tRC  
Min  
85  
10  
10  
10  
5
Max  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Read cycle time  
Address access time  
Chip select access time  
tAA  
85  
85  
85  
45  
100  
100  
100  
60  
tCO1  
tCO2  
tOE  
Output enable to output valid  
Output hold from address change  
Chip selection to output in low-Z  
tOH  
tCLZ1  
tCLZ2  
tOLZ  
2, 3  
2, 3  
Output enable to output in low-Z  
2, 3  
Chip deselection to output in high-Z tCHZ1  
tCHZ2  
0
35  
35  
35  
0
40  
1, 2, 3  
1, 2, 3  
1, 2, 3  
0
0
40  
Output disable to output in high-Z  
tOHZ  
0
0
40  
7
HM62V8256BI Series  
Write Cycle  
HM62V8256BI  
-8  
-10  
Min  
100  
90  
90  
80  
0
Parameter  
Symbol  
tWC  
Min  
85  
75  
75  
55  
0
Max  
35  
35  
Max  
40  
40  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Write cycle time  
Address valid to end of write  
Chip selection to end of write  
Write pulse width  
tAW  
tCW  
5
tWP  
4, 13  
Address setup time  
Write recovery time  
Data to write time overlap  
Data hold from write time  
tAS  
6
7
tWR  
0
0
tDW  
35  
0
40  
0
tDH  
Output active from output in high-Z tOW  
5
5
2
Output disable to output in high-Z  
tOHZ  
tWHZ  
0
0
1, 2, 8  
1, 2, 8  
WE to output in high-Z  
0
0
Notes: 1. tCHZ, tOHZ and tWHZ are defined as the time at which the outputs achieve the open circuit conditions  
and are not referred to output voltage levels.  
2. This parameter is sampled and not 100% tested.  
3. At any given temperature and voltage condition, tHZ max is less than tLZ min both for a given  
device and from device to device.  
4. A write occurs during the overlap (tWP) of a low CS1, a high CS2, and a low WE. A write begins  
at the later transition of CS1 going low, CS2 going high, or WE going low. A write ends at the  
earlier transition of CS1 going high, CS2 going low, or WE going high. tWP is measured from the  
beginning of write to the end of write.  
5. tCW is measured from CS1 going low or CS2 going high to the end of write.  
6. tAS is measured from the address valid to the beginning of write.  
7. tWR is measured from the earlier of WE or CS1 going high or CS2 going low to the end of write  
cycle.  
8. During this period, I/O pins are in the output state; therefore, the input signals of the opposite  
phase to the outputs must not be applied.  
9. If the CS1 goes low or CS2 going high simultaneously with WE going low or after WE going low,  
the output remain in a high impedance state.  
10. Dout is the same phase of the write data of this write cycle.  
11. Dout is the read data of next address.  
12. If CS1 is low and CS2 high during this period, I/O pins are in the output state. Therefore, the  
input signals of the opposite phase to the outputs must not be applied to them.  
13. In the write cycle with OE low fixed, tWP must satisfy the following equation to avoid a problem of  
data bus contention. tWP tDW min + tWHZ max  
8
HM62V8256BI Series  
Timing Waveforms  
Read Cycle (WE = VIH)  
tRC  
Address  
Valid address  
tAA  
CS1  
tACS1  
tCLZ1  
tCHZ1  
CS2  
tACS2  
tCLZ2  
tCHZ2  
OE  
tOHZ  
tOH  
tOE  
tOLZ  
High impedance  
Dout  
Valid data  
9
HM62V8256BI Series  
Write Cycle (1) (OE Clock)  
tWC  
Valid address  
tAW  
Address  
OE  
tCW  
CS1  
*9  
tWR  
CS2  
tWP  
tAS  
WE  
tOHZ  
High impedance  
Dout  
Din  
tDW  
tDH  
Valid data  
10  
HM62V8256BI Series  
Write Cycle (2) (OE = VIL)  
tWC  
Address  
Valid address  
tCW  
tWR  
CS1  
*9  
CS2  
tAW  
tWP  
tOH  
WE  
tAS  
tOW  
tWHZ  
*11  
*10  
High impedance  
tDW tDH  
Dout  
Din  
*12  
Valid data  
11  
HM62V8256BI Series  
Low VCC Data Retention Characteristics (Ta = –40 to +85°C)  
Parameter  
Symbol Min  
Typ*5 Max Unit  
Test conditions*4  
VCC for data retention  
VDR  
2.0  
V
Vin 0V  
(1) 0 V CS2 0.2 V or  
(2) CS2 VCC – 0.2 V  
CS1 VCC – 0.2 V  
1
Data retention current  
ICCDR  
*
0.8  
30  
µA  
VCC = 3.0 V, Vin 0 V  
(1) 0 V CS2 0.2 V or  
(2) CS2 VCC – 0.2 V,  
CS1 VCC – 0.2 V  
2
3
ICCDR  
ICCDR  
Chip deselect to data retention time tCDR  
Operation recovery time tR  
*
0.8  
0.5  
15  
3
µA  
µA  
ns  
ns  
*
0
tRC*6  
See retention waveform  
Notes: 1. This characteristic is guaranteed only for L-version, 15 µA max. at Ta = –40 to +40°C.  
2. This characteristic is guaranteed only for L-SL-version, 5 µA max. at Ta = –40 to +40°C.  
3. This characteristic is guaranteed only for L-UL-version, 2 µA max. at Ta = –40 to +40°C.  
4. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, and Din buffer. If CS2 controls  
data retention mode, Vin levels (address, WE, OE, CS1, I/O) can be in the high impedance state.  
If CS1 controls data retention mode, CS2 must be CS2 VCC – 0.2 V or 0 V CS2 0.2 V. The  
other input levels (address, WE, OE, I/O) can be in the high impedance state.  
5. Typical values are at VCC = 3.0 V, Ta = +25°C and specified loading, and not guaranteed.  
6. tRC = read cycle time.  
Low VCC Data Retention Timing Waveform (1) (CS1 Controlled)  
tCDR  
Data retention mode  
tR  
VCC  
2.7V  
2.4 V  
VDR  
CS1  
0 V  
CS1 VCC – 0.2 V  
12  
HM62V8256BI Series  
Low VCC Data Retention Timing Waveform (2) (CS2 Controlled)  
tCDR  
Data retention mode  
tR  
VCC  
2.7 V  
CS2  
VDR  
0.4 V  
0 V  
0 V CS2 0.2 V  
13  
HM62V8256BI Series  
Package Dimensions  
HM62V8256BLTSI Series (TFP-32DC)  
Unit: mm  
8.00  
8.20 Max  
17  
32  
1
16  
0.50  
0.22 ± 0.08  
0.20 ± 0.06  
0.08 M  
0.80  
13.40 ± 0.30  
0.43 Max  
0° – 5°  
0.50 ± 0.10  
0.10  
Hitachi Code  
TFP-32DC  
JEDEC  
EIAJ  
Dimension including the plating thickness  
Base material dimension  
Weight (reference value) 0.23 g  
14  
HM62V8256BI Series  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & IC Div.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Electronic components Group  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
2000 Sierra Point Parkway Dornacher Straße 3  
Brisbane, CA 94005-1897 D-85622 Feldkirchen, Munich  
Tel: <1> (800) 285-1601  
Fax: <1> (303) 297-0447  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
15  
HM62V8256BI Series  
Revision Record  
Rev. Date  
0.0 Jan. 19, 1999  
Contents of Modification  
Initial issue  
Drawn by Approved by  
16  

相关型号:

HM62V8256BLTSI-8

Standard SRAM, 256KX8, 85ns, CMOS, PDSO32, 8 X 13.40 MM, PLASTIC, TSOP1-32
HITACHI

HM62V8256BLTSI-8SL

STANDARD SRAM, PDSO32, 8 X 13.40 MM, PLASTIC, TSOP1-32
HITACHI

HM62V8256BLTSI-8UL

Standard SRAM, 256KX8, 85ns, CMOS, PDSO32, 8 X 13.40 MM, PLASTIC, TSOP1-32
HITACHI