HT27LC010(32TSOP-A) [HOLTEK]

Memory IC;
HT27LC010(32TSOP-A)
型号: HT27LC010(32TSOP-A)
厂家: HOLTEK SEMICONDUCTOR INC    HOLTEK SEMICONDUCTOR INC
描述:

Memory IC

LTE
文件: 总9页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HT27LC010  
CMOS 128K´8-Bit OTP EPROM  
Features  
·
·
Operating voltage: +3.3V  
128K´8-bit organization  
·
·
Programming voltage  
Fast read access time 90ns  
-
VPP=12.5V±0.2V  
·
Fast programming algorithm  
-
VCC=6.0V±0.2V  
·
Programming time 75ms typ.  
·
High-reliability CMOS technology  
·
Commercial and industrial temperature range  
·
Latch-up immunity to 100mA from -1.0V to  
CC+1.0V  
·
·
·
·
Two line controls (OE and CE)  
V
Standard product identification code  
Commercial temperature ranges (0°C to +70°C)  
32-pin DIP/SOP/TSOP/PLCC Package  
·
·
CMOS and TTL compatible I/O  
Low power consumption  
-
Active: 15mA max.  
-
Standby: 1mA typ.  
General Description  
The HT27LC010 chip family is a low-power, 1024K  
(1,048,576) bit, +3.3V electrically one-time programma-  
ble (OTP) read-only memories (EPROM). Organized  
into 128K words with 8 bits per word, it features a fast  
single address location programming, typically at 75ms  
per byte. Any byte can be accessed in less than 90ns  
with respect to Spec. This eliminates the need for WAIT  
states in high-performance microprocessor systems.  
The HT27LC010 has separate Output Enable (OE) and  
Chip Enable (CE) controls which eliminate bus conten-  
tion issues.  
Block Diagram  
R
o
w
X
-
D
e
c
o
d
e
r
C
e
l
l
A
r
r
a
y
A
d
d
r
e
s
s
V
G
V
C
P
C
C
o
l
u
m
n
N
D
Y
-
D
e
c
o
d
e
r
Y
-
G
a
t
i
n
g
A
d
d
r
e
s
s
P
C
E
E
C
E
&
O
E
&
S
A
C
K
T
&
D
Q
0
~
D
Q
7
O
P
G
M
&
T
E
S
T
O
u
t
p
u
t
B
u
f
f
e
r
C
o
n
t
r
o
l
L
o
g
i
c
P
G
M
Rev. 1.10  
1
May 6, 2002  
HT27LC010  
Pin Assignment  
V
P
P
1
2
3
3
2
1
V
P
C
G
C
A
1
6
M
A
A
1
1
5
2
7
6
3
4
5
6
3
2
2
2
0
9
8
7
N
C
A
1
4
3
3
3
3
2
2
2
2
2
2
2
2
2
2
1
1
1
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
A
1
1
O
A
C
D
D
D
D
D
G
D
D
D
A
A
A
A
E
1
1
0
A
A
9
8
2
3
4
5
6
A
A
A
A
1
8
2
9
A
A
A
A
A
A
A
A
7
6
5
4
3
2
1
0
5
E
Q
Q
Q
Q
Q
A
A
1
1
4
3
A
A
1
1
3
4
7
6
5
4
3
D
2
1
0
2
8
6
7
8
9
A
A
5
4
7
8
2
2
6
5
A
A
9
1
2
2
2
2
2
2
2
7
6
5
4
3
2
1
A
8
N
C
P
G
M
7
8
1
A
9
H
T
2
7
L
C
0
1
0
V
C
C
H
T
2
7
L
C
0
1
0
A
1
1
0
A
A
A
A
3
2
1
0
9
1
1
1
2
2
2
2
4
3
2
1
O
E
V
P
P
N
9
3
2
P
L
C
C
-
A
1
1
1
1
0
1
2
3
3
2
T
S
O
P
-
A
O
A
E
A
A
1
1
6
5
Q
Q
Q
1
0
0
1
2
A
1
0
1
1
1
A
1
2
1
2
C
D
E
Q
C
D
E
A
A
A
A
7
6
5
4
0
1
2
3
1
3
7
D
Q
0
Q
7
1
4
1
5
D
D
Q
Q
0
1
1
1
3
4
2
1
0
9
D
D
Q
Q
6
5
1
6
D
Q
2
1
1
5
6
1
1
8
7
D
D
Q
Q
4
3
G
N
D
H
T
2
7
L
C
0
1
0
3
2
D
I
P
-
A
/
S
O
P
-
A
Pin Description  
Pin Name  
VPP  
I/O/C/P  
Description  
P
I
Program voltage supply  
Address inputs  
A0~A16  
DQ0~DQ7  
CE  
I/O  
C
Data inputs/outputs  
Chip enable  
OE  
C
Output enable  
PGM  
C
Program strobe  
No connection  
NC  
¾
¾
VCC  
Positive power supply  
Absolute Maximum Rating  
Operation Temperature Commercial..........................................................................................................0°C to +70°C  
Storage Temperature.............................................................................................................................-65°C to 125 °C  
Applied VCC Voltage with Respect to GND............................................................................................... -0.6V to 7.0V  
Applied Voltage on Input Pin with Respect to GND.................................................................................... -0.6V to 7.0V  
Applied Voltage on Output Pin with Respect to GND......................................................................... -0.6V to VCC+0.5V  
Applied Voltage on A9 Pin with Respect to GND ..................................................................................... -0.6V to 13.5V  
Applied VPP Voltage with Respect to GND..............................................................................................-0.6V to 13.5V  
Applied READ Voltage (Functionality is guaranteed between these limits) ..............................................+3.0V to +3.6V  
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may  
cause substantial damage to the device. Functional operation of this device at other conditions beyond those  
listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliabil-  
ity.  
Rev. 1.10  
2
May 6, 2002  
HT27LC010  
D.C. Characteristics  
Test Conditions  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VCC  
Read operation  
VOH  
VOL  
VIH  
VIL  
ILI  
Output High Level  
Output Low Level  
Input High Level  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
2.4  
¾
V
V
IOH=-0.4mA  
¾
¾
¾
¾
¾
¾
¾
0.45  
VCC+0.5  
0.8  
IOL=2.0mA  
2.0  
-0.3  
-5  
V
¾
¾
Input Low Level  
V
VIN=0 to 3.6V  
VOUT=0 to 3.6V  
CE=VIL, f=5MHz,  
Input Leakage Current  
Output Leakage Current  
5
mA  
mA  
ILO  
10  
-10  
ICC  
VCC Active Current  
3.3V  
15  
mA  
¾
¾
I
OUT=0mA  
ISB1  
ISB2  
IPP  
Standby Current (CMOS)  
Standby Current (TTL)  
3.3V  
3.3V  
3.3V  
10  
0.6  
100  
CE=VCC±0.3V  
CE=VIH  
¾
¾
¾
¾
¾
¾
mA  
mA  
mA  
VPP Read/Standby Current  
CE=OE=VIL, VPP=VCC  
Programming operation  
VOH  
VOL  
VIH  
VIL  
ILI  
Output High Level  
Output Low Level  
Input High Level  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
2.4  
V
V
IOH=-0.4mA  
¾
¾
¾
¾
¾
¾
¾
¾
¾
IOL=2.0mA  
0.45  
¾
0.7VCC  
V
CC+0.5  
0.8  
V
¾
¾
Input Low Level  
V
-0.5  
¾
VIN=VIL, VIH  
Input Load Current  
A9 Product ID Voltage  
VCC Supply Current  
VPP Supply Current  
5.0  
mA  
V
VH  
11.5  
¾
12.5  
40  
¾
¾
ICC  
IPP  
Capacitance  
mA  
mA  
CE=VIL  
10  
¾
CIN  
VIN=0V  
Input Capacitance  
Output Capacitance  
VPP Capacitance  
3.3V  
3.3V  
3.3V  
8
8
12  
12  
25  
pF  
pF  
pF  
¾
¾
¾
COUT  
CVPP  
VOUT=0V  
VPP=0V  
18  
A.C. Characteristics  
Ta=+25°C±5°C  
Test Conditions  
Symbol  
Parameter  
Min.  
Max.  
Typ.  
Unit  
VCC  
Conditions  
Read operation  
tACC  
tCE  
CE=OE=VIL  
OE=VIL  
Address to Output Delay  
3.3V  
3.3V  
3.3V  
90  
90  
45  
ns  
ns  
ns  
¾
¾
¾
¾
¾
¾
Chip Enable to Output Delay  
Output Enable to Output Delay  
tOE  
CE=VIL  
CE or OE High to Output Float, Whichever  
Occurred First  
tDF  
3.3V  
3.3V  
40  
ns  
ns  
¾
¾
¾
¾
¾
Output Hold from Address, CE or OE,  
Whichever Occurred First  
tOH  
0
¾
Rev. 1.10  
3
May 6, 2002  
HT27LC010  
Test Conditions  
Symbol  
Parameter  
Min.  
Max.  
Typ.  
Unit  
VCC  
Conditions  
Programming operation  
tAS  
Address Setup Time  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
6V  
2
2
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
75  
¾
¾
¾
¾
¾
¾
ms  
ms  
ms  
ms  
ms  
ns  
ms  
ms  
ms  
ns  
ms  
ms  
tOES  
tDS  
OE Setup Time  
Data Setup Time  
2
¾
tAH  
Address Hold Time  
Data Hold Time  
0
¾
tDH  
2
¾
tDFP  
tVPS  
tPW  
tVCS  
tCES  
tOE  
Output Enable to Output Float Delay  
VPP Setup Time  
0
130  
¾
2
PGM Program Pulse Width  
VCC Setup Time  
30  
2
105  
¾
CE Setup Time  
2
¾
Data Valid from OE  
150  
¾
¾
2
tPRT  
VPP Pulse Rise Time During Progromming 6V  
Test waveforms and measurements  
2
.
4
V
2
.
0
V
A
M
L
C
A
C
D
r
i
v
i
n
g
e
a
s
u
r
e
m
e
n
t
L
e
v
e
l
s
e
v
e
l
0
.
8
V
0
.
4
5
V
tR, tF< 20ns (10% to 90%)  
Output test load  
V
D
D
1
.
3
V
(
1
N
9
1
4
)
3
.
3
k
O
u
t
p
u
t
P
i
n
C
L
Note: CL=100pF including jig capacitance.  
Product Identification Code  
Pins  
Hex  
Data  
Code  
A0  
0
A1  
1
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
Manufacturer  
Device Type  
0
0
0
0
0
0
1
1
0
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
0
0
1
1
0
1
1
1
1C  
01  
7F  
7F  
1
1
0
0
Continuation  
1
0
Rev. 1.10  
4
May 6, 2002  
HT27LC010  
Functional Description  
Operation mode  
All the operation modes are shown in the table following.  
Mode  
CE  
VIL  
OE  
VIL  
VIH  
X
PGM  
X (2)  
X
A0  
X
A1  
X
A9  
VPP  
Output  
Dout  
Read  
X
VCC  
VCC  
VCC  
VCC  
VPP  
VPP  
VPP  
VCC  
VCC  
Output Disable  
Standby (TTL)  
Standby (CMOS)  
Program  
VIL  
X
X
X
High Z  
High Z  
High Z  
DIN  
VIH  
X
X
X
X
X
X
X
X
X
V
CC± 0.3V  
VIL  
VIH  
VIL  
X
VIL  
VIH  
X
X
X
X
Program Verify  
Product Inhibit  
Manufacturer Code (3)  
Device Code (3)  
VIL  
X
X
X
DOUT  
High Z  
1C  
VIH  
X
X
X
VIL  
VIL  
VIL  
X
VIL  
VIH  
VIH  
VIH  
VH (1)  
VH (1)  
VIL  
X
01  
Notes:  
(1) ²VH² 12.0V ± 0.5V  
(2) ²X² Either VIH or VIL  
(3) For Manufacturer Code and Device Code, A1=VIH, When A1=VIL, both codes will read 7F  
Programming of the HT27LC010  
program pulse applied to an HT27LC010 CE input with  
Vpp=12.5±0.2V, PGM LOW, and OE HIGH will program  
that HT27LC010. A high-level CE input inhibits the  
HT27LC010 from being programmed.  
When the HT27LC010 is delivered, the chip has all  
1024K bits in the ²ONE², or HIGH state. ²ZEROs² are  
loaded into the HT27LC010 through programming.  
The programming mode is entered when 12.5±0.2V is  
applied to the VPP pin, OE is at VIH, and CE and PGM are  
VIL. For programming, the data to be programmed is ap-  
plied with 8 bits in parallel to the data pins.  
Program verify mode  
Verification should be performed on the programmed  
bits to determine whether they were correctly pro-  
grammed. The verification should be performed with OE  
and CE at VIL, PGM at VIH, and VPP at its programming  
voltage.  
The programming flowchart in Figure 3 shows the fast  
interactive programming algorithm. The interactive al-  
gorithm reduces programming time by using 30ms to  
105ms programming pulses and giving each address  
only as many pulses as is necessary in order to reliably  
program the data. After each pulse is applied to a given  
address, the data in that address is verified. If the data is  
not verified, additional pulses are given until it is verified  
or until the maximum number of pulses is reached while  
sequencing through each address of the HT27LC010.  
This process is repeated while sequencing through  
each address of the HT27LC010. This part of the pro-  
gramming algorithm is done at VCC=6.0V to assure that  
each EPROM bit is programmed to a sufficiently high  
threshold voltage. This ensures that all bits have suffi-  
cient margin. After the final address is completed, the  
entire EPROM memory is read at VCC=VPP=3.3±0.3V to  
verify the entire memory.  
Auto product identification  
The Auto Product Identification mode allows the reading  
out of a binary code from an EPROM that will identify its  
manufacturer and the type. This mode is intended for  
programming to automatically match the device to be  
programmed with its corresponding programming algo-  
rithm. This mode is functional in the 25°C±5°C ambient  
temperature range that is required when programming  
the HT27LC010.  
To activate this mode, the programming equipment must  
force 12.0±0.5V on the address line A9 of the  
HT27LC010. Two identifier bytes may then be se-  
quenced from the device outputs by toggling address  
line A0 from VIL to VIH, when A1=VIH. All other address  
lines must be held at VIH during Auto Product Identifica-  
tion mode.  
Program inhibit mode  
Byte 0 (A0=VIL) represents the manufacturer code, and  
byte 1 (A0=VIH), the device code. For HT27LC010,  
these two identifier bytes are given in the Mode Select  
Table. All identifiers for the manufacturer and device  
Programming of multiple HT27LC010 in parallel with dif-  
ferent data is also easily accomplished by using the Pro-  
gram Inhibit Mode. Except for CE, all like inputs of the  
parallel HT27LC010 may be common. A TTL low-level  
Rev. 1.10  
5
May 6, 2002  
HT27LC010  
codes will possess odd parity, with the MSB (DQ7) de-  
fined as the parity bit. When A1=VIL, the HT27LC010 will  
read out the binary code of 7F, continuation code, to sig-  
nify the unavailability of manufacturer ID codes.  
Two-line output control function  
To accommodate multiple memory connections, a  
two-linecontrolfunctionisprovidedtoallowfor:  
·
Low memory power dissipation  
·
Assurance that output bus contention will not occur  
Read mode  
It is recommended that CE be decoded and used as the  
primary device-selection function, while OE be made a  
common connection to the READ line from the system  
control bus. This assures that all deselected memory  
devices are in their low-power standby mode and that  
the output pins are only active when data is desired from  
a particular memory device.  
The HT27LC010 has two control functions, both of which  
must be logically satisfied in order to obtain data at out-  
puts.ChipEnable(CE)isthepowercontrolandshouldbe  
used for device selection. Output Enable (OE) is the out-  
put control and should be used to gate data to the output  
pins, independent of device selection. Assuming that ad-  
dressesarestable, addressaccesstime(tACC)isequalto  
the delay from CE to output (tCE). Data is available at the  
outputs(tOE)afterthefallingedgeofOE,assumingtheCE  
has been LOW and addresses have been stable for at  
System considerations  
During the switch between active and standby condi-  
tions, transient current peaks are produced on the rising  
and falling edges of Chip Enable. The magnitude of  
these transient current peaks is dependent on the out-  
put capacitance loading of the device. At a minimum, a  
0.1mF ceramic capacitor (high frequency, low inherent  
inductance) should be used on each device between  
VCC and VPP to minimize transient effects. In addition,  
to overcome the voltage drop caused by the inductive  
effects of the printed circuit board traces on EPROM ar-  
rays, a 4.7mF bulk electrolytic capacitor should be used  
between VCC and VPP for each eight devices. The lo-  
cation of the capacitor should be close to where the  
power supply is connected to the array.  
leasttACC-tOE  
.
Standby mode  
The HT27LC010 has CMOS standby mode which re-  
duces the maximum VCC current to 10mA. It is placed in  
CMOS standby when CE is at VCC±0.3V. The  
HT27LC010 also has a TTL-standby mode which re-  
duces the maximum VCC current to 0.6mA. It is placed  
in TTL-standby when CE is at VIH. When in standby  
mode, the outputs are in a high-impedance state, inde-  
pendent of the OE input.  
A
d
d
r
e
s
s
A
d
d
r
e
s
s
V
a
l
i
d
t
C E  
C
E
t
D <  
t
O
E
O
E
t
A C C  
t
O H  
O
u
t
p
u
t
V
a
l
i
d
O
u
t
p
u
t
H
I
G
H
Z
Figure 1. A.C. waveforms for read operation  
Rev. 1.10  
6
May 6, 2002  
HT27LC010  
R
e
a
d
P
r
o
g
r
a
m
(
V
e
r
i
f
y
)
V
I
H
A
d
d
r
e
s
s
A
d
d
r
e
s
s
S
t
a
b
l
e
V
I
L
t
A
S
t
O
E
t
A H  
V
I
H
D
a
t
a
O
u
t
D
a
t
a
I
n
D
a
t
a
V
a
l
i
d
V
I
L
t
D
S
t
D H  
6
5
.
.
0
0
V
V
V
C
C
t
D < P  
t
V C S  
1
2
5
.
.
5
0
V
t
V P S  
V
P
P
V
t
P R T  
V
I
H
C
E
V
I
L
t
C E S  
V
I
H
P
G
M
V
I
L
t
O E S  
t
P W  
V
I
H
O
E
V
I
L
Figure 2. Programming waveforms  
Rev. 1.10  
7
May 6, 2002  
HT27LC010  
S
T
A
R
T
A
d
d
r
e
s
s
=
<
i
r
s
t
L
o
c
a
t
i
o
n
V
C
C
V
P
P
=
1
2
.
5
V
X
=
0
P
r
o
g
r
a
m
m
o n e 7 5 s P u l s e  
I
n
t
e
r
a
c
t
i
v
e
S
e
c
t
i
o
n
I
n
c
r
e
m
e
n
t
X
Y
e
s
X
=
2
5
?
N
o
<
a
i
l
V
e
r
i
f
y
B
y
t
e
?
P
a
s
s
L
a
s
t
<
a
i
l
N
o
I
n
c
r
e
m
e
n
t
A
d
d
r
e
s
s
A
d
d
r
e
s
s
Y
e
s
V
C
C
=
V
P
P
= 3 . 3 V  
V
e
r
i
f
y
S
e
c
t
i
o
n
<
a
i
l
V
e
r
i
f
y
a
l
l
D
e
v
i
c
e
<
a
i
l
e
d
B
y
t
e
s
?
P
a
s
s
D
e
v
i
c
e
P
a
s
s
e
d
N
m
m
Figure 3. Fast programming flowchart  
Rev. 1.10  
8
May 6, 2002  
HT27LC010  
Holtek Semiconductor Inc. (Headquarters)  
No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan  
Tel: 886-3-563-1999  
Fax: 886-3-563-1189  
http://www.holtek.com.tw  
Holtek Semiconductor Inc. (Sales Office)  
11F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan  
Tel: 886-2-2782-9635  
Fax: 886-2-2782-9636  
Fax: 886-2-2782-7128 (International sales hotline)  
Holtek Semiconductor (Hong Kong) Ltd.  
RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong  
Tel: 852-2-745-8288  
Fax: 852-2-742-8657  
Holtek Semiconductor (Shanghai) Inc.  
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China  
Tel: 021-6485-5560  
Fax: 021-6485-0313  
http://www.holtek.com.cn  
Holmate Technology Corp.  
48531 Warm Springs Boulevard, Suite 413, Fremont, CA 94539  
Tel: 510-252-9880  
Fax: 510-252-9885  
http://www.holmate.com  
Copyright Ó 2002 by HOLTEK SEMICONDUCTOR INC.  
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-  
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used  
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable  
without further modification, nor recommends the use of its products for application that may present a risk to human life  
due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most  
up-to-date information, please visit our web site at http://www.holtek.com.tw.  
Rev. 1.10  
9
May 6, 2002  

相关型号:

HT27LC020

OTP CMOS 256Kx 8-Bit EPROM
HOLTEK

HT27LC020(32DIP)

OTP ROM, 256KX8, 120ns, CMOS, PDIP32
HOLTEK

HT27LC020(32PLCC)

OTP ROM, 256KX8, 120ns, CMOS, PQCC32
HOLTEK

HT27LC020(32SOP)

OTP ROM, 256KX8, 120ns, CMOS, PDSO32
HOLTEK
ETC
ETC

HT27LC040

CMOS 512K 8-Bit OTP EPROM
HOLTEK
HOLTEK

HT27LC4096

CMOS 256K?16-Bit OTP EPROM ??(3.3V)
ETC
HOLTEK
HOLTEK