HT6256D [HONEYWELL]

Standard SRAM, 32KX8, 50ns, CDIP28, DIP-28;
HT6256D
型号: HT6256D
厂家: Honeywell    Honeywell
描述:

Standard SRAM, 32KX8, 50ns, CDIP28, DIP-28

文件: 总8页 (文件大小:69K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HTMOSTM High Temperature Products  
HIGH TEMPERATURE 32K x 8 STATIC RAM  
HT6256  
FEATURES  
APPLICATONS  
• Specified Over -55 to +225°C  
• Down-Hole Oil Well  
• Avionics  
• Fabricated with HTMOS™ IV Silicon on Insulator (SOI)  
• Read/Write Cycle Times 50 ns Support 20 MHz Clock  
• Asynchronous Operation  
• Turbine Engine Control  
• Industrial Process Control  
• Nuclear Reactor  
• CMOS Input/Output Buffers  
• Single 5 V ± 10% Power Supply  
• Electric Power Conversion  
• Hermetic 28-Lead Ceramic DIP  
• Heavy Duty Internal Combustion Engines  
GENERAL DESCRIPTION  
PACKAGE PINOUT  
The 32K x 8 High Temperature Static RAM is a high  
performance 32,768 word x 8-bit static random access  
memory with industry-standard functionality. It is fabri-  
cated with Honeywell’s HTMOS™ technology, and is  
designed for use in systems operating in severe high  
temperature environments.  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
NWE  
A13  
A8  
2
3
4
5
A9  
6
A11  
NOE  
A10  
NCS  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
Top  
View  
7
The RAM requires only a single 5 V ± 10% power supply  
and has CMOS compatible I/O. Power consumption is  
typically less than 30 mW/MHz in operation, and less than  
10 mW when de-selected. The RAM read operation is fully  
asynchronous, with an associated typical access time of  
50 ns at 5 V.  
8
9
A0  
10  
11  
12  
13  
14  
DQ0  
DQ1  
DQ2  
VSS  
The RAM provides guaranteed performance over the full  
-55 to +225°C temperature range. Typically, parts will  
operate up to +300°C for a year, with derated perfor-  
mance. All parts are burned in at 250°C to eliminate infant  
mortality.  
Solid State Electronics Center • 12001 State Highway 55, Plymouth, MN 55441 • (800) 323-8295 • http://www.ssec.honeywell.com  
HT6256  
FUNCTIONAL DIAGRAM  
32,768 x 8  
Memory  
Array  
Row  
Decoder  
A:0-8,12-13  
11  
CE*  
NCS  
8
Column Decoder  
Data Input/Output  
DQ:0-7  
8
NWE  
NOE  
WE • CS • CE  
1 = enabled  
Signal  
NWE • CS • CE • OE  
(0 = high Z)  
Signal  
#
All controls must be  
enabled for a signal to  
pass. (#: number of  
buffers, default = 1)  
A:9-11, 14  
4
SIGNAL DEFINITIONS  
A: 0-14  
DQ: 0-7  
Address input pins which select a particular eight-bit word within the memory array.  
Bidirectional data pins which serve as data outputs during a read operation and as data inputs during a write  
operation.  
NCS  
Negative chip select, when at a low level allows normal read or write operation. When at a high level NCS  
forces the SRAM to a precharge condition, holds the data output drivers in a high impedance state and  
disables all input buffers. If this signal is not used it must be connected to VSS.  
NWE  
NOE  
Negative write enable, when at a low level activates a write operation and holds the data output drivers in  
a high impedance state. When at a high level NWE allows normal read operation.  
Negative output enable, when at a high level holds the data output drivers in a high impedance state. When  
at a low level, the data output driver state is defined by NCS and NWE. If this signal is not used it must be  
connected to VSS.  
CE*  
ExternalcontrolofChipEnableisanextrafeatureavailableonlyinotherpackageoptions. Chipenable, when  
at a high level allows normal operation. When at a low level CE forces the SRAM to a precharge condition,  
holdsthedataoutputdriversinahighimpedancestateanddisablesalltheinputbuffersexcepttheNCSinput  
buffer. If this signal is not used it must be connected to VDD.  
TRUTH TABLE  
NCS  
CE*  
NWE  
NOE  
MODE  
DQ  
L
L
H
H
X
L
H
L
L
Read  
Write  
Data Out  
Data In  
Notes:  
X: VI=VIH or VIL  
X
XX: VSSVIVDD  
H
X
XX  
XX  
XX  
XX  
Deselected High Z  
Disabled High Z  
NOE=H: High Z output state maintained for  
NCS=X, CE=X, NWE=X  
2
HT6256  
ABSOLUTE MAXIMUM RATINGS (1)  
Rating  
Units  
Symbol  
VDD  
Parameter  
Min  
-0.5  
-0.5  
-65  
Max  
Supply Voltage Range (2)  
6.5  
V
V
VPIN  
Voltage on Any Pin (2)  
VDD+0.5  
TSTORE  
TSOLDER  
PD  
Storage Temperature (Zero Bias)  
Soldering Temperature (5 Seconds)  
Maximum Power Dissipation (3)  
DC or Average Output Current  
ESD Input Protection Voltage (4)  
Thermal Resistance (Jct-to-Case)  
325  
355  
2
°C  
°C  
W
IOUT  
25  
mA  
V
VPROT  
ΘJC  
2000  
28 DIP  
10  
°C/W  
(1) Stresses in excess of those listed above may result in permanent damage. These are stress ratings only, and operation at these levels is not  
implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.  
(2) Voltage referenced to VSS.  
(3) RAM power dissipation (IDDSB + IDDOP) plus RAM output driver power dissipation due to external loading must not exceed this specification.  
(4) Class 2 electrostatic discharge (ESD) input protection. Tested per MIL-STD-883, Method 3015 by DESC certified lab.  
RECOMMENDED OPERATING CONDITIONS  
Description  
Parameter  
Units  
Symbol  
Typ  
5.0  
25  
Max  
5.5  
Min  
4.5  
VDD  
TA  
Supply Voltage (referenced to VSS)  
Ambient Temperature  
V
°C  
V
-55  
-0.3  
225  
VPIN  
Voltage on Any Pin (referenced to VSS)  
VDD+0.3  
CAPACITANCE (1)  
Worst Case  
Typical  
Test Conditions  
Units  
Parameter  
Symbol  
(2)  
Min  
Max  
7
CI  
Input Capacitance  
5
7
pF  
pF  
VI=VDD or VSS, f=1 MHz  
VIO=VDD or VSS, f=1 MHz  
CO  
Output Capacitance  
9
(1) This parameter is tested during initial design characterization only  
(2) Typical operating conditions: TA= 25°C.  
DATA RETENTION CHARACTERISTICS (1)  
Worst Case  
Typical  
Symbol  
Parameter  
Units  
Test Conditions  
Min  
Max  
NCS=VDR  
VDR  
IDR  
Data Retention Voltage  
Data Retention Current  
2.5  
V
VI=VDR or VSS  
500  
330  
µA  
µA  
NCS=VDD=2.5V, VI=VDD or VSS  
NCS=VDD=3.0V, VI=VDD or VSS  
(1) Operating conditions: TA= -55°C to +125°C.  
3
HT6256  
DC ELECTRICAL CHARACTERISTICS  
Worst Case (2)  
Symbol  
Parameter  
Test Conditions  
Typ (1)  
Units  
Min  
Max  
VIH=VDD, IO=0  
VIL=VSS, f=0MHz  
mA  
IDDSB1  
Static Supply Current  
0.2  
0.2  
3.4  
2.8  
2.0  
NCS=VDD, IO=0,  
f=40 MHz  
mA  
mA  
mA  
IDDSBMF Standby Supply Current—Deselected  
IDDOPW Dynamic Supply Current—Selected (Write)  
IDDOPR Dynamic Supply Current—Selected (Read)  
2.0  
4.0  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS (3)  
f=1 MHz, IO=0, CE=VIH=VDD  
NCS=VIL=VSS (3)  
4.0  
+5  
II  
Input Leakage Current  
Output Leakage Current  
VSS VI VDD  
-5  
µA  
µA  
VSS VIO VDD  
Output=high Z  
IOZ  
-10  
+10  
VIL  
Low-Level Input voltage  
high-Level Input Voltage  
March Pattern  
March Pattern  
1.7  
3.2  
0.3xVdd  
V
V
VIH  
0.7xVdd  
VD =4.5V, IOL=10 mA (CMOS)  
VDD=4.5V, IO =200 µA  
0.3  
0.005  
0.4  
0.05  
V
V
VOL  
VOH  
Low-Level Output voltage  
High-Level Output Voltage  
VDD=4.5V, IOH=-5 mA  
VDD=4.5V, IOH=-200 µA  
4.3  
4.5  
4.2  
Vdd-0.05  
V
V
(1) Typical operating conditions: VDD= 5.0 V,TA=25°C.  
(2) Worst case operating conditions: VDD= 5.0 V ±10%, TA=-55°C to +225°C.  
(3) All inputs switching. DC average current. External control of Chip Enable (CE)  
is available only in other package options.  
2.9 V  
Valid high  
output  
+
-
Vref1  
Vref2  
249  
+
-
Valid low  
output  
DUT  
output  
C
>50 pF*  
L
*C = 5 pF for TWLQZ, TSHQZ, and TGHQZ  
L
Tester Equivalent Load Circuit  
Operating Current vs. Frequency @ 225°C  
Cycle Times vs. Temperature  
30  
25  
20  
15  
70  
60  
50  
40  
30  
20  
10  
0
Write  
Read  
Read  
Write  
-100  
0
100  
200  
300  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Temperature (°C)  
4
HT6256  
READ CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
Symbol  
Parameter  
Typical (2)  
Units  
Min  
Max  
TAVAVR  
TAVQV  
TAXQX  
TSLQV  
TSLQX  
TSHQZ  
TGLQV  
TGLQX  
TGHQZ  
TEHQV  
TEHQX  
TELQZ  
Address Read Cycle Time  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
50  
Address Change to Output Invalid Time  
Chip Select Access Time  
3
5
50  
Chip Select Output Enable Time  
Chip Select Output Disable Time  
Output Enable Access Time  
20  
15  
Output Enable Output Enable Time  
Output Enable Output Disable Time  
Chip Enable Output Access Time (4)  
Chip Enable Output enable Time (4)  
Chip Enable Output Disable Time (4)  
0
5
15  
25  
17  
10  
4
10  
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V, input rise and fall times <1 ns/V, input and output timing reference levels  
shown in the Tester AC Timing Characteristics table, capacitive output loading CL >50 pF, or equivalent capacitive output loading CL=5 pF for  
TSHQZ and TGHQZ. For CL >50 pF, derate access times by 0.02 ns/pF (typical).  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C.  
(3) Worst case operating conditions: VDD=4.5 V to 5.5 V, -55 to 225°C.  
(4) External control of Chip Enable (CE) is available only in other package options.  
T
AVAVR  
ADDRESS  
NCS  
T
AVQV  
TAXQX  
T
SLQV  
T
SLQX  
TSHQZ  
HIGH  
IMPEDANCE  
DATA OUT  
DATA VALID  
T
EHQX  
EHQV  
T
TELQZ  
CE  
T
GLQX  
GLQV  
T
TGHQZ  
NOE  
(NWE = high)  
5
HT6256  
WRITE CYCLE AC TIMING CHARACTERISTICS (1)  
Worst Case (3)  
Symbol  
Parameters  
Typical (2)  
Units  
Min  
50  
45  
45  
35  
45  
0
Max  
TAVAVW  
TWLWH  
TSLWH  
TDVWH  
TAVWH  
TWHDX  
TAVWL  
TWHAX  
TWLQZ  
TWHQX  
TWHWL  
TEHWH  
Write Cycle Timing (4)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Enable Write Pulse Width  
Chip Select to End of Write Time  
Data Valid to End of Write Time  
Address Valid to End of Write Time  
Data Hold Time after End of Write Time  
Address Valid Setup to Start of Write Time  
Address Valid after End of Write Time  
Write Enable to Output Disable Time  
Write Disable to Ouput Enable Time  
Write Disable to Write Enable Pulse Width (5)  
Chip Enable to End of Write Time (6)  
0
0
0
15  
5
5
45  
(1) Test conditions: input switching levels VIL/VIH=0.5V/VDD-0.5V, input rise and fall times <1 ns/V, input and output timing reference levels  
shown in the Tester AC Timing Characteristics table, capacitive output loading >50 pF, or equivalent capacitive load of 5 pF for TWLQZ.  
(2) Typical operating conditions: VDD=5.0 V, TA=25°C.  
(3) Worst case operation conditions: VDD=4.5 V to 5.5 V, -55 to 225°C.  
(4) TAVAVW = TWLWH + TWHWL  
(5) Guaranteed but not tested.  
(6) External control of Chip Enable (CE) is available only in other package options.  
T
AVAVW  
ADDRESS  
T
AVWH  
TWHAX  
T
AVWL  
T
WHWL  
TWLWH  
NWE  
T
WLQZ  
T
WHQX  
DATA OUT  
DATA IN  
HIGH  
IMPEDANCE  
T
DVWH  
TWHDX  
DATA VALID  
T
SLWH  
NCS  
CE  
T
EHWH  
6
HT6256  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Read Cycle  
Write Cycle  
The RAM is asynchronous in operation, allowing the read The write operation is synchronous with respect to the  
cycle to be controlled by address, chip select (NCS), or chip address bits, and control is governed by write enable (NWE),  
enable (CE) (refer to Read Cycle timing diagram). To per- chip select (NCS), or chip enable (CE) edge transitions (refer  
form a valid read operation, both chip select and output toWriteCycletimingdiagrams).Toperformawriteoperation,  
enable (NOE) must be low and chip enable and write enable both NWE and NCS must be low, and CE must be high.  
(NWE) must be high. The output drivers can be controlled ConsecutivewritecyclescanbeperformedwithNWEorNCS  
independently by the NOE signal. Consecutive read cycles held continuously low, or CE held continuously high. At least  
can be executed with NCS held continuously low, and with oneofthecontrolsignalsmusttransitiontotheoppositestate  
CE held continuously high, and toggling the addresses.  
between consecutive write operations.  
For an address activated read cycle, NCS and CE must be The write mode can be controlled via three different control  
valid prior to or coincident with the activating address edge signals: NWE, NCS, and CE. All three modes of control are  
transition(s). Any amount of toggling or skew between ad- similar except the NCS and CE controlled modes actually  
dress edge transitions is permissible; however, data outputs disable the RAM during the write recovery pulse. Both CE  
will become valid TAVQV time following the latest occurring and NCS fully disable the RAM decode logic and input  
address edge transition. The minimum address activated buffers for power savings. Only the NWE controlled mode is  
read cycle time is TAVAV. When the RAM is operated at the shown in the table and diagram on the previous page for  
minimumaddressactivatedreadcycletime, thedataoutputs simplicity. However, each mode of control provides the  
will remain valid on the RAM I/O until TAXQX time following same write cycle timing characteristics. Thus, some of the  
the next sequential address transition.  
parameter names referenced below are not shown in the  
write cycle table or diagram, but indicate which control pin  
To control a read cycle with NCS, all addresses and CE is in control as it switches high or low.  
must be valid prior to or coincident with the enabling NCS  
edge transition. Address or CE edge transitions can occur TowritedataintotheRAM, NWEandNCSmustbeheldlow  
later than the specified setup times to NCS, however, the and CE must be held high for at least TWLWH/TSLSH/  
valid data access time will be delayed. Any address edge TEHELtime. Anyamountofedgeskewbetweenthesignals  
transition, which occurs during the time when NCS is low, can be tolerated, and any one of the control signals can  
will initiate a new read access, and data outputs will not initiate or terminate the write operation. For consecutive  
become valid until TAVQV time following the address edge write operations, write pulses must be separated by the  
transition. Data outputs will enter a high impedance state minimum specified TWHWL/TSHSL/TELEH time. Address  
TSHQZ time following a disabling NCS edge transition.  
inputs must be valid at least TAVWL/TAVSL/TAVEH time  
before the enabling NWE/NCS/CE edge transition, and  
To control a read cycle with CE, all addresses and NCS must remain valid during the entire write time. A valid data  
must be valid prior to or coincident with the enabling CE overlapofwritepulsewidthtimeofTDVWH/TDVSH/TDVEL,  
edgetransition.AddressorNCSedgetransitionscanoccur andanaddressvalidtoendofwritetimeofTAVWH/TAVSH/  
later than the specified setup times to CE; however, the TAVELalsomustbeprovidedforduringthewriteoperation.  
valid data access time will be delayed. Any address edge Hold times for address inputs and data inputs with respect  
transition which occurs during the time when CE is high will to the disabling NWE/NCS/CE edge transition must be a  
initiate a new read access, and data outputs will not minimum of TWHAX/TSHAX/TELAX time and TWHDX/  
become valid until TAVQV time following the address edge TSHDX/TELDXtime,respectively.Theminimumwritecycle  
transition. Data outputs will enter a high impedance state time is TAVAV.  
TELQZ time following a disabling CE edge transition.  
7
HT6256  
QUALITY ASSURANCE  
nature. Reliability attributes of the HTMOS process were  
characterized by testing test structures from which specific  
failuremechanismswereevaluated.Thesespecificmecha-  
nisms included, but were not limited to, hot carriers, electromi-  
gration and time dependent dielectric breakdown. This data  
was then used to make changes to the design models and  
process to ensure reliable -55 to +225°C specified products.  
Honeywellmaintainsahighlevelofproductintegritythrough  
process control utilizing statistical process control, a com-  
plete “Total Quality Assurance System,” and a computer  
data base process performance tracking system. This  
Total Quality approach ensures our customers of a reliable  
product by engineering in reliability, starting with process  
development and continuing through product qualification PACKAGING  
and screening.  
The standard package is a hermetic 28-lead DIP con-  
SCREENING LEVELS  
structed of multilayer ceramic (Al2O3) and features internal  
power and ground planes. Ceramic chip capacitors can be  
mounted to the package by the user to maximize supply  
noise decoupling and increase board packing density.  
These capacitors connect to the internal package power  
and ground planes. This design minimizes resistance and  
inductance of the bond wire and package. For packaging  
Honeywell offers several levels of device screening to  
meet your system needs. Hi-Rel Level B devices undergo  
additional screening per the requirements of MIL-STD-883.  
RELIABILITY  
Honeywell understands the stringent reliability require- options with surface mount capability or external control of  
ments for extreme environment systems and has exten- Chip Enable (CE), call Honeywell.  
sive experience in reliability testing on programs of this  
28-LEAD DIP PACKAGE  
C
D
Y
All dimensions in inches  
Z
Right  
Reading  
on Lid  
A
b
0.175 (max)  
0.018 ± 0.002  
eA  
E
b2 0.050 (typ)  
C
D
E
e
0.010 to 0.002  
1
1.400 ± 0.014  
0.594 ± 0.010  
0.100 ±0.005  
Optional  
Capacitors  
Ceramic  
Body  
X
eA 0.600 ±0.010  
S2  
L
0.125 to 0.175  
0.050 ±0.010  
Q
Q
A
L
S1 0.005 (min)  
S2 0.005 (min)  
X
Y
Z
0.100 ref  
0.050 ref  
0.075 ref  
S1  
b2  
b
e
(width)  
(pitch)  
ORDERING INFORMATION (1)  
HT6256DC  
C - Indicates screening level  
B = High Temperature Class B  
C = Commercial  
D - Indicates package type  
D = 28-Lead DIP  
For packaging options, call Honeywell  
(1) Orders may be faxed to 612-954-2257. Please contact our Customer Service Department at 612-954-2888 for further information.  
To lea r n m or e a bou t Hon eyw ell Solid Sta te Electr on ics Cen ter ,  
visit ou r w eb site a t h ttp ://w w w .ssec.h on eyw ell.com  
Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability  
arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Helping You Control Your World  
900202 Rev. B  
4-98  

相关型号:

HT6256DB

HIGH TEMPERATURE 32K x 8 STATIC RAM
HONEYWELL

HT6256DC

HIGH TEMPERATURE 32K x 8 STATIC RAM
HONEYWELL

HT6256DS

x8 SRAM
ETC

HT6264

CMOS 8K x 8-Bit SRAM
HOLTEK

HT6264-70-28DIP

IC-64K CMOS SRAM
ETC

HT6264-70DIP

IC-64K CMOS SRAM
ETC

HT6264-70SKW-28SOP

IC-SM-64K CMOS SRAM
ETC

HT6280(28DIP)

Remote-Control Receiver/Decoder
ETC

HT6280(28SDIP)

Remote-Control Receiver/Decoder
ETC