HC6856XSFCC40 [HONEYWELL]

32K x 8 STATIC RAM; 32K x 8静态RAM
HC6856XSFCC40
型号: HC6856XSFCC40
厂家: Honeywell    Honeywell
描述:

32K x 8 STATIC RAM
32K x 8静态RAM

文件: 总12页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Military & Space Products  
32K x 8 STATIC RAM  
HC6856  
FEATURES  
RADIATION  
OTHER  
• Fabricated with RICMOSIV Bulk  
• Listed on SMD #5962-92153. Available as  
MIL-PRF-38535 QML Class Q and Class V  
0.8 µm Process (Leff = 0.65 µm)  
• Read/Write Cycle Times  
• Total Dose Hardness through 1x106 rad(SiO2)  
• Neutron Hardness through 1x1014 cm-2  
30 ns (Typical)  
40 ns (-55 to 125°C)  
• Standby Current of 20 µA (typical)  
• Asynchronous Operation  
• Dynamic and Static Transient Upset Hardness  
through 1x109 rad(Si)/s  
• Soft Error Rate of <1x10-10 upsets/bit-day  
• Dose Rate Survivability through 1x1012 rad(Si)/s  
• Latchup Free  
• CMOS or TTL Compatible I/O  
• Single 5 V 10% Power Supply  
• Packaging Options  
- 36-Lead Flat Pack (0.630 in. x 0.650 in.)  
- 28-Lead Flat Pack (0.530 in. x 0.720 in.)  
- 28-Lead DIP, MIL-STD-1835, CDIP2-T28  
GENERAL DESCRIPTION  
The 32K x 8 Radiation Hardened Static RAM is a high  
performance 32,768 x 8-bit static random access memory  
with industry-standard functionality. It is fabricated with  
Honeywell’s radiation hardened technology, and is de-  
signed for use in systems operating in radiation environ-  
ments. The RAM operates over the full military temperature  
range and requires only a single 5 V 10% power supply.  
The RAM is available with either TTL or CMOS compatible  
I/O. Power consumption is typically less than 50 mW/MHz  
in operation, and less than 5 mW/MHz in the low power  
disabled mode. The RAM read operation is fully asynchro-  
nous, with an associated typical access time of 20 ns.  
Honeywell’s enhanced RICMOSIV (Radiation Insensitive  
CMOS)technologyisradiationhardenedthroughtheuseof  
advancedandproprietarydesign,layout,andprocesshard-  
ening techniques. The RICMOSIV process is a 5-volt,  
twin-well CMOS technology with a 170 Å gate oxide and a  
minimum drawn feature size of 0.8 µm (0.65 µm effective  
gate length—Leff). Additional features include a three layer  
interconnect metalization and a lightly doped drain (LDD)  
structure for improved short channel reliability. High resis-  
tivitycross-coupledpolysiliconresistorshavebeenincorpo-  
rated for single event upset hardening.  
HC6856  
FUNCTIONAL DIAGRAM  
32,768 x 8  
Memory  
Array  
A:0-8,12-13  
CE  
Row  
Decoder  
11  
8
Column Decoder  
Data Input/Output  
NCS  
DQ:0-7  
8
NWE  
WE • CS • CE  
1 = enabled  
Signal  
NWE • CS • CE • OE  
(0 = high Z)  
NOE  
Signal  
#
CS • CE  
All controls must be  
enabled for a signal to  
pass. (#: number of  
buffers, default = 1)  
A:9-11,14  
4
SIGNAL DEFINITIONS  
A: 0-14  
DQ: 0-7  
Address input pins (A) which select a particular eight-bit word within the memory array.  
Bidirectional data pins which serve as data outputs during a read operation and as data inputs during a write  
operation.  
NCS  
Negative chip select, when at a low level allows normal read or write operation. When at a high level it forces  
the SRAM to a precharge condition, holds the data output drivers in a high impedance state and disables all  
the input buffers. If this signal is not used it must be connected to VSS.  
NWE  
NOE  
Negative write enable, when at a low level activates a write operation and holds the data output drivers in a  
high impedance state. When at a high level it allows normal read operation.  
Negative output enable, when at a high level holds the data output drivers in a high impedance state. When  
at a low level, the data output driver state is defined by NCS, NWE and CE. If this signal is not used it must  
be connected to VSS.  
CE  
Chip enable, when at a high level allows normal operation. When at a low level it forces the SRAM to a  
precharge condition, holds the data output drivers in a high impedance state and disables all the input buffers.  
If this signal is not used it must be connected to VDD.  
TRUTH TABLE  
NCS  
CE  
NWE  
NOE  
MODE  
DQ  
L
L
H
H
X
L
H
L
L
Read  
Write  
Data Out  
Data In  
High Z  
Notes:  
X: VI=VIH or VIL  
X
XX: VSSVIVDD  
NOE=H: High Z output state maintained for  
NCS=X, CE=X, NWE=X  
H
X
XX  
XX  
XX  
XX  
Deselected  
Disabled  
High Z  
2
HC6856  
RADIATION CHARACTERISTICS  
Total Ionizing Radiation Dose  
The RAM will meet any functional or electrical specification  
after exposure to a radiation pulse of 50 ns duration up to  
1x1012 rad(Si)/s, when applied under recommended oper-  
atingconditions.Notethatthecurrentconductedduringthe  
pulse by the RAM inputs, outputs, and power supply may  
significantly exceed the normal operating levels. The appli-  
cation design must accommodate these effects.  
The RAM will meet all stated functional and electrical speci-  
fications over the entire operating temperature range after  
the specified total ionizing radiation dose. All electrical and  
timing performance parameters will remain within specifica-  
tions after rebound at VDD = 5.5 V and T =125°C extrapo-  
lated to ten years of operation. Total dose hardness is  
assured by wafer level testing of process monitor transistors  
and RAM product using 10 keV X-ray radiation. Transistor  
gate threshold shift correlations have been made between  
10 keV X-rays applied at a dose rate of 1x105 rad(SiO2)/min  
at T = 25°C and gamma rays (Cobalt 60 source) to ensure  
that wafer level X-ray testing is consistent with standard  
military radiation test environments.  
Neutron Radiation  
The RAM will meet any functional or timing specification  
after a total neutron fluence of up to 1x1014 cm-2 applied  
under recommended operating or storage conditions. This  
assumes an equivalent neutron energy of 1 MeV.  
Transient Pulse Ionizing Radiation  
Soft Error Rate  
The RAM is capable of writing, reading, and retaining  
storeddataduringandafterexposuretoatransientionizing  
radiationpulseof1µsdurationupto1x109 rad(Si)/s,when  
applied under recommended operating conditions. To en-  
sure validity of all specified performance parameters be-  
fore, during, and after radiation (timing degradation during  
transient pulse radiation is 10%), it is suggested that a  
minimum of 0.8 µF per part of stiffening capacitance be  
placed between the package (chip) VDD and VSS, with a  
maximum inductance between the package (chip) and  
stiffening capacitance of 0.7 nH per part. If there are no  
operate-through or valid stored data requirements, the  
capacitance specification can be reduced to a minimum of  
0.1 µF per part.  
The RAM is capable of soft error rate (SER) performance  
of <1x10-10 upsets/bit-day, under recommended operating  
conditions. This hardness level is defined by the Adams  
10% worst case cosmic ray environment.  
Latchup  
The RAM will not latch up due to any of the above radiation  
exposure conditions when applied under recommended  
operating conditions. Fabrication with the RICMOSp-epi  
on p+ substrate process and use of proven design tech-  
niques, such as double guardbanding, ensure latchup  
immunity.  
RADIATION HARDNESS RATINGS (1)  
Limits (2)  
Units  
Test Conditions  
Parameter  
Total Dose  
1x106  
1x109  
1x1012  
rad(SiO2)  
rad(Si)/s  
rad(Si)/s  
TA=25°C  
Pulse width1 µs  
Transient Dose Rate Upset (3)  
Transient Dose Rate Survivability  
Soft Error Rate: Level A  
Level Z  
Pulse width50 ns, X-ray,  
VDD=6.6 V, TA=25°C  
<1x10-9 (4)  
Adams 10%  
worst case environment  
upsets/bit-day  
<1x10-10  
1 MeV equivalent energy,  
Unbiased, TA=25°C  
Neutron Fluence  
1x1014  
N/cm2  
(1) Device will not latch up due to any of the specified radiation exposure conditions.  
(2) Operating conditions (unless otherwise specified): VDD=4.5 V to 5.5 V, TA=-55°C to 125°C.  
(3) Suggested stiffening capacitance specifications for optimum expected dose rate upset performance is stated above in the text.  
(4) SER <1x10-10 u/b-d from -55 to 80°C.  
3
HC6856  
ABSOLUTE MAXIMUM RATINGS (1)  
Rating  
Symbol  
Parameter  
Units  
Min  
-0.5  
-0.5  
-65  
Max  
7.0  
VDD  
Positive Supply Voltage (2)  
Voltage on Any Pin (2)  
V
V
VPIN  
VDD+0.5  
150  
TSTORE  
TSOLDER  
PD  
Storage Temperature (Zero Bias)  
Soldering Temperature • Time  
Total Package Power Dissipation (3)  
DC or Average Output Current  
ESD Input Protection Voltage (4)  
Thermal Resistance (Jct-to-Case) 28 FP/36 FP  
28 DIP  
°C  
270•5  
2.5  
°C•s  
W
IOUT  
25  
mA  
V
VPROT  
ΘJC  
2000  
2
°C/W  
°C/W  
°C  
10  
TJ  
Junction Temperature  
175  
(1) Stresses in excess of those listed above may result in permanent damage. These are stress ratings only, and operation at these levels is not  
implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.  
(2) Voltage referenced to VSS.  
(3) RAM power dissipation (IDDSB + IDDOP) plus RAM output driver power dissipation due to external loading must not exceed this specification.  
(4) Class 2 electrostatic discharge (ESD) input protection. Tested per MIL-STD-883, Method 3015 by DESC certified lab.  
RECOMMENDED OPERATING CONDITIONS  
Description  
Parameter  
Symbol  
Units  
Typ  
5.0  
25  
Max  
5.5  
Min  
4.5  
VDD  
TA  
Supply Voltage (referenced to VSS)  
Ambient Temperature  
V
°C  
V
-55  
-0.3  
125  
VPIN  
Voltage on Any Pin (referenced to VSS)  
VDD+0.3  
CAPACITANCE (1)  
Worst Case  
Symbol  
Parameter  
Test Conditions  
Typical  
Units  
Max  
6
CI  
Input Capacitance  
Output Capacitance  
4
pF  
pF  
VI=VDD or VSS, f=1 MHz  
VIO=VDD or VSS, f=1 MHz  
CO  
6.5  
8
(1) This parameter is tested during initial design characterization only.  
DATA RETENTION CHARACTERISTICS  
Worst Case  
Typical  
(1)  
Symbol  
Parameter (2)  
Units  
Test Conditions  
Max  
Min  
NCS=VDR  
VDR  
IDR  
Data Retention Voltage (3)  
2.0  
2.5  
V
VI=VDR or VSS  
NCS=VDD=VDR  
VI=VDR or VSS  
Data Retention Current  
150  
400  
µA  
(1) Typical operating conditions: TA= 25°C, pre-radiation.  
(2) Worst case operating conditions: TA= -55°C to +125°C, post total dose at 25°C.  
(3) To maintain valid data storage during transient radiation, VDD must be held within the recommended operating range.  
4
HC6856  
DC ELECTRICAL CHARACTERISTICS  
Typical Worst Case (2)  
Symbol  
Parameter  
Units  
Test Conditions (3)  
(1)  
0.02  
0.02  
5.5  
Min  
Max  
VIH=VDD IO=0  
VIL=VSS Inputs Stable  
IDDSB1  
IDDSB2  
Static Supply Current  
1.2  
mA  
mA  
mA  
mA  
µA  
CE=VSS or NCS=VDD  
IO=0, VSSVIVDD (4)  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS (5)  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS (5)  
Static Supply Current with Chip Disabled  
1.2  
7.5  
6.5  
+5  
IDDOPW Dynamic Supply Current, Selected (Write)  
IDDOPR  
II  
Dynamic Supply Current, Selected (Read)  
Input Leakage Current  
4.5  
VSSVIVDD  
0.05  
0.1  
-5  
VSSVIOVDD  
IOZ  
Output Leakage Current  
-10  
10  
µA  
Output=high Z  
VIL  
Low-Level InputVoltage  
High-Level Input Voltage  
CMOS  
TTL  
1.9  
1.3  
0.3xVDD  
V
V
VDD=4.5V  
VDD=4.5V  
0.8  
VIH  
CMOS  
TTL  
3.0 0.7xVDD  
1.7  
V
V
VDD=5.5V  
VDD=5.5V  
2.2  
0.2  
0.4  
0.05  
V
V
VDD=4.5V, IOL=10 mA  
VOL  
VOH  
Low-Level Output Voltage  
High-Level Output Voltage  
VDD=4.5V, IOL=200 µA  
4.8  
4.2  
VDD-0.05  
V
V
VDD=4.5V, IOH=-5 mA  
VDD=4.5V, IOH=-200 µA  
(1) Typical operating conditions: VDD= 5.0 V,TA=25°C, pre-radiation.  
(2) Worst case operating conditions: VDD=4.5 V to 5.5 V, TA=-55°C to +125°C, post total dose at 25°C.  
(3) Input high = VIH VDD-0.3V, input low =VIL 0.3V  
(4) Guaranteed but not tested.  
(5) All inputs switching. DC average current.  
2.9 V  
Valid high  
output  
+
-
Vref1  
Vref2  
249  
+
-
Valid low  
output  
DUT  
output  
C >50 pF*  
L
*C = 5 pF for TWLQZ, TSHQZ, TELQZ, and TGHQZ  
L
Tester Equivalent Load Circuit  
5
HC6856  
READ CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
Symbol  
Parameter  
Typical  
(2)  
-55 to 125°C  
Units  
Min  
Max  
TAVAVR Address Read Cycle Time  
18  
18  
15  
20  
20  
6
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TAVQV  
TAXQX  
TSLQV  
TSLQX  
TSHQZ  
TEHQV  
TEHQX  
TELQZ  
TGLQV  
TGLQX  
TGHQZ  
Address Access Time  
40  
40  
Address Change to Output Invalid Time  
Chip Select Access Time  
5
Chip Select Output Enable Time  
Chip Select Output Disable Time  
Chip Enable Access Time  
16  
10  
40  
20  
20  
6
Chip Enable Output Enable Time  
Chip Enable Output Disable Time  
Output Enable Access Time  
16  
0
10  
10  
4
Output Enable Output Enable Time  
Output Enable Output Disable Time  
3
4
10  
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V (CMOS), VIL/VIH=0V/3V (TTL), input rise and fall times <1 ns/V, input and  
output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading CL >50 pF, or equivalent capacitive  
output loading CL=5 pF for TSHQZ, TELQZ TGHQZ. For CL >50 pF, derate access times by 0.02 ns/pF (typical).  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C, pre-radiation.  
(3) Worst case operating conditions: VDD=4.5 V to 5.5 V, post total dose at 25°C.  
T
AVAVR  
ADDRESS  
NCS  
T
AVQV  
TAXQX  
T
SLQV  
T
SLQX  
TSHQZ  
HIGH  
IMPEDANCE  
DATA OUT  
DATA VALID  
T
EHQX  
EHQV  
T
TELQZ  
CE  
T
GLQX  
GLQV  
T
TGHQZ  
NOE  
(NWE = high)  
6
HC6856  
WRITE CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
Typical (2) SER <1E-9 (4) SER <1E-10  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
TAVAVW Write Cycle Time (5)  
30  
25  
25  
20  
25  
0
40  
35  
35  
30  
35  
0
60  
55  
55  
50  
55  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TWLWH Write Enable Write Pulse Width  
TSLWH  
TDVWH  
TAVWH  
TWHDX  
TAVWL  
TWHAX  
TWLQZ  
Chip Select to End of Write Time  
Data Valid to End of Write Time  
Address Valid to End of Write Time  
Data Hold Time after End of Write Time  
Address Valid Setup to Start of Write Time  
Address Valid Hold after End of Write Time  
Write Enable to Output Disable Time  
0
0
0
0
0
0
5
0
10  
0
10  
TWHQX Write Disable to Output Enable Time  
15  
4
5
5
TWHWL Write Disable to Write Enable Pulse Width  
5
5
TEHWH  
Chip Enable to End of Write Time  
25  
35  
55  
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V (CMOS), VIL/VIH=0V/3V (TTL), input rise and fall times <1 ns/V, input and  
output timing reference levels shown in the Tester AC Timing Characteristics table, capacitive output loading0 pF, or equivalent capacitive  
load of 5 pF for TWLQZ.  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C, pre-radiation.  
(3) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55 to 125°C, post total dose at 25°C.  
(4) SER 1E-10 u/b-d from -55 to 80°.  
(5) TAVAVW= TWLWH + TWHWL  
TAVAVW  
ADDRESS  
TAVWH  
TWHAX  
TAVWL  
TWHWL  
TWLWH  
NWE  
TWLQZ  
TWHQX  
TWHDX  
DATA OUT  
DATA IN  
HIGH  
IMPEDANCE  
TDVWH  
DATA VALID  
TSLWH  
NCS  
CE  
TEHWH  
7
HC6856  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Write Cycle  
Read Cycle  
The RAM is asynchronous in operation, allowing the read  
cycletobecontrolledbyaddress,chipselect(NCS),orchip  
enable (CE) (refer to Read Cycle timing diagram). To  
perform a valid read operation, both chip select and output  
enable (NOE) must be low and chip enable and write  
enable (NWE) must be high. The output drivers can be  
controlled independently by the NOE signal. Consecutive  
read cycles can be executed with NCS held continuously  
low, and with CE held continuously high.  
The write operation is synchronous with respect to the  
address bits, and control is governed by write enable  
(NWE), chip select (NCS), or chip enable (CE) edge  
transitions (refer to Write Cycle timing diagrams). To per-  
form a write operation, both NWE and NCS must be low,  
and CE must be high. Consecutive write cycles can be  
performed with NWE or NCS held continuously low, or CE  
held continuously high. At least one of the control signals  
must transition to the opposite state between consecutive  
write operations.  
For an address activated read cycle, NCS and CE must be  
valid prior to or coincident with the activating address edge  
transition(s). Any amount of toggling or skew between  
address edge transitions is permissible; however, data  
outputs will become valid TAVQV time following the latest  
occurring address edge transition. The minimum address  
activated read cycle time is TAVAV. When the RAM is  
operated at the minimum address activated read cycle  
time, the data outputs will remain valid on the RAM I/O until  
TAXQX time following the next sequential address transi-  
tion.  
The write mode can be controlled via three different control  
signals: NWE, NCS, and CE. All three modes of control are  
similar except the NCS and CE controlled modes actually  
disable the RAM during the write recovery pulse. Only the  
NWE controlled mode is shown in the table and diagram on  
the previous page for simplicity; however, each mode of  
control provides the same write cycle timing characteris-  
tics. Thus, someoftheparameternamesreferencedbelow  
are not shown in the write cycle table or diagram, but  
indicate which control pin is in control as it switches high or  
low.  
To control a read cycle with NCS, all addresses and CE  
must be valid prior to or coincident with the enabling NCS  
edge transition. Address or CE edge transitions can occur  
later than the specified setup times to NCS; however, the  
valid data access time will be delayed. Any address edge  
transition, which occurs during the time when NCS is low,  
will initiate a new read access, and data outputs will not  
becomevaliduntilTAVQVtimefollowingtheaddressedge  
transition. Data outputs will enter a high impedance state  
TSHQZ time following a disabling NCS edge transition.  
TowritedataintotheRAM,NWEandNCSmustbeheldlow  
and CE must be held high for at least TWLWH/TSLSH/  
TEHEL time. Any amount of edge skew between the  
signals can be tolerated, and any one of the control signals  
can initiate or terminate the write operation. For consecu-  
tivewriteoperations, writepulsesmustbeseparatedbythe  
minimumspecifiedTWHWL/TSHSL/TELEHtime.Address  
inputs must be valid at least TAVWL/TAVSL/TAVEH time  
before the enabling NWE/NCS/CE edge transition, and  
must remain valid during the entire write time. A valid data  
overlapofwritepulsewidthtimeofTDVWH/TDVSH/TDVEL,  
and an address valid to end of write time of TAVWH/  
TAVSH/TAVEL also must be provided for during the write  
operation. Hold times for address inputs and data inputs  
with respect to the disabling NWE/NCS/CE edge transition  
must be a minimum of TWHAX/TSHAX/TELAX time and  
TWHDX/TSHDX/TELDX time, respectively. The minimum  
write cycle time is TAVAV.  
To control a read cycle with CE, all addresses and NCS  
must be valid prior to or coincident with the enabling CE  
edge transition. Address or NCS edge transitions can  
occur later than the specified setup times to CE; however,  
the valid data access time will be delayed. Any address  
edge transition which occurs during the time when CE is  
high will initiate a new read access, and data outputs will  
not become valid until TAVQV time following the address  
edge transition. Data outputs will enter a high impedance  
state TELQZ time following a disabling CE edge transition.  
8
HC6856  
TESTER AC TIMING CHARACTERISTICS  
TTL I/O Configuration  
CMOS I/O Configuration  
3 V  
0 V  
VDD-0.5 V  
Input  
Levels*  
1.5 V  
VDD/2  
0.5 V  
1.5 V  
VDD/2  
Output  
Sense  
Levels  
VDD-0.4V  
0.4 V  
VDD-0.4V  
High Z  
High Z  
0.4 V  
3.4 V  
2.4 V  
3.4 V  
2.4 V  
High Z  
High Z  
High Z = 2.9V  
High Z = 2.9V  
* Input rise and fall times <1 ns/V  
QUALITY AND RADIATION HARDNESS  
ASSURANCE  
QML devices offer ease of procurement by eliminating the  
need to create detailed specifications and offer benefits of  
improved quality and cost savings through standardization.  
Honeywellmaintainsahighlevelofproductintegritythrough  
process control, utilizing statistical process control, a com-  
plete “Total Quality Assurance System,” a computer data  
base process performance tracking system, and a radia-  
tion hardness assurance strategy.  
RELIABILITY  
Honeywell understands the stringent reliability require-  
ments that space and defense systems require and has  
extensive experience in reliability testing on programs of  
this nature. This experience is derived from comprehen-  
sive testing of VLSI processes. Reliability attributes of the  
RICMOSprocess were characterized by testing specially  
designed irradiated and non-irradiated test structures from  
which specific failure mechanisms were evaluated. These  
specific mechanisms included, but were not limited to, hot  
carriers, electromigration and time dependent dielectric  
breakdown. This data was then used to make changes to  
the design models and process to ensure more reliable  
products.  
The radiation hardness assurance strategy starts with a  
technology that is resistant to the effects of radiation.  
Radiationhardnessisassuredoneverywaferbyirradiating  
test structures as well as SRAM product, and then monitor-  
ing key parameters which are sensitive to ionizing radia-  
tion. ConventionalMIL-STD-883TM5005GroupEtesting,  
which includes total dose exposure with Cobalt 60, may  
alsobeperformedasrequired. ThisTotalQualityapproach  
ensures our customers of a reliable product by engineering  
in reliability, starting with process development and con-  
tinuing through product qualification and screening.  
SCREENING LEVELS  
In addition, the reliability of the RICMOSprocess and  
product in a military environment was monitored by testing  
irradiated and non-irradiated circuits in accelerated dy-  
namic life test conditions. Packages are qualified for prod-  
uct use after undergoing Groups B & D testing as outlined  
in MIL-STD-883, TM 5005, Class S. The product is quali-  
fied by following a screening and testing flow to meet the  
customer’s requirements. Quality conformance testing is  
performed as an option on all production lots to ensure the  
ongoing reliability of the product.  
Honeywell offers several levels of device screening to meet  
your system needs. “Engineering Devices” are available  
with limited performance and screening for breadboarding  
and/or evaluation testing. Hi-Rel Level B and S devices  
undergo additional screening per the requirements of MIL-  
STD-883. As a QML supplier, Honeywell also offers QML  
Class Q and V devices per MIL-PRF-38535 and are avail-  
able per the applicable Standard Military Drawing (SMD).  
9
HC6856  
PACKAGING  
insertion. Ceramic chip capacitors can be mounted to the  
package by the user to maximize supply noise decoupling  
and increase board packing density. These capacitors  
attach directly to the internal package power and ground  
planes. This design minimizes resistance and inductance  
of the bond wire and package, both of which are critical in  
a transient radiation environment. All NC (no connect) pins  
must be connected to either VDD, VSS or an active driver  
to prevent charge build up in the radiation environment.  
The 32K x 8 SRAM is offered in a custom 36-lead flat pack  
(FP), 28-Lead FP, or standard 28-lead DIP. Each package  
is constructed of multilayer ceramic (Al2O3) and features  
internal power and ground planes. The 36-lead FP also  
features a non-conductive ceramic tie bar on the lead  
frame.Thepurposeofthetiebaristoallowelectricaltesting  
of the device, while preserving the lead integrity during  
shipping and handling, up to the point of lead forming and  
28-LEAD DIP & FP PINOUT  
36-LEAD FLAT PACK PINOUT  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
NWE  
A13  
A8  
VSS  
VDD  
A14  
A12  
A7  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
VSS  
VDD  
NWE  
CE  
2
2
3
3
4
4
5
A13  
A8  
A6  
6
5
A9  
A5  
7
A9  
6
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A4  
8
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VDD  
VSS  
Top  
View  
Top  
View  
A3  
9
7
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
8
A1  
A0  
9
DQ0  
DQ1  
DQ2  
NC  
A0  
10  
11  
12  
13  
14  
DQ0  
DQ1  
DQ2  
VSS  
VDD  
VSS  
36-LEAD FLAT PACK (22017194-001)  
E
1
b
Top  
(width)  
Side  
e
(pitch)  
H
L
L
Non-  
Conductive  
Tie-Bar  
Ceramic  
Body  
Optional  
Standoff  
Kovar  
Lid [3]  
A
J
0.004  
C
M
S
N
I
X
Optional  
Capacitors  
All dimensions are in inches [1]  
VDD  
VSS  
VSS  
VDD  
A
b
C
D
E
e
F
G
H
I
0.095 ± 0.010  
0.008 ± 0.002  
0.005 to 0.0075  
0.650 ± 0.010  
0.630 ± 0.007  
0.025 ± 0.002 [2]  
0.425 ± 0.005 [2]  
0.525 ± 0.005  
0.135 ± 0.005  
0.030 ± 0.005  
0.080 typ.  
M
N
O
P
R
S
T
U
V
W
X
Y
0.008 ± 0.003  
0.050 ± 0.010  
0.090 ref  
0.015 ref  
0.075 ref  
0.113 ± 0.010  
0.050 ref  
0.030 ref  
0.080 ref  
0.005 ref  
Y
J
L
0.450 ref  
0.400 ref  
0.285 ± 0.015  
1
[1] Parts delivered with leads unformed  
[2] At tie bar  
[3] Lid tied to VSS  
1
O
T
V
W
P
U
R
10  
HC6856  
28-LEAD FLAT PACK (22017362-001)  
Optional capacitors  
in cutout  
All dimensions in inches  
VDD  
VSS  
VDD  
E
A
b
C
D
e
0.135 ± 0.015  
1
1
0.015 ± 0.002  
0.004 to 0.009  
0.720 ± 0.008  
0.050 ± 0.005 [1]  
0.530 ± 0.008  
b
(width)  
E
TOP  
VIEW  
BOTTOM  
VIEW  
E2 0.420 ± 0.008  
E3 0.055 ref  
F
G
L
Q
S
U
V
W
X
Y
Z
e
(pitch)  
0.650 ± 0.005 [2]  
0.050 ± 0.005  
0.295 min [3]  
0.026 to 0.045  
0.035 ± 0.010  
0.065 ref  
0.300 ref  
0.050 ref  
0.030 ref  
0.100 ref  
S
Z
U
L
Y
X
W
V
Kovar  
Lid [4]  
Cutout Ceramic  
Area Body  
A
Lead  
Alloy 42  
C
Q
G
0.080 ref  
[1] BSC - Basic lead spacing between centers  
[2] Where lead is brazed to package  
[3] Parts delivered with leads unformed  
[4] Lid connected to VSS  
E2  
E3  
28-LEAD DIP (22017502-001)  
For 28-Lead DIP description, see MIL-STD-1835, Type CDIP2-T28, Config. C, Dimensions D-10  
DYNAMIC BURN-IN DIAGRAM  
STATIC BURN-IN DIAGRAM  
VDD  
VDD  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
VSS  
VSS  
VDD  
A14  
A12  
A7  
VSS  
VDD  
NWE*  
CE*  
VSS  
VSS  
VDD  
NWE*  
CE*  
VSS  
VDD  
A14  
A12  
A7  
3
3
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
F0  
F16  
R
R
4
4
F17  
F7  
F6  
5
5
A13*  
A8  
F15  
F12  
F11  
F10  
F17  
F9  
R
R
R
R
R
A13*  
A8  
6
6
A6  
F5  
A6  
7
7
A5  
A9  
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VDD  
VSS  
F4  
A9  
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VDD  
VSS  
A5  
8
8
A4  
F3  
A4  
9
9
A3  
F2  
A3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
A2  
F8  
R
R
A2  
R
R
F17  
F1  
R
R
A1  
F13  
F14  
F1  
A1  
A0  
R
R
R
R
R
R
R
R
A0  
R
R
R
R
DQO  
DQ1  
DQ2  
F1  
DQO  
DQ1  
DQ2  
F1  
F1  
R
R
R
F1  
F1  
R
F1  
NC  
NC  
VDD  
VSS  
VDD  
VSS  
VSS  
VSS  
VDD = 6.5V, R 10 K, VIH = VDD, VIL = VSS  
Ambient Temperature 125 °C, F0 100 KHz Sq Wave  
Frequency of F1 = F0/2, F2 = F0/4, F3 = F0/8, etc.  
VDD = 5.5V, R 10 KΩ  
Ambient Temperature 125 °C  
NOTE — *Denotes package pinout option dependent (28-Lead DIP/FP diagrams not shown but have similar connections)  
11  
HC6856  
ORDERING INFORMATION (1)  
40  
H
Q
H
6856/1  
X
Z
C
C
PART NUMBER  
Pinout options (2)  
SCREEN LEVEL (1)  
V=QML Class V  
Q=QML Class Q  
S=Level S  
B=Level B  
E=Engr Device (4)  
SOFT ERROR  
RATE  
SPEED (5)  
60 ns  
Z=<1x10-10 upsets/bit-day  
PROCESS  
C=CMOS  
A=<1x10-9 upsets/bit-day (3)  
C=<1x10-7 upsets/bit-day  
- =No SER Guaranteed  
40 ns  
35 ns  
SOURCE  
H=HONEYWELL  
PACKAGE DESIGNATION  
W=36-Lead FP  
X=36-Lead FP, with standoff  
Y=36-Lead FP, with standoff & caps  
N=28-Lead FP  
TOTAL DOSE  
HARDNESS  
INPUT BUFFER TYPE  
C=CMOS Level  
T=TTL Level  
R=1x105rad(SiO2)  
F=3x105 rad(SiO2)  
H=1x106 rad(SiO2)  
N=No Level Guaranteed  
R=28-Lead DIP  
- = Bare Die (No Package)  
(1) Orders may be faxed to 612-954-2051. Please contact our Customer Logistics Department at 612-954-2888 for further information.  
(2) Pinout options:  
36-Lead FP  
28-Lead FP & DIP  
pin 32 pin 33  
pin 34  
HC6856/1  
HC6856/2  
A13  
CE  
CE  
NWE  
A13  
JEDEC Pinout  
N/A  
NWE  
(3) SER <1E-10 u/b-d from -55 to 80°C.  
(4) Engineering Device description: Parameters are tested from -55 to 125°C, 24 hr burn-in, no radiation guaranteed.  
(5) Only specified for Engineering Devices. Number defines worst case maximum Write Cycle time in nano-seconds (ns).  
Contact Factory with other needs.  
To lea r n m or e a bou t Hon eyw ell Solid Sta te Electr on ics Cen ter ,  
visit ou r w eb site a t h ttp ://w w w .ssec.h on eyw ell.com  
Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability  
arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Helping You Control Your World  
900049  
2/96  

相关型号:

HC6856XSFCC60

32K x 8 STATIC RAM
HONEYWELL

HC6856XSFZC35

32K x 8 STATIC RAM
HONEYWELL

HC6856XSFZC40

32K x 8 STATIC RAM
HONEYWELL

HC6856XSFZC60

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHAC35

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHAC40

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHAC60

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHCC35

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHCC40

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHCC60

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHZC35

32K x 8 STATIC RAM
HONEYWELL

HC6856XSHZC40

32K x 8 STATIC RAM
HONEYWELL