HM9264B [HITACHI]

64 k SRAM (8-kword x 8-bit); 64K的SRAM ( 8千字×8位)
HM9264B
型号: HM9264B
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

64 k SRAM (8-kword x 8-bit)
64K的SRAM ( 8千字×8位)

静态存储器
文件: 总14页 (文件大小:75K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM9264B Series  
64 k SRAM (8-kword × 8-bit)  
ADE-203-618C (Z)  
Rev. 3.0  
Nov. 1997  
Description  
The Hitachi HM9264B is 64k-bit static RAM organized 8-kword × 8-bit. It realizes higher performance  
and low power consumption by 1.5 µm CMOS process technology. The device, packaged in 450 mil  
SOP (foot print pitch width), 600 mil plastic DIP, is available for high density mounting.  
Features  
High speed  
Fast access time: 85/100 ns (max)  
Low power  
Standby: 10 µW (typ)  
Operation: 15 mW (typ) (f = 1 MHz)  
Single 5 V supply  
Completely static memory  
No clock or timing strobe required  
Equal access and cycle times  
Common data input and output  
Three state output  
Directly TTL compatible  
All inputs and outputs  
Battery backup operation capability  
Note: HM9264B series can't be applied for Aerospace, Aircraft, Nucleus Plants, Main Flame  
Computers, Medical Life-support System, and Automobile Engine Control and Industrial  
machines. (e.g. Communication Hubs, NC, and others.)  
Ordering Information  
Type No.  
Access time  
Package  
HM9264BLFP-8L  
HM9264BLFP-10L  
85 ns  
100 ns  
450-mil, 28-pin plastic SOP(FP-28DA)  
HM9264BLP-8L  
HM9264BLP-10L  
85 ns  
100 ns  
600-mil, 28-pin plastic DIP (DP-28)  
HM9264B Series  
Pin Arrangement  
HM9264BLFP/BLP Series  
1
2
NC  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
28  
27  
26  
VCC  
WE  
CS2  
A8  
3
4
25  
24  
5
A9  
23  
22  
21  
20  
19  
6
A11  
OE  
A10  
CS1  
I/O8  
I/O7  
I/O6  
7
8
9
10  
11  
12  
13  
14  
I/O1  
I/O2  
18  
17  
16  
15  
I/O5  
I/O4  
I/O3  
VSS  
(Top view)  
Pin Description  
Pin name  
A0 to A12  
I/O1 to I/O8  
CS1  
Function  
Address input  
Data input/output  
Chip select 1  
Chip select 2  
Write enable  
Output enable  
No connection  
Power supply  
Ground  
CS2  
WE  
OE  
NC  
VCC  
VSS  
HM9264B Series  
Block Diagram  
A11  
A8  
A9  
A7  
A12  
A5  
VCC  
VSS  
Row  
decoder  
Memory array  
256 × 256  
A6  
A4  
I/O1  
I/O8  
Column I/O  
Input  
data  
control  
Column decoder  
A1 A2 A0 A10 A3  
CS2  
CS1  
Timing pulse generator  
Read, Write control  
WE  
OE  
HM9264B Series  
Function Table  
WE CS1 CS2 OE  
Mode  
VCC current  
ISB, ISB1  
ISB, ISB1  
ICC  
I/O pin  
High-Z  
High-Z  
High-Z  
Dout  
Ref. cycle  
×
×
H
H
L
H
×
L
L
L
L
×
×
×
H
L
Not selected (power down)  
L
Not selected (power down)  
H
H
H
H
Output disable  
Read  
ICC  
Read cycle (1)–(3)  
Write cycle (1)  
Write cycle (2)  
H
L
Write  
ICC  
Din  
L
Write  
ICC  
Din  
Note: ×: H or L  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Value  
Unit  
V
Power supply voltage*1  
Terminal voltage*1  
–0.5 to +7.0  
–0.5*2 to VCC + 0.3*3  
1.0  
VT  
V
Power dissipation  
PT  
W
Operating temperature  
Storage temperature  
Storage temperature under bias  
Notes: 1. Relative to VSS  
Topr  
Tstg  
Tbias  
0 to + 70  
°C  
°C  
°C  
–55 to +125  
–10 to +85  
2. VT min: –3.0 V for pulse half-width 50 ns  
3. Maximum voltage is 7.0 V  
Recommended DC Operating Conditions (Ta = 0 to +70°C)  
Parameter  
Symbol  
VCC  
Min  
4.5  
0
Typ  
5.0  
0
Max  
5.5  
0
Unit  
V
Supply voltage  
VSS  
V
Input high voltage  
Input low voltage  
VIH  
2.2  
–0.3*1  
VCC + 0.3  
0.8  
V
V
VIL  
Note: 1. VIL min: –3.0 V for pulse half-width 50 ns  
HM9264B Series  
DC Characteristics (Ta = 0 to +70°C, VCC = 5 V ±10%, VSS = 0 V)  
Parameter  
Symbol Min Typ*1 Max Unit Test conditions  
Input leakage current  
Output leakage current  
|ILI|  
2
2
µA  
µA  
Vin = VSS to VCC  
|ILO|  
CS1 = VIH or CS2 = VIL or OE = VIH or  
WE = VIL, VI/O = VSS to VCC  
Operating power supply  
current  
ICCDC  
7
15  
45  
mA CS1 = VIL, CS2 = VIH, II/O = 0 mA  
others = VIH/VIL  
Average operating power ICC1  
supply current  
30  
mA Min cycle, duty = 100%,  
CS1 = VIL, CS2 = VIH, II/O = 0 mA  
others = VIH/VIL  
ICC2  
3
5
mA Cycle time = 1 µs, duty = 100%, II/O = 0 mA  
CS1 0.2 V, CS2 VCC – 0.2 V,  
VIH VCC – 0.2 V, VIL 0.2 V  
Standby power supply  
current  
ISB  
1
2
3
mA CS1 = VIH, CS2 = VIL  
ISB1  
50  
µA  
CS1 VCC – 0.2 V, CS2 VCC – 0.2 V or  
0 V CS2 0.2 V, 0 V Vin  
Output low voltage  
Output high voltage  
VOL  
VOH  
0.4  
V
V
IOL = 2.1 mA  
2.4  
IOH = –1.0 mA  
Notes: 1. Typical values are at VCC = 5.0 V, Ta = +25°C and not guaranteed.  
Capacitance (Ta = 25°C, f = 1.0 MHz)  
Parameter  
Symbol  
Cin  
Min  
Typ  
Max  
5
Unit  
pF  
Test conditions  
Vin = 0 V  
Input capacitance*1  
Input/output capacitance*1  
CI/O  
7
pF  
VI/O = 0 V  
Note: 1. This parameter is sampled and not 100% tested.  
HM9264B Series  
AC Characteristics (Ta = 0 to +70°C, VCC = 5 V ± 10%, unless otherwise noted.)  
Test Conditions  
Input pulse levels: 0.8 V to 2.4 V  
Input and output timing reference level: 1.5 V  
Input rise and fall time: 10 ns  
Output load: 1 TTL Gate + CL (100 pF) (Including scope & jig)  
Read Cycle  
HM9264B-8L HM9264B-10L  
Parameter  
Symbol Min  
Max  
Min  
100  
10  
10  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Read cycle time  
tRC  
85  
10  
10  
5
Address access time  
Chip select access time  
tAA  
85  
85  
85  
45  
100  
100  
100  
50  
CS1  
tCO1  
tCO2  
tOE  
CS2  
Output enable to output valid  
Chip selection to output in low-Z  
CS1  
tLZ1  
tLZ2  
tOLZ  
tHZ1  
tHZ2  
tOHZ  
tOH  
2
CS2  
2
Output enable to output in low-Z  
2
Chip deselection in to output in high-Z CS1  
CS2  
0
30  
30  
30  
0
35  
1, 2  
1, 2  
1, 2  
0
0
35  
Output disable to output in high-Z  
Output hold from address change  
0
0
35  
10  
10  
Notes: 1. tHZ is defined as the time at which the outputs achieve the open circuit conditions and are not  
referred to output voltage levels.  
2. At any given temperature and voltage condition, tHZ maximum is less than tLZ minimum both for  
a given device and from device to device.  
3. Address must be valid prior to or simultaneously with CS1 going low or CS2 going high.  
HM9264B Series  
Read Timing Waveform (1) (WE = VIH)  
tRC  
Address  
Valid address  
tAA  
tCO1  
CS1  
tLZ1  
tCO2  
tHZ1  
CS2  
tLZ2  
tOE  
tHZ2  
tOHZ  
tOH  
tOLZ  
OE  
High Impedance  
Dout  
Valid data  
Read Timing Waveform (2) (WE = VIH, OE = VIL)  
Address  
Dout  
Valid address  
tAA  
tOH  
tOH  
Valid data  
HM9264B Series  
Read Timing Waveform (3) (WE = VIH, OE = VIL)*3  
tCO1  
CS1  
tHZ1  
tLZ1  
tHZ2  
CS2  
tCO2  
tLZ2  
Dout  
Valid data  
HM9264B Series  
Write Cycle  
HM9264B-8L HM9264B-10L  
Parameter  
Symbol Min  
Max  
30  
30  
Min  
100  
80  
0
Max  
35  
35  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Write cycle time  
tWC  
tCW  
tAS  
85  
75  
0
Chip selection to end of write  
Address setup time  
2
3
Address valid to end of write  
Write pulse width  
tAW  
tWP  
tWR  
tWHZ  
tDW  
tDH  
75  
55  
0
80  
60  
0
1, 9  
4
Write recovery time  
WE to output in high-Z  
Data to write time overlap  
Data hold from write time  
Output active from end of write  
Output disable to output in high-Z  
0
0
5
40  
0
40  
0
tOW  
tOHZ  
5
5
0
0
5
Notes: 1. A write occurs during the overlap of a low CS1, and high CS2, and a high WE. A write begins  
at the latest transition among CS1 going low,CS2 going high and WE going low. A write ends  
at the earliest transition among CS1 going high CS2 going low and WE going high. Time tWP is  
measured from the beginning of write to the end of write.  
2. tCW is measured from the later of CS1 going low or CS2 going high to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write  
cycle.  
5. During this period, I/O pins are in the output state, therefore the input signals of the opposite  
phase to the outputs must not be applied.  
6. If CS1 goes low simultaneously with WE going low after WE goes low, the outputs remain in  
high impedance state.  
7. Dout is the same phase of the written data in this write cycle.  
8. Dout is the read data of the next address  
9. In the write cycle with OE low fixed, tWP must satisfy the following equation to avoid a problem  
of data bus contention  
t
WP tWHZ max + tDW min.  
HM9264B Series  
Write Timing Waveform (1) (OE Clock)  
tWC  
Address  
Valid address  
OE  
tCW  
tWR  
CS1  
*6  
CS2  
tAW  
tAS  
tWP  
WE  
tOHZ  
High Impedance  
tDH  
Dout  
tDW  
High Impedance  
Din  
Valid data  
HM9264B Series  
Write Timing Waveform (2) (OE Low Fixed) (OE = VIL)  
tWC  
Address  
CS1  
Valid address  
tAW  
tWR  
tCW  
*6  
CS2  
WE  
tWP  
tAS  
tOH  
tOW  
tWHZ  
*7  
*5  
*8  
Dout  
Din  
tDW  
tDH  
High Impedance  
Valid data  
HM9264B Series  
Low VCC Data Retention Characteristics (Ta = 0 to +70°C)  
Parameter  
Symbol Min  
Typ*1 Max Unit  
Test conditions*4  
VCC for data retention  
VDR  
2.0  
V
CS1 VCC –0.2 V,  
CS2 VCC –0.2 V or CS2 0.2 V  
Data retention current  
ICCDR  
1*1  
25*2  
µA  
VCC = 3.0 V, 0 V Vin VCC  
CS1 VCC –0.2 V, CS2 VCC –0.2 V  
or 0 V CS2 0.2 V  
Chip deselect to data  
retention time  
tCDR  
tR  
0
ns  
ns  
See retention waveform  
*3  
Operation recovery time  
tRC  
Notes: 1. Reference data at Ta = 25°C.  
2. 10 µA max at Ta = 0 to + 40°C.  
3. tRC = read cycle time.  
4. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, and Din buffer. If CS2 controls  
data retention mode, Vin levels (address, WE, OE, CS1, I/O) can be in the high impedance  
state. If CS1 controls data retention mode, CS2 must be CS2 VCC – 0.2 V or 0 V CS2 0.2  
V. The other input levels (address, WE, OE, I/O) can be in the high impedance state.  
Low VCC Data Retention Timing Waveform (1) (CS1 Controlled)  
tCDR  
tR  
Data retention mode  
VCC  
4.5 V  
2.2 V  
VDR  
CS1  
0 V  
CS1 VCC – 0.2 V  
Low VCC Data Retention Timing Waveform (2) (CS2 Controlled)  
Data retention mode  
VCC  
4.5 V  
tCDR  
tR  
CS2  
VDR  
0.4 V  
CS2 0.2 V  
0 V  
HM9264B Series  
Package Dimensions  
HM9264BLFP Series (FP-28DA)  
Unit: mm  
18.3  
18.75 Max  
15  
28  
1
14  
0.895  
11.8 ± 0.3  
0 – 10 °  
1.0  
+ 0.10  
– 0.05  
0.40  
1.27 ± 0.10  
HM9264BLP Series (DP-28)  
Unit: mm  
35.6  
36.5 Max  
28  
15  
14  
1
1.2  
1.9 Max  
15.24  
+ 0.11  
– 0.05  
0.25  
2.54 ± 0.25  
0.48 ± 0.10  
0° – 15°  
HM9264B Series  
When using this document, keep the following in mind:  
1. This document may, wholly or partially, be subject to change without notice.  
2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part  
of this document without Hitachi’s permission.  
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any  
other reasons during operation of the user’s unit according to this document.  
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and  
performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for any  
intellectual property claims or other problems that may result from applications based on the examples  
described herein.1  
5. No license is granted by implication or otherwise under any patents or other rights of any third party  
or Hitachi, Ltd.  
6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL  
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales company.  
Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are  
requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL  
APPLICATIONS.  
Hitachi, Ltd.  
Semiconductor & IC Div.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan  
Tel: Tokyo (03) 3270-2111  
Fax: (03) 3270-5109  
For further information write to:  
Hitachi America, Ltd.  
Semiconductor & IC Div.  
2000 Sierra Point Parkway  
Brisbane, CA. 94005-1835  
U S A  
Hitachi Europe GmbH  
Electronic Components Group  
Continental Europe  
Dornacher Straße 3  
D-85622 Feldkirchen  
München  
Hitachi Europe Ltd.  
Electronic Components Div.  
Northern Europe Headquarters  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 0104  
Tel: 535-2100  
Tel: 415-589-8300  
Fax: 535-1533  
Fax: 415-583-4207  
Tel: 089-9 91 80-0  
Fax: 089-9 29 30 00  
Berkshire SL6 8YA  
United Kingdom  
Hitachi Asia (Hong Kong) Ltd.  
Unit 706, North Tower,  
World Finance Centre,  
Harbour City, Canton Road  
Tsim Sha Tsui, Kowloon  
Hong Kong  
Tel: 0628-585000  
Fax: 0628-778322  
Tel: 27359218  
Fax: 27306071  

相关型号:

HM9264BLFP-10L

64 k SRAM (8-kword x 8-bit)
HITACHI

HM9264BLFP-8L

64 k SRAM (8-kword x 8-bit)
HITACHI

HM9264BLP-10L

64 k SRAM (8-kword x 8-bit)
HITACHI

HM9264BLP-8L

64 k SRAM (8-kword x 8-bit)
HITACHI

HM9270

Telecommunication IC
ETC

HM9270C

DTMF RECEIVER
EMC

HM9270D

DTMF RECEIVER
EMC

HM9270D

全新原装 DMT解码
CSB-BATTERY

HM9284

1.2MHz, High Efficiency Boost White LED Driver
HMSEMI

HM9284AS6

1.2MHz, High Efficiency Boost White LED Driver
HMSEMI

HM9284BS6

1.2MHz, High Efficiency Boost White LED Driver
HMSEMI

HM9284CS6

1.2MHz, High Efficiency Boost White LED Driver
HMSEMI