HM4066-42SIR1 [HMSEMI]

Switch Mode Li-Ion/Polymer Battery Charger;
HM4066-42SIR1
型号: HM4066-42SIR1
厂家: H&M Semiconductor    H&M Semiconductor
描述:

Switch Mode Li-Ion/Polymer Battery Charger

电池
文件: 总19页 (文件大小:1488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM4066-4.2 /8.4/ 8.34  
Switch Mode Li-Ion/Polymer  
Battery Charger  
DESCRIPTION  
FEATURES  
Wide Input Supply Voltage Range:  
The HM4066 is a constant current, constant voltage  
Li-Ion battery charger controller that uses a current mode  
PWM step-down (buck) switching architecture. With a  
500kHz switching frequency, the HM4066 provides a  
small, simple and efficient solution to fast charge one  
(4.2V) or two (8.4V) cell lithium-ion batteries.  
4.8V to 20V – 4.2 Version  
8.9V to 20V – 8.4 Version  
8.9V to 20V – 8.34 Version  
500kHz Switching Frequency  
End-of-Charge Current Detection Output  
12 Hour Charge Termination Timer  
±1% Charge Voltage Accuracy  
±10% Charge Current Accuracy  
Low 10µA Reverse Battery Drain Current  
Automatic Battery Recharge  
The HM4066 charges the battery in three phases:  
conditioning, constant current, and constant voltage. An  
external sense resistor sets the charge current with ±10%  
accuracy. An internal resistor divider and precision  
reference set the final float voltage to 4.2V per cell with ±  
1% accuracy. An internal comparator detects the near  
end-of-charge condition while an internal timer sets the  
total charge time and terminates the charge cycle. The  
HM4066 automatically re-starts the charge if the battery  
voltage falls below an internal threshold, 4.05V per cell.  
The HM4066 also automatically enters sleep mode when  
DC supplies are removed.  
Automatic Trickle Charging of Low Voltage  
Batteries  
Automatic Sleep Mode for Low Power  
Consumption  
Battery Temperature Sensing  
Stable with Ceramic Output Capacitor  
Support up to 3A Charge Current  
8-Lead SOP Package  
The HM4066 is available in the 8-lead SOP package.  
RoHS Compliant and 100% Lead (Pb)-Free  
Halogen-Free  
APPLICATIONS  
Small Notebook Computer  
Portable DVD  
Typical Operating Performance  
Handheld Instruments  
Efficiency vs Input voltage  
Efficiency vs Input voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
(Curves include input diode)  
(Curves include input diode)  
95  
90  
85  
80  
75  
70  
HM4066-8.4  
HM4066-4.2  
VBAT=3.8V  
VBAT=4.0V  
VBAT=7.0V  
VBAT=8.0V  
65  
60  
5
10  
15  
20  
8
10  
12  
14  
16  
18  
20  
Input Voltage (V)  
Input Voltage (V)  
1
HM4066-4.2 /8.4/ 8.34  
Typical Application Circuit  
Figure 1. 1.5A Single Cell/2.0A Dual Cells Li-Ion Battery Charger  
2
HM4066-4.2 /8.4/ 8.34  
Block Diagram  
Figure 2.  
3
HM4066-4.2 /8.4/ 8.34  
Pin Configurations  
Package Type  
Pin Configurations  
SOP-8  
Pin Description  
PIN  
SOP-8  
DESCRIPTION  
Current Amplifier Sense Input. A sense resistor, RSENSE, must be connected between  
the SENSE and BAT pins. The maximum charge current is equal to 100mV/RSENSE.  
SENSE  
1
NTC (Negative Temperature Coefficient) Thermistor Input. With an external 10kNTC  
thermistor to ground, this pin senses the temperature of the battery pack and stops the  
charger when the temperature is out of range. To disable the temperature qualification  
function, ground the NTC pin.  
NTC  
2
3
Compensation, Soft-Start and Shutdown Control Pin. Charging begins when the COMP  
pin reaches 850mV. The recommended compensation components are a 2.2µF (or larger)  
capacitor and a 0.5k series resistor (or small). A 100µA current into the compensation  
capacitor also sets the soft-start slew rate. Pulling the COMP pin below 280mV will shut  
down the charger.  
COMP  
VCC  
SW  
4
5
6
7
Positive Supply Voltage Input.  
Power Switching Output.  
IC Ground.  
GND  
Charge Status Output.  
CHRG  
BAT  
Battery Sense Input. A bypass capacitor of 22µF is required to minimize ripple voltage.  
When VBAT is within 250mV of VCC, the HM4066 is forced into sleep mode, dropping  
ICC to 10µA.  
8
4
HM4066-4.2 /8.4/ 8.34  
Ordering Information  
Order Number  
Package Type  
Marking  
Operating Temperature Range  
HM4066-42SIR1  
HM4066-84SIR1  
HM4066-834SIR1  
SOP-8  
HM4066-4.2  
xxxx  
-40 °C to +85°C  
SOP-8  
HM4066-8.4  
xxxx  
-40 °C to +85°C  
-40 °C to +85°C  
SOP-8  
HM4066-8.34  
xxxx  
HM4066-□□□ □ □ □ □  
Lead Free Code  
1: Lead Free, Halogen Free  
Packing  
R: Tape & Reel  
Operating temperature range  
I: Industry Standard  
Package Type  
S:SOP  
Output Voltage Option  
5
HM4066-4.2 /8.4/ 8.34  
Absolute Maximum Ratings  
Supply Voltage (VCC) -----------------------------------------------------------------------------------  
22V  
SW ------------------------------------------------------------------------------------------------- (-1V) to VCC  
BAT, SENSE ------------------------------------------------------------------------------------- -0.3V to 14V  
CHRG ,NTC ----------------------------------------------------------------------------------------- -0.3V to 8V  
Operating Temperature Range -------------------------------------------------------------- -40°C to +85°C  
Storage Temperature Range --------------------------------------------------------------- -65°C to +125°C  
Lead Temperature (Soldering, 10sec) ------------------------------------------------------------------- 260°C  
ESD protection ---------------------------------------------------------------------------------------------  
2kV  
Electrical Characteristics (TA = 25°C, VCC = 10V, unless otherwise noted.)  
HM4066-4.2  
Symbol  
Parameter  
Conditions  
Unit  
Min. Typ. Max.  
DC Characteristics  
VCC  
VCC Supply Voltage  
4.8  
20  
5
V
Current Mode  
1.5  
1.5  
10  
mA  
mA  
µA  
V
ICC  
VCC Supply Current  
Shutdown Mode  
Sleep Mode  
5
20  
5VVCC 20V  
VBAT(FLT) Battery Regulated Float Voltage  
VSNS(CHG) Constant Current Sense Voltage  
VSNS(TRKL) Trickle Current Sense Voltage  
4.158  
90  
4.2  
100  
4.242  
110  
115  
22  
TA =25°C  
-40°CTA 85°C  
3VVBAT  
4V  
mV  
85  
VBAT = 1V  
8
15  
mV  
V
VTRKL  
VUV  
Trickle Charge Threshold Voltage VBAT = Rising  
2.75  
2.9  
3.05  
VCC Undervoltage Lockout  
VCC = Rising  
3.9  
4.2  
200  
280  
250  
4.5  
V
Threshold Voltage  
VCC Undervoltage Lockout  
Hysteresis Voltage  
Manual shutdown Threshold  
VUV  
VMSD  
VASD  
mV  
mV  
mV  
COMP Pin Falling  
VCC - VBAT  
150  
450  
Voltage  
Automatic shutdown Threshold  
Voltage  
ICOMP  
VCHRG  
REOC  
tTIMER  
INTC  
COMP Pin Output Current  
VCOMP = 1.2V  
100  
20  
µA  
mV  
%
ICHRG = 1mA  
50  
32  
CHRG Pin Output Low Voltage  
End-of-Charge Ratio  
VSNS(EOC) /VSNS(CHG)  
6
15  
Charge time Accuracy  
10  
%
NTC Pin Output Current  
VNTC = 0.85V  
VNTC = Falling  
Hysteresis  
75  
85  
360  
5
95  
µA  
mV  
mV  
V
340  
380  
VNTC-HOT NTC Pin Threshold Voltage (Hot)  
VNTC-COLD NTC Pin Threshold Voltage (Cold)  
VNTC = Rising  
Hysteresis  
2.35  
100  
2.4  
100  
2.45  
mV  
Recharge Battery Voltage Offset VBAT(FULLCHARGD) –VRECHRG, VBAT  
from Full Charged Battery Voltage Falling  
VRECHRG  
150  
200  
1
mV  
µA  
ILEAK  
VCHRG= 8V, Charging Stops  
CHRG Pin Leakage Current  
6
HM4066-4.2 /8.4/ 8.34  
Electrical Characteristics (TA = 25°C, VCC = 10V, unless otherwise noted.)  
HM4066-4.2  
Min. Typ. Max.  
55  
Symbol  
Parameter  
Conditions  
Unit  
RDSON  
Oscillator  
fOSC  
High-Side Switch On-Resistance  
m  
Switching Frequency  
Maximum Duty Cycle  
450  
500  
550  
100  
kHz  
%
DC  
Electrical Characteristics(TA = 25°C, VCC = 10V, unless otherwise noted.)  
HM4066-8.4/8.34  
Min. Typ. Max.  
Symbol  
Parameter  
Conditions  
Unit  
DC Characteristics  
VCC  
VCC Supply Voltage  
8.9  
20  
5
V
Current Mode  
1.5  
1.5  
10  
mA  
mA  
µA  
ICC  
VCC Supply Current  
Shutdown Mode  
Sleep Mode  
5
20  
8.34  
8.257  
8.316  
90  
8.34  
8.4  
100  
8.423  
8.484  
110  
115  
22  
9VVCC  
20V  
0°CTA ≦  
85°C  
VBAT(FLT) Battery Regulated Float Voltage  
V
8.4  
TA =25°C  
6VVBAT  
8V  
VSNS(CHG) Constant Current Sense Voltage  
VSNS(TRKL) Trickle Current Sense Voltage  
mV  
-40°CTA 85°C  
85  
VBAT = 1V  
8
15  
5
mV  
V
VTRKL  
VUV  
Trickle Charge Threshold Voltage VBAT = Rising  
4.7  
5.3  
VCC Undervoltage Lockout  
VCC = Rising  
7.5  
500  
280  
250  
8.5  
V
Threshold Voltage  
VCC Undervoltage Lockout  
Hysteresis Voltage  
Manual shutdown Threshold  
VUV  
VMSD  
VASD  
mV  
mV  
mV  
COMP Pin Falling  
VCC - VBAT  
150  
450  
Voltage  
Automatic shutdown Threshold  
Voltage  
ICOMP  
VCHRG  
REOC  
tTIMER  
INTC  
COMP Pin Output Current  
VCOMP = 1.2V  
100  
20  
µA  
mV  
%
ICHRG = 1mA  
50  
25  
CHRG Pin Output Low Voltage  
End-of-Charge Ratio  
VSNS(EOC) /VSNS(CHG)  
5
15  
Charge time Accuracy  
10  
%
NTC Pin Output Current  
VNTC = 0.85V  
VNTC = Falling  
Hysteresis  
75  
85  
360  
5
95  
µA  
mV  
mV  
V
340  
380  
VNTC-HOT NTC Pin Threshold Voltage (Hot)  
VNTC-COLD NTC Pin Threshold Voltage (Cold)  
VNTC = Rising  
Hysteresis  
2.35  
200  
2.4  
100  
2.45  
mV  
Recharge Battery Voltage Offset VBAT(FULLCHARGD) –VRECHRG, VBAT  
from Full Charged Battery Voltage Falling  
VRECHRG  
300  
400  
1
mV  
ILEAK  
VCHRG= 8V, Charging Stops  
µA  
CHRG Pin Leakage Current  
RDSON  
High-Side Switch On-Resistance  
55  
mꢀ  
7
HM4066-4.2 /8.4/ 8.34  
Electrical Characteristics (TA = 25°C, VCC = 10V, unless otherwise noted.)  
HM4066-8.4/8.34  
Min. Typ. Max.  
Symbol  
Parameter  
Conditions  
Unit  
Oscillator  
fOSC  
Switching Frequency  
Maximum Duty Cycle  
450  
500  
550  
100  
kHz  
%
DC  
8
HM4066-4.2 /8.4/ 8.34  
Typical Operating Characteristics  
Supply Current vs Vcc  
SupplyCurrent vsTemperature  
4.0  
2.0  
(Current mode)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.8  
1.6  
1.4  
1.2  
1.0  
5
10  
15  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
Vcc (V)  
Oscillator FrequencyvsTemperature  
Oscillator Frequency vs Vcc  
540  
540  
520  
500  
480  
460  
520  
500  
480  
460  
5
10  
15  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Vcc (V)  
TEMPERATURE(°C)  
Undervoltage Lockout Thresholdvs Temperature  
9
8
7
6
5
4
3
HM4066-4.2  
HM4066-8.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
9
HM4066-4.2 /8.4/ 8.34  
Typical Operating Characteristics (continued)  
CHRG Pin Output Low Voltage vs Vcc  
CHRG Pin Output Low Voltage vs Temperature  
25  
30  
Iload=1mA  
Iload=1mA  
20  
25  
20  
15  
10  
15  
10  
5
5
10  
15  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
Vcc (V)  
Recharge Voltage Offset from Full Charged  
Voltage vs Vcc  
Recharge Voltage Offset from Full Charged  
Voltage vs Vcc  
160  
320  
HM4066-8.4  
HM4066-4.2  
315  
310  
305  
300  
295  
290  
285  
280  
155  
150  
145  
140  
5
10  
15  
20  
5
10  
15  
20  
Vcc (V)  
Vcc (V)  
COMP Pin Output Current vs Vcc  
Current Mode Sense Voltage vs Vcc  
104  
102  
100  
98  
102  
100  
98  
VCOMP=1.2V  
VBAT=4.0V  
HM4066-4.2  
96  
96  
94  
94  
5
10  
15  
20  
5
10  
15  
20  
Vcc (V)  
Vcc (V)  
10  
HM4066-4.2 /8.4/ 8.34  
Typical Operating Characteristics (continued)  
COMPPinOutput Current vsTemperature  
Current Mode Sense Voltage vs Vcc  
120  
106  
VCOMP=1.2V  
118  
VBAT=8V  
HM4066-8.4  
116  
114  
112  
110  
108  
106  
104  
102  
104  
102  
100  
98  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
Vcc (V)  
TEMPERATURE(°C)  
TrickleChargeVoltagevsTemperature  
Current ModeSenseVoltagevsTemperature  
3.00  
2.95  
2.90  
2.85  
2.80  
104  
103  
102  
101  
100  
99  
HM4066-4.2  
98  
97  
96  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
Trickle Charge Voltage vs Vcc  
Trickle Charge Voltage vs Vcc  
5.2  
3.0  
HM4066-4.2  
HM4066-8.4  
5.1  
5.0  
4.9  
4.8  
2.9  
2.8  
5
10  
15  
20  
5
10  
15  
20  
Vcc (V)  
Vcc (V)  
11  
HM4066-4.2 /8.4/ 8.34  
Typical Operating Characteristics (continued)  
TrickleChargeVoltagevsTemperature  
TrickleChargeSenseVoltagevsTemperature  
5.2  
20  
HM4066-8.4  
VBAT=2.5V  
HM4066-4.2  
18  
5.1  
16  
14  
12  
10  
8
5.0  
4.9  
4.8  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
TrickleChargeSenseVoltagevsTemperature  
Trickle Charge Sense Voltage vs Vcc  
20  
18  
16  
14  
12  
10  
8
25  
VBAT=4V  
HM4066-8.4  
VBAT=2.5V  
HM4066-4.2V  
20  
15  
10  
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
Vcc (V)  
TEMPERATURE(°C)  
End-of-ChargeRatiovsTemperature  
Trickle Charge Sense Voltage vs Vcc  
22  
25  
HM4066-8.4  
VBAT=4V  
HM4066-8.4V  
20  
18  
16  
14  
12  
20  
15  
10  
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
TEMPERATURE(°C)  
Vcc (V)  
12  
HM4066-4.2 /8.4/ 8.34  
Typical Operating Characteristics (continued)  
NTCPinOutput Current vsTemperature  
End-of-Charge Ratio vs Vcc  
94  
22  
VNTC=0V  
92  
HM4066-8.4  
20  
90  
88  
86  
84  
82  
80  
18  
16  
14  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
Vcc (V)  
TEMPERATURE(°C)  
NTC Pin Output Current vs Vcc  
88  
86  
84  
VNTC=0V  
5
10  
15  
20  
Vcc (V)  
13  
HM4066-4.2 /8.4/ 8.34  
Application Information  
Figure 3. Operational Flow Chart  
14  
HM4066-4.2 /8.4/ 8.34  
To restart the charge cycle, remove and reapply the input  
voltage or momentarily shut the charger down. Also, a  
new charge cycle will begin if the battery voltage drops  
below the recharge threshold voltage of 4.05V per cell.  
OPERATION  
The HM4066 is a constant current, constant voltage  
Li-Ion battery charger controller that uses a current mode  
PWM step-down (buck) switching architecture. The  
charge current is set by an external sense resistor (RSENSE  
across the SENSE and BAT pins. The final battery float  
voltage is internally set to 4.2V per cell. For batteries like  
lithium-ion that require accurate final float voltage, the  
internal 2.4V reference, voltage amplifier and the resistor  
divider provide regulation with ±1% accuracy.  
When the input voltage is present, the charger can be shut  
down (ICC =1.5mA) by pulling the COMP pin low. When  
the input voltage is not present, the charger goes into  
sleep mode, dropping ICC to 10µA. This will greatly  
reduce the current drain on the battery and increase the  
standby time.  
)
A 10kNTC (negative temperature coefficient)  
thermistor can be connected from the NTC pin to ground  
for battery temperature qualification. The charge cycle is  
suspended when the temperature is outside of the 0°C to  
50°C window.  
APPLICATIONS INFORMATION  
Undervoltage Lockout (UVLO)  
An undervoltage lockout circuit monitors the input  
voltage and keeps the charger off until VCC rises above  
the UVLO threshold (4.2V for the 4.2 version, 7.5V for  
the 8.4 version) and at least 250mV above the battery  
voltage. To prevent oscillation around the threshold  
voltage, the UVLO circuit has 200mV per cell of built-in  
hysteresis. When specifying minimum input voltage  
requirements, the voltage drop across the input blocking  
diode must be added to the minimum VCC supply voltage  
specification.  
Figure 4.Typical Charge Profile  
A charge cycle begins when the voltage at the VCC pin  
rises above the UVLO level and is 250mV or more  
greater than the battery voltage. At the beginning of the  
charge cycle, if the battery voltage is less than the trickle  
charge threshold, 2.9V for the 4.2 version and 5V for the  
8.4 version, the charger goes into trickle charge mode.  
The trickle charge current is internally set to 15% of the  
full-scale current. If the battery voltage stays low for 1  
hour, the battery is considered faulty and the charge cycle  
is terminated.  
Trickle Charge and Defective Battery Detection  
At the beginning of a charge cycle, if the battery voltage  
is below the trickle charge threshold, the charger goes  
into trickle charge mode with the charge current reduced  
to 15% of the full-scale current. If the low-battery  
voltage persists for 1 hour, the battery is considered  
defective, the charge cycle is terminated and the  
pin is forced high impedance.  
CHRG  
When the battery voltage exceeds the trickle charge  
threshold, the charger goes into the full-scale constant  
current charge mode. In constant current mode, the  
charge current is set by the external sense resistor RSENSE  
and an internal 100mV reference;  
V
15mV  
SNS(TRKL)  
I
=
=
TRKL  
R
R
SENSE  
SENSE  
V
100mV  
SNS(CHG)  
Shutdown  
I
=
=
CHG  
R
R
The HM4066 can be shut down by pulling the COMP  
pin to ground which turning off the P-channel MOSFET.  
When the COMP pin is released, the internal timer is  
reset and a new charge cycle starts. In shutdown, the  
SENSE  
SENSE  
When the battery voltage approaches the programmed  
float voltage, the charge current will start to decrease.  
When the current drops to 15% (4.2 version) or 15% (8.4  
version) of the full-scale charge current, an internal  
comparator turns off the internal pull-down N-channel  
output of the  
pin is high impedance and the  
CHRG  
quiescent current remains at 1.5mA. Removing the input  
power supply will put the charger into sleep mode. If the  
voltage at the VCC pin drops below (VBAT + 250mV) or  
below the UVLO level, the HM4066 goes into a low  
current (ICC = 10µA) sleep mode, reducing the battery  
drain current.  
MOSFET at the  
pin, and to indicate a near  
CHRG  
end-of-charge condition.  
An internal 12 hour timer determines the total charge  
time. After a time out occurs, the charge cycle is  
terminated and the CHRG pin is forced high impedance.  
15  
HM4066-4.2 /8.4/ 8.34  
CHRG Status Output Pin  
the battery temperature is within an acceptable range.  
Connect a 10kthermistor from the NTC pin to ground.  
If the temperature rises to 50°C, the resistance of the  
NTC will be approximately 4.2k. With the 85µA  
pull-up current source, the Hot temperature voltage  
threshold is 360mV. For Cold temperature, the voltage  
threshold is set at 2.4V which is equal to 0°C (RNTC  
28k) with 85µA of pull-up current. If the temperature is  
outside the window, turning off P-channel MOSFET and  
When a charge cycle starts, the  
pin is pulled to  
CHRG  
ground by an internal N-channel MOSFET which is  
capable of driving an LED. When the charge current  
drops below the End-of-Charge threshold, the N-channel  
MOSFET turns off is connected to the  
until the timer ends the charge cycle, or the charger is in  
manual shutdown or sleep mode.  
pin and  
CHRG  
Table1:  
Status Pin Summary  
CHRG  
CHARGE STATE  
the timer frozen while the output status at the  
CHRG  
pin remains the same. The charge cycle begins or  
resumes once the temperature is within the acceptable  
range. Short the NTC pin to ground to disable the  
temperature qualification feature. However the user may  
modify these thresholds by adding two external resistor.  
See figure 6.  
Pin  
CHRG  
Trickle Charge in Process  
Strong On  
Strong On  
Strong On  
Constant Current Charge in Process  
Constant Voltage Charge in Process  
Strong On  
(remains the  
same)  
Charge Suspend (Temperature)  
Timer Fault  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Sleep / Shutdown  
End of Charge  
Battery Disconnected  
After a time out occurs (charge cycle ends), the pin will  
become high impedance.  
Figure 5. Temperature Sensing Configuration  
Stability  
Both the current loop and the voltage loop share a  
common, high impedance, compensation node (COMP  
pin). A series capacitor and resistor on this pin  
compensates both loops. The resistor is included to  
provide a zero in the loop response and boost the phase  
margin. The compensation capacitor also provides a  
soft-start function for the charger. Upon start-up, then  
ramp at a rate set by the internal 100µA pullup current  
source and the external capacitor. Battery charge current  
starts ramping up when the COMP pin voltage reaches  
0.85V and full current is achieved with the COMP pin at  
1.3V. With a 2.2µF capacitor, time to reach full charge  
current is about 10ms. Capacitance can be increased if a  
longer start-up time is needed.  
Figure 6. Temperature Sensing Thresholds  
Input and Output Capacitors  
Since the input capacitor is assumed to absorb all input  
switching ripple current in the converter, it must have an  
adequate ripple current rating. Worst-case RMS ripple  
current is approximately one-half of output charge  
current. Actual capacitance value is not critical. Solid  
tantalum capacitors have a high ripple current rating in a  
relatively small surface mount package, but caution must  
be used when tantalum capacitors are used for input  
bypass. High input surge currents can be created when  
the adapter is hot-plugged to the charger and solid  
tantalum capacitors have a known failure mechanism  
when subjected to very high turn-on surge currents.  
Selecting the highest possible voltage rating on the  
capacitor will minimize problems. Consult with the  
manufacturer before use.  
Automatic Battery Recharge  
After the 12 hour charge cycle is completed and both the  
battery and the input power supply (wall adapter) are still  
connected, a new charge cycle will begin if the battery  
voltage drops below 4.05V per cell due to self-discharge  
or external loading. This will keep the battery capacity at  
more than 80% at all times without manually restarting  
the charge cycle.  
Battery Temperature Detection  
A negative temperature coefficient (NTC) thermistor  
located close to the battery pack can be used to monitor  
battery temperature and will not allow charging unless  
16  
HM4066-4.2 /8.4/ 8.34  
TJ = 50°C + (0.099W)(65°C /W) = 56.5°C  
The selection of output capacitor COUT is primarily  
determined by the ESR required to minimize ripple  
voltage and load step transients. The output ripple VOUT  
is approximately bounded by:  
CIN is chosen for an RMS current rating of about 0.8A at  
85°C. The output capacitor is chosen for an ESR similar  
to the battery impedance of about 100mThe ripple  
voltage on the BAT pin is:  
1
V I ESR +  
I  
(
ESR  
)
OUT  
L
L
(
max  
2
)
8f  
C
OUT  
V
=
=
OSC  
OUT(RIPPLE)  
Since IL increases with input voltage, the output ripple  
is highest at maximum input voltage. Typically, once the  
ESR requirement is satisfied, the capacitance is adequate  
for filtering and has the necessary RMS current rating.  
Switching ripple current splits between the battery and  
the output capacitor depending on the ESR of the output  
capacitor and the battery impedance. EMI considerations  
usually make it desirable to minimize ripple current in  
the battery leads. Ferrite beads or an inductor may be  
added to increase battery impedance at the 500kHz  
switching frequency. If the ESR of the output capacitor is  
0.2and the battery impedance is raised to 4with a  
bead or inductor, only 5% of the current ripple will flow  
in the battery.  
(
0.94A)(0.1)  
= 47mV  
2
For dual cells charge,  
VIN = 5V to 20V, VBAT = 8V nominal, IBAT =3A,  
fOSC = 500kHz, IEOC=0.45A,  
100mV  
R
=
= 33m  
SENSE  
3A  
Choose the inductor for about 50% ripple current at the  
maximum VIN:  
8V  
500kHz)(0.5)(3A  
8V  
L =  
1 −  
= 6.4µH  
(
)
20V  
Design Example  
Selecting a standard value of 6.8H results in a  
maximum ripple current of :  
As a design example, take a charger with the following  
specifications:  
For single cell charge, VIN = 5V to 20V, VBAT = 4V  
nominal, IBAT =1.5A, fOSC = 500kHz, see Figure 1.  
8V  
8V  
I  
=
1 −  
= 1.441A  
3.720A  
L
(
500kHz)(6.8  
µ
H
)
20V  
First, calculate the SENSE resistor :  
100mV  
I  
1.441A  
2
L
2
ILPK = I  
+
= 3A +  
R
=
= 68mꢀ  
CHG  
SENSE  
1.5A  
The maximum power dissipation with VIN = 9V and VBAT  
= 8V at 50°C ambient temperature is:  
Choose the inductor for about 65% ripple current at the  
maximum VIN:  
2
4V  
500kHz)(0.65)(1.5A  
4V  
(
3A) (55m)(8V  
)
L =  
1 −  
= 6.56  
µ
H
P
=
= 0.44W  
(
)
20V  
D
9V  
TJ = 50°C + (0.44W)(65°C /W) = 78.6°C  
Selecting a standard value of 6.8H results in a  
maximum ripple current of :  
I  
(
ESR  
)
L
(
max  
2
)
V
=
=
OUT(RIPPLE)  
4V  
4V  
I  
=
1 −  
= 941.2mA  
(
1.441A)(0.1Ω  
)
L
(
500kHz)(6.8  
µ
H
)
20V  
= 72mV  
2
I  
941.2mA  
2
L
The Schottky diode D2 shown in Figure 1 conducts  
current when the pass transistor is off. In a low duty  
cycle case, the current rating should be the same or  
higher than the charge current. Also it should withstand  
reverse voltage as high as VIN.  
ILPK = I  
+
= 1.5A +  
1.975A  
CHG  
2
Next, the P-channel MOSFET. For example, a SOP-8  
package with RDS(ON) = 42m(nom), 55m(max) offers  
a small solution. The maximum power dissipation with  
VIN = 5V and VBAT = 4V at 50°C ambient temperature is:  
Board Layout Suggestions  
2
(
1.5A) (55m)(4V  
)
When laying out the printed circuit board, the following  
considerations should be taken to ensure proper operation  
of the HM4066.  
P
=
= 0.099W  
D
5V  
17  
HM4066-4.2 /8.4/ 8.34  
To minimize radiation, the catch diode and the input  
bypass capacitor traces should be kept as short as  
possible. The positive side of the input capacitor should  
be close to the source of the P-channel MOSFET; it  
provides the AC current to the pass transistor. The  
connection between the catch diode and the pass  
transistor should also be kept as short as possible. The  
SENSE and BAT pins should be connected directly to the  
sense resistor (Kelvin sensing) for best charge current  
accuracy. Avoid routing the NTC PC board trace near the  
SW switch to minimize coupling switching noise into the  
NTC pin.  
The compensation capacitor connected at the COMP pin  
should return to the ground pin of the IC or as close to it  
as possible. This will prevent ground noise from  
disrupting the loop stability. The ground pin also works  
as a heat sink, therefore use a generous amount of copper  
around the ground pin. This is especially important for  
high VCC.  
18  
HM4066-4.2 /8.4/ 8.34  
Packaging Information  
SOP-8  
MILLIMETERS  
INCHES  
SYMBOLS  
MIN.  
1.35  
0.05  
4.80  
3.70  
5.80  
0.40  
0.31  
Normal  
MAX.  
1.75  
0.25  
5.00  
4.00  
6.20  
1.27  
0.51  
MIN.  
0.053  
0.002  
0.189  
0.146  
0.228  
0.016  
0.012  
Normal  
MAX.  
0.069  
0.010  
0.197  
0.157  
0.244  
0.050  
0.020  
A
A1  
D
E1  
E
-
-
-
-
0.193  
0.154  
0.236  
-
4.90  
3.90  
6.00  
L
-
b
-
-
e
1.27 REF  
0.050 REF  
19  

相关型号:

HM4066-834SIR1

Switch Mode Li-Ion/Polymer Battery Charger
HMSEMI

HM4066-84SIR1

Switch Mode Li-Ion/Polymer Battery Charger
HMSEMI

HM4081

Lithium battery charging control chip
HMSEMI

HM4081A

Lithium battery charging control chip
HMSEMI

HM4081B

Lithium battery charging control chip
HMSEMI

HM40NF103J

Low cost, solid state temperature sensor
AMPHENOL

HM40NF103K

Low cost, solid state temperature sensor
AMPHENOL

HM41

Toroid Style Gate Drive Transformers
TTELEC

HM41-10812LF

Toroid Style Gate Drive Transformers
TTELEC

HM41-11010LF

Toroid Style Gate Drive Transformers
TTELEC

HM41-11210LF

Toroid Style Gate Drive Transformers
TTELEC

HM41-11410LF

Toroid Style Gate Drive Transformers
TTELEC