RFM68CW-915S2 [HOPERF]

Low Cost ISM Transmitter Module;
RFM68CW-915S2
型号: RFM68CW-915S2
厂家: HOPERF    HOPERF
描述:

Low Cost ISM Transmitter Module

ISM频段
文件: 总20页 (文件大小:806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFM68CW  
RFM68CW Low Cost ISM Transmitter Module  
V1.1  
Features  
GENERAL DESCRIPTION  
APPLICATIONS  
RFM68CW  
The RFM68CW is an  
‹
Garage Door Openers  
Low-Cost Consumer  
Electronic Applications  
Remote Keyless Entry (RKE)  
Remote Control / Security  
Systems  
ultra-low-cost,  
FSK or OOK  
‹
transmitter module suitable for  
operation in the 315, 433, 868 and  
915 MHz licence free ISM bands.,  
‹
‹
may be used  
the RFM68CW  
without the requirement for  
configuration via  
an MCU.  
However, in conjunction with a  
microcontroller, the  
communication link parameters  
may be re-configured. Including,  
output power, modulation format  
and operating channel.  
KEY PRODUCT FEATURES  
‹
+10 dBm or 0 dBm  
The RFM68CW offers integrated  
radio performance with cost  
efficiency and is suited for  
operation in North America FCC  
part 15.231, FCC part 15.247  
DTS and FHSS modes,15.249,  
and Europe EN 300 220.  
Configurable output power  
Bit rates up to 100 kbps  
OOK and FSK modulation.  
1.8 to 3.7 V supply range.  
Low BOM Fully Integrated Tx  
Fractional-N PLL with 1.5 kHz  
typical step  
‹
‹
‹
‹
‹
In order to better use RFM68CW  
modules, this specification also  
‹
‹
‹
Frequency agility for FHSS  
modulation  
involves a large number of the  
parameters and functions of its  
core chip RF68's,including those  
IC pins which are not leaded out.  
All of these can help customers  
gain a better understanding of  
FCC Part 15.247 DTS Mode  
compliant  
Module Size:16X16mm  
the performance of RFM68CW  
modules, and enhance the  
application skills.  
1
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
Table of contents  
Section  
Page  
1.  
Circuit Description....................................................................................................................................................  
3
3
3
4
5
5
5
5
6
7
1.1. General Description .........................................................................................................................................  
1.2. Block Diagram..................................................................................................................................................  
1.3. Pin Description,............................................................................................................................................  
Electrical Characteristics .........................................................................................................................................  
2.1. ESD Notice ......................................................................................................................................................  
2.2. Absolute Maximum Ratings .............................................................................................................................  
2.3. Operating Range..............................................................................................................................................  
2.4. Electrical Specifications.......................................................................................................................................  
Timing Characteristics .............................................................................................................................................  
2.  
3.  
4.  
Application Modes of the RFM68CW.........................................................................................................................  
8
4.1. Transmitter Modes...........................................................................................................................................  
4.2. Mode Selection Flowchart................................................................................................................................  
8
9
4.3. Application Mode: Power & Go ....................................................................................................................... 10  
4.4. Application Mode: Advanced ......................................................................................................................... 10  
4.4.1. Advanced Mode: Configuration............................................................................................................... 10  
4.4.2. Frequency Hopping Spread Spectrum.................................................................................................... 10  
4.5. Frequency Band Coverage ............................................................................................................................ 11  
4.6. Power Consumption.........................................................................................................................................11  
RFM68CW Configuration.........................................................................................................................................12  
5.1. TWI Access......................................................................................................................................................12  
5.2. APPLICATION Configuration Parameters ..................................................................................................... 14  
5.3. FREQUENCY Configuration Parameters ...................................................................................................... 14  
5.4. Test Parameters (internal) ............................................................................................................................. 15  
5.5. Status Parameters ......................................................................................................................................... 15  
5.6. Recovery Command ....................................................................................................................................... 16  
Application Information .......................................................................................................................................... 17  
6.1. Reference Design .......................................................................................................................................... 17  
6.2. NRESET Pin ................................................................................................................................................... 18  
6.3. TX_READY Pin............................................................................................................................................... 18  
6.4. Low Power Optimization ................................................................................................................................. 18  
6.4.1. 2 Connections: CTRL, DATA................................................................................................................... 18  
6.4.2. 3 Connections: CTRL, DATA, TX_READY.............................................................................................. 18  
RFM68CW Packaging ..............................................................................................................................................19  
7.1. S2 Package Outline Drawing ...........................................................................................................................19  
Ordering Information………………………………………………………………………………………………………….20  
5.  
6.  
7.  
8.  
2
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
This product datasheet contains a detailed description of the RFM68CW performance and functionality.  
1. Circuit Description  
1.1. General Description  
The RFM68CW is a multi-band transmitter module capable of FSK and OOK modulation of an input data stream.  
It contains a frequency synthesizer which is a fractional-N sigma-delta PLL. For frequency modulation (FSK), the  
modulation is made inside the PLL bandwidth. For amplitude modulation (OOK), the modulation is performed by turning on  
and off the output PA.  
The Power Amplifier (PA), connected to the RFOUT pin, can deliver 0 dBm or +10 dBm in a 50 load. Each of these two  
output powers need a specific matching network when efficiency needs to be optimized.  
The circuit can be configured via a simplified TWI interface, constituted of pin CTRL and DATA. The pins of this interface  
are also used to transmit the modulating data to the module.  
Another key feature of the RFM68CW is its low current consumption in Transmit and Sleep modes and its wide voltage  
operating range from 1.8 V to 3.7 V. This makes the RFM68CW suitable for low-cost battery chemistries or energy  
harvesting applications.  
1.2. Block Diagram  
The figure below shows the simplified block diagram of the RFM68CW  
3
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
1.3. Pin Description  
Table 1 Description of the RFM68CW  
Pin Diagram (TOP)  
Pin Description  
Number  
Name  
Type  
Description  
Transmitter RF Output  
1
ANT  
O
2
GND  
GND  
I
I
Exposed Pad, Ground  
3
Exposed Pad, Ground  
Power Supply 1.8V to 3.7V  
4
VCC  
I
5
GND  
I
Exposed Pad, Ground  
Transmit or Configuration Data  
I/O  
O
6
DATA  
TX_READY  
NC  
Transmitter Ready Flag (Optional, can be left floating)  
7
8
Connect to GND  
-
Config Selection Configuration Data Clock  
9
CTRL  
NRESET  
NC  
I
Reset (Optional, can be left floating)  
10  
11  
12  
13  
14  
I
Connect to GND  
-
GND  
I
Exposed Pad, Ground  
Exposed Pad, Ground  
Exposed Pad, Ground  
GND  
I
I
GND  
4
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
2. Electrical Characteristics  
2.1. ESD Notice  
The RFM68CW is an electrostatic discharge sensitive device. It satisfies Class 2 of the JEDEC standard  
JESD22-A114-B (human body model) on all pins.  
2.2. Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
Table 2 Absolute Maximum Ratings  
Symbol  
Description  
Min  
Max  
Unit  
VDDmr  
Tmr  
Supply Voltage  
-0.5  
-55  
-55  
-55  
3.9  
115  
125  
150  
V
Temperature  
° C  
° C  
° C  
Tjunc  
Tstor  
Junction Temperature  
Storage Temperature  
2.3. Operating Range  
Operating ranges define the limits for functional operation and the parametric characteristics of the device as described in  
this section. Functionality outside these limits is not implied.  
Table 3 Operating Range  
Symbol  
Description  
Min  
Max  
Unit  
VDDop  
Top  
Supply voltage  
1.8  
-40  
-
3.7  
85  
25  
V
Operational temperature range  
Load capacitance on digital ports  
° C  
pF  
Clop  
5
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
2.4. Electrical Specifications  
The table below gives the electrical specifications of the transmitter under the following conditions: Supply voltage = 3.3 V,  
temperature = 25 °C, fXOSC = 26 MHz, fRF = 915 MHz, 2-FSK modulation with Fdev=+/-10 kHz, bit rate = 10 kbit/s and  
output power = +10 dBm terminated in a matched 50 Ohm impedance, unless otherwise specified.  
Table 4 Transmitter Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Current Consumption  
IDDSL  
Supply current in Sleep mode  
-
0.5  
1
µA  
IDDT_315 Supply current in Transmit mode  
at 315 MHz*  
RFOP=+10dBm 50% OOK  
-
-
-
11  
15  
9
-
-
-
mA  
mA  
mA  
RFOP=+10dBm FSK  
RFOP=0dBm FSK  
IDDT_915 Supply current in Transmit mode  
at 915 MHz*  
RFOP=+10dBm FSK  
-
-
17.5  
10.5  
-
-
mA  
mA  
RFOP=0dBm  
FSK  
RF and Baseband Specifications  
FBAND  
Band0,For 315MHz Module  
Band0,For 433MHz Module  
Band0,For 868MHz Module  
Band1,For 915MHz Module  
312  
380  
380  
450  
MHz  
MHz  
MHz  
Operation Frequency Bands  
860  
902  
10  
870  
928  
200  
MHz  
kHz  
FDA  
Frequency deviation, FSK  
Bit rate, FSK  
-
-
BRF  
Permissible Range  
Permissible Range  
0.5  
0.5  
-
100  
10  
-
kbps  
kbps  
dB  
BRO  
Bit rate, OOK  
-
OOK_B  
RFOP  
OOK Modulation Depth  
45  
RF output power in 50 Ohms  
in either frequency band  
High Power Setting  
Low Power Setting*  
7
-3  
10  
0
-
-
dBm  
dBm  
RFOPFL  
DRFOPV  
RF output power flatness  
From 315 to 380 MHz, 50 Ohms load  
-
2
-
dB  
Variation in RF output power with  
supply voltage  
2.5 V to 3.3 V  
1.8 V to 3.7 V  
-
-
-
-
3
7
dB  
dB  
PHN  
Transmitter phase noise  
At offset:  
100 kHz  
350 kHz  
550 kHz  
1.15 MHz  
-
-
-
-
-82  
-92  
-96  
-76  
-81  
-91  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-103  
-101  
STEP_22  
STEP_26  
RF frequency step  
RF frequency step  
FXOSC = 24 MHz,for 315MHz module  
-
-
1.46484  
1.58691  
-
-
kHz  
kHz  
FXOSC = 26MHz, for 433,868MHz  
module  
FXOSC = 26MHz, for 915MHz module  
STEP_26  
RF frequency step  
3.17383  
-
kHz  
6
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
For 315MHz Module  
For 433,868,915MHz Module  
Crystal Oscillator Frequency  
24  
26  
FXOSC  
MHz  
MHz  
DFXOSC  
Frequency Variation of the XOSC  
No crystal contribution  
-
-
+/-25 ppm  
Timing Specifications  
TS_TR  
Time from Sleep to Tx mode  
XTAL dependant, with spec’d XTAL  
315 to 390 MHz  
-
-
-
650  
250  
200  
2000 us  
TS_HOP0 Channel hop time in Band 0  
TS_HOP1 Channel hop time in Band 1  
500  
400  
us  
us  
Maximum hop of 26 MHz***  
Programmable  
TOFFT  
Timer from Tx data activity to  
Sleep  
-
-
2
20  
-
-
ms  
ms  
RAMP  
PA Ramp up and down time  
-
-
20  
-
-
us  
T_START  
Time before CTRL pin mode  
selection.  
Time from power on to sampling of  
CTRL **  
200 us  
+ TS_OSC  
ms  
*
With different matching networks  
** The oscillator startup time, TS_OSC, depends on the electrical characteristics of the crystal  
*** From the last CTRL falling edge of the Frequency change instruction to transmitter ready (PA ramp up finished)  
3. Timing Characteristics  
The following table gives the operating specifications for the TWI interface of the RFM68CW.  
Table 5 Serial Interface Timing Specifications  
Symbol Description  
Conditions  
Min  
-
Typ  
Max  
Unit  
MHz  
ns  
f
t
t
t
t
t
CTRL Clock Frequency  
CTRL Clock High time  
CTRL Clock Low time  
CTRL Clock rise time  
CTRL Clock Fall time  
-
-
-
-
-
-
10  
-
CTRL  
ch  
45  
45  
-
-
ns  
cl  
5
5
-
ns  
rise  
fall  
-
ns  
From Data transition to CTRL rising  
edge  
45  
ns  
setup  
DATA Setup time  
DATA hold time  
t
From CTRL rising edge to DATA  
transition  
45  
-
-
-
-
-
5
-
ns  
us  
us  
hold  
t0, t  
Time at “1” on DATA during  
Recovery command  
See Figure 9 and Figure 10  
2
t
Time at “0” on DATA during  
Recovery command  
See Figure 10  
5
1
7
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
4. Application Modes of the RFM68CW  
Pins CTRL and DATA are used for both configuring the circuit and sending the data to be transmitted over the air. Two  
different modes are associated to these pins, “Power&Go” and “Advanced” modes.  
4.1. Transmitter Modes  
Automatic Mode operation is described in Figure 2. Here we see that a rising edge on the DATA pin activates the  
transmitter start-up process. DATA must be held high for the start-up time (TS_TR) of the RFM68CW. During this time the  
RFM68CW undergoes an optimized, self-calibrating trajectory from Sleep mode to Transmit mode. Once this time has  
elapsed, the RFM68CW is ready to transmit. Any logical signal subsequently applied to the DATA pin is then transmitted.  
Figure 2.  
‘Power & Go’ Mode: Transmitter Timing Operation  
The transition back to Sleep mode is managed automatically. The RFM68CW waits for TOFFT (2 or 20 ms) of inactivity on  
DATA before returning to Sleep mode.  
In Forced Transmit Mode the circuit can be forced to wake up and go to TX mode by sending an APPLICATION  
instruction through the TWI interface, and setting the Mode bit DA(15) to ‘1’. Once in Transmit the circuit will transmit over  
the air the data stream presented on the DATA pin. The circuit will stay in transmit mode until a new APPLICATION  
instruction is sent with DA(15) to ‘0’.  
Figure 3.  
Forced Transmit Mode  
Description  
8
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
4.2. Mode Selection Flowchart  
Circuit Start-up  
Wait T_Start  
Check  
CTRL Pin  
Logic ‘0’  
Logic ‘1’  
Power & Go 1  
868.3 MHz  
FSK, Fdev=+/-19.2kHz  
+10dBm  
Power & Go 2  
433.92 MHz  
OOK  
+10dBm  
CTRL Clock signal  
Advanced Mode Full  
register flexibility Automatic  
or forced Transmit  
Figure 4.  
RFM68CW Mode  
Selection  
Note Advanced mode is entered only if DATA is held low during CTRL’s rising edge.  
When powering up the circuit (microcontroller and RFM68CW), the logic level of the CTRL pin is sampled after T_START,  
as described on Figure 5. During T_START, the microcontroller IO driving the CTRL pin must be configured as an output,  
driving the CTRL pin to the desired state.  
Figure 5.  
Power-up  
Timing  
9
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
4.3. Application Mode: Power &Go  
The default ‘Power & Go’ application mode sees the RFM68CW configured as detailed in Table 6. By changing the logical  
state of the CTRL pin at Power-up or Reset, two distinct configuration modes can be selected. The Power & Go application  
modes hence permit microcontroller-less operation.  
Table 6 Configuration in Power & Go Mode  
CTRL Pin  
‘Low’  
Configuration  
Mode  
FSK 868.3 MHz, +10 dBm, Fdev=+/-19.2 kHz  
Power&Go 1  
Power&Go 2  
‘High’  
OOK 433.92 MHz, +10 dBm  
4.4. Application Mode: Advanced  
4.4.1. Advanced Mode: Configuration  
As described on Figure 4, Advanced mode is entered when accessing the Two Wire Interface (TWI) bus of the RFM68CW.  
Upon communication to the register at up to 10 MHz of clocking speed, complete flexibility on the use of the module is  
obtained.  
Once all register settings are selected (see registers detailed description in section [5]), the RFM68CW can be used either  
in  
Automatic mode by simply toggling the DATA pin, or in Forced Transmit mode to optimize timings for instance.  
4.4.2. Frequency Hopping Spread Spectrum  
Frequency hopping is supported in Advanced mode. After sending the data stream in the first channel, the user can send  
a Frequency change instruction containing the new channel frequency. The circuit will automatically ramp down the PA,  
lock the PLL to the new frequency, and turn the Power Amplifier back on. The user can then send his packet data on the  
new channel. Timings are detailed hereafter:  
t < TOFFT  
TWI  
t < TOFFT  
(2 or 20 ms)  
instruction  
(2 or 20 ms)  
Frequencychange  
Frequencychange  
DATA  
CTRL  
RFOUT  
5th falling  
edge on CTRL  
24th falling  
edge on CTRL  
TS_HOPi  
Tx Channel  
A
Tx Channel  
B
Figure 6.  
Frequency Hopping Description  
Notes  
- During any TWI access, the input of the modulator is inhibited  
- The time between two Frequency change instructions shall be greater than TS_HOPi  
- FHSS modulation, as described under FCC part 15.247, is supported by the RFM68CW; also note that the  
large Frequency Deviation settings available on the RFM68CW make it suitable for “Digitally Modulated  
Systems”, as described under FCC Part 15.247 (a)(2)  
10  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
4.5. Frequency Band Coverage  
The RFM68CW offers several combinations or frequency references and frequency outputs, allowing for maximum  
flexibility and design of multi-band products:  
Table 7 Frequency Selection Table  
Reference  
Frequency  
FXOSC  
Upper / Lower  
Frequency  
Bounds  
Band Setting  
DA(13)  
Frf &  
Fdev  
Fstep  
22x106  
-----------------  
214  
Fstep=  
Fstep=  
= 1.34277kHz  
= 1.46484kHz  
22 MHz  
24 MHz  
310 to 450 MHz  
312 to 450 MHz  
338 to 450 MHz  
24x106  
-----------------  
0
214  
Frf= DF(18;0) × Fstep  
Fdev= DA(12;5) × Fstep  
26x106  
-----------------  
Fstep=  
Fstep=  
= 1.58691kHz  
214  
26 MHz  
6
860 to 870 MHz  
and  
902 to 928 MHz  
26x10  
-----------------  
213  
= 3.17383kHz  
1
4.6. Power Consumption  
The following typical power consumption figures are observed on the RFM68CW kits. Note that the transmitter efficiency  
depends on the impedance matching quality, and can be PCB design dependant.  
The PA matching may be different in each frequency band.  
Table 8 Power Consumption in Tx mode  
Typical Current  
Frequency Band  
Conditions  
Drain  
310 to 450 MHz  
Pout=+10dBm, OOK modulation with 50% duty cycle  
Pout=+10dBm, FSK modulation  
Pout=0dBm, FSK modulation  
11 mA  
15 mA  
9 mA  
860 to 870 MHz  
902 to 928 MHz  
Pout=+10dBm, FSK modulation  
Pout=0dBm, FSK modulation  
16.5 mA  
10 mA  
Pout=+10dBm, FSK modulation  
Pout=0dBm, FSK modulation  
17.5 mA  
10.5 mA  
11  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
5. RFM68CW Configuration  
The RFM68CW has several configuration parameters which can be selected through the serial  
interface  
5.1. TWI Access  
As long as CTRL is kept stable, the DATA pin is considered by the circuit as the input for the data to be transmitted over the  
air (Power&Go modes).  
Programming of the configuration register is triggered by a rising edge on the CTRL line. Upon detection of this rising edge,  
the data applied to the DATA pin is accepted as register configuration information, the data bits are clocked on subsequent  
rising edges of the clocking signal applied to the CTRL pin. The timing for RFM68CW configuration register ‘write’ is shown  
in Figure 7. Note that, once triggered, all 24 clock cycle must be issued to the RFM68CW.  
CTRL  
DATA  
1st  
2nd  
23rd  
24th  
DATA pin is an input  
Figure 7.  
TWI Configuration Register ‘Write’.  
The registers may, similarly, be read using the timing of Figure 8.  
CTRL  
DATA  
1st 2nd  
8th  
24th  
DATA pin is an output  
DATA pin is an input  
Figure 8.  
TWI Configuration Register ‘Read’.  
The first rising edge on CTRL which initiates the ADVANCED mode must occur at least 1 ms after the circuit has been  
powered up or reset.  
12  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
Table 9 TWI Instruction Table  
Byte 0  
Byte 1  
Byte 2  
Instruction  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
0 0 0 0  
0 0 0 1 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
(0000)  
DA(15:0)  
DF(18:0)  
Write Application bits  
Write Frequency bits  
(0)(0010)(0010)  
DT(10:0)  
Write Test bits (pad protected)  
Read Application bits  
(0011)  
(0100)  
(0101)  
DA(15:0)  
DF(15:0)  
Read the 16 least significant Frequency bits  
DS(12:5)  
DS(4:0)  
DF(18: Read Chip version, Status and 3 most significant  
16)  
Frequency bits  
0 1 1 0  
0 1 1 1  
1
(0110)  
(0111)  
DS(28:13)  
DT(10:0)  
Read Bist signature  
Read Test bits  
(1111)(1)  
x
Discarded, not an instruction  
Recovery instruction  
All 1  
Notes  
- The first “0” transmitted to the RFM68CW is required to initialize communication  
- The following 3 bits (highlighted in blue) determine the type of instruction  
- The forthcoming bits (highlighted in green) define a protection pattern; any error in these bits voids the instruction  
13  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
5.2. APPLICATION Configuration Parameters  
Power  
&Go 1  
Power  
&Go 2  
Name  
Mode  
Number  
Description  
DA(15)  
0
Mode:  
0 Automatic mode  
1 Forced transmit mode  
Modul  
DA(14)  
0
1
1
Modulation scheme:  
0 FSK  
1 OOK  
Band  
Fdev  
DA(13)  
0
Band 0, 310 to 450 MHz  
Band 1, 860 to 870 MHz and 902 to 928 MHz  
DA(12:5)  
0x06  
Fdev=  
+/-19.2kHz  
Unused  
RF Frequency deviation in FSK mode only  
See Table 7 for details  
Pout  
DA(4)  
DA(3)  
1
1
1
Output power range:  
0 0 dBm  
1 10 dBm  
TOFFT  
0
Period of inactivity on DATA before  
RFM68CW enters Sleep mode in Automatic  
mode:  
0 2 ms  
1
20  
RES  
DA(2:0)  
100  
100  
Reserved  
Table 10 APPLICATION Configuration Parameters  
Note All changes to the APPLICATION parameters must be performed when the device is in Sleep mode, with the  
exception of DA(15). Mode can be sequentially written to “1”, and then “0” while the device is in Transmit mode, to  
speed up the turn off process and circumvent the TOFFT delay.  
5.3. FREQUENCY Configuration Parameters  
Power  
&Go 1  
Power  
&Go 2  
Name  
Frf  
Number  
Description  
DF(18:0)  
0x42CAD  
0x42C1C  
RF operating frequency  
Frf=868.3 MHz  
With 26 MHz  
reference  
Frf=433.92 MHz  
With 26 MHz  
reference  
See Table 7 for details  
Table 11 FREQUENCY Configuration Parameters  
If done in Sleep mode, the Frequency change instruction will be applied next time the RFM68CW is turned on. If  
Frequency change occurs during transmission, the automated Frequency Hopping sequence described in section [4.4.2]  
will take place.  
14  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
5.4. Test Parameters (internal)  
Ten Test bits DT(9:0) exist in the RFM68CW. They are only use for the industrial test of the device, and therefore they are  
pad protected. It means that their value cannot be modified without applying a specific logical level to some of the  
RFM68CW pads during a write access.  
5.5. Status Parameters  
DS(12:5) are read-only bits, organized as follows:  
Default  
Advanced  
Mode  
Power  
&Go 1  
Power  
&Go 2  
Name  
Number  
Description  
RES  
DS(28:13)  
DS(12:5)  
-
Reserved  
“0001 0001” --> V1A  
Chip  
Chip identification number  
Version  
RES  
DS(4:0)  
-
Reserved  
Table 12 Status Read-Only Parameters  
15  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
5.6. Recovery Command  
In the event of spurious activity (less than 24 clock cycles received) on the CTRL pin, control over the TWI interface can be  
recovered in two possible ways:  
t2  
Recovery Command  
DATA  
CTRL  
1st rising  
24th rising  
edge on CTRL  
edge on CTRL  
Figure 9.  
Quick Recovery Command  
t1  
t0  
DATA  
CTRL  
1st rising edge  
24th rising edge  
Figure 10.  
Pulsed Recovery Command  
Notes  
- If t2 < 5 us, the RFM68CW will not turn into Tx mode during the recovery command (if not previously in Tx mode)  
- If t1 < 5 us, with t0 > 5 us, the RFM68CW will not turn into Tx mode in the second scenario of recovery command  
- During the Pulsed recovery command, t0 timing does not have any upper limit  
- If t1 or t2 exceeds 5us, the recovery command will still be successful, but the transmitter will momentarily turn on  
16  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
6. Application Information  
6.1. Reference Design  
Figure 11:Typical Application Schematic  
17  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
6.2. NRESET Pin  
When required, the pin NRESET can be controlled externally, to allow for:  
‹
‹
either a delayed Power On Reset (POR) cycle of the RFM68CW, allowing for the companion micro to reset and  
assign its  
port directions. This is achieved by connecting a R/C time constant to the NRESET pin.  
or an On-the-go Reset of the RFM68CW at any moment in time, if required by the application. This is achieved by  
pulling  
the NRESET pin low for more than 100 microseconds, then releasing it to high impedance (normal termination).  
6.3. TX_READY Pin  
For timing critical applications, TX_READY pin can be useful to know precisely when the transmitter is ready for operation,  
and therefore save energy. To this end, TX_READY can optionally be connected to inform the companion device that the  
PA ramp up phase has been terminated, hence the RFM68CW is ready for data transmission.  
6.4. Low Power Optimization  
The RFM68CW is designed to reduce the cost of the RF transmitter functionnality. To this end, a single DATA signal can  
be enough to operate the transmitter, in any of the two Power & Go modes. In this situation, TS_START and TOFFT  
timings, tabulated in Section 2.4, must be respected, leading to significant periods of time during which the transmitter is On  
and no valuable information is transmitted.  
For more demanding applications where energy usage is critical, the RFM68CW offers hardware and software support to  
accurately control the transmitter On time, and therefore save energy:  
6.4.1. 2 Connections: CTRL, DATA  
If the two signals of the TWI interface can be controlled by the host microcontroller, Tx On time can be accurately controlled  
as follows:  
‹
At the device turn on, instead of waiting for TS_TR (2ms max, but very XTAL dependant), the status flag  
TX_READY  
‹
‹
can be polled on the TWI interface. As soon as the TX_READY flag is set, the microcontroller can start toggling DATA  
to transmit the useful packet. This method is valid in both Forced Tx and Automatic modes.  
At the device turn off, instead of waiting for TOFFT (2 or 20ms), the user can immediately turn off the transmitter  
after  
‹
the transmission of packet, assuming that the Forced Transmit mode was selected.  
6.4.2. 3 Connections: CTRL, DATA, TX_READY  
In applications where the number of connections between the microcontroller and the RF module is less critical,  
TX_READY pin can be connected to either a GPIO port, or an external interrupt port of the micro. The two optimizations  
described in the former subsection will also be possibl  
18  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
7. Packaging Information  
7.1. S2 Package Outline Drawing  
Figure 12: S2 Package Outline Drawing  
19  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  
RFM68CW  
8. Ordering Information  
RFM68CW 433 S2  
Package  
Operation Band  
Mode Type  
P/N: RFM68CW-315S2  
RFM68CW module at 315MHz band, SMD Package  
P/N: RFM68CW-433S2  
RFM68CW module at 433MHz band, SMD Package  
P/N: RFM68CW-868S2  
RFM68CW module at 868MHz band, SMD Package  
P/N: RFM68CW-915S2  
RFM68CW module at 915MHz band, SMD Package  
This document may contain preliminary information and is subject to  
change by Hope Microelectronics without notice. Hope Microelectronics  
assumes no responsibility or liability for any use of the information  
contained herein. Nothing in this document shall operate as an express or  
implied license or indemnity under the intellectual property rights of Hope  
Microelectronics or third parties. The products described in this document  
are not intended for use in implantation or other direct life support  
applications where malfunction may result in the direct physical harm or  
injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT  
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY  
OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS  
DOCUMENT.  
HOPE MICROELECTRONICS CO.,LTD  
Add: 2/F, Building 3, Pingshan Private  
Enterprise Science and Technology  
Park, Lishan Road, XiLi Town,  
Nanshan District, Shenzhen,  
Guangdong, China  
Tel: 86-755-82973805  
Fax: 86-755-82973550  
Email:  
sales@hoperf.com  
Website: http://www.hoperf.com  
http://www.hoperf.cn  
©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.  
20  
Tel: +86-755-82973805 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com  

相关型号:

RFM68W

Low Cost ISM Transmitter Module
HOPERF

RFM68W-315S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W-433S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W-868S2

Low Cost ISM Transmitter Module
HOPERF

RFM68W-915S2

Low Cost ISM Transmitter Module
HOPERF

RFM69CW

ISM TRANSCEIVER MODULE
HOPERF

RFM69CW-315S2

ISM TRANSCEIVER MODULE
HOPERF

RFM69CW-433S2

ISM TRANSCEIVER MODULE
HOPERF

RFM69CW-868S2

ISM TRANSCEIVER MODULE
HOPERF

RFM69CW-915S2

ISM TRANSCEIVER MODULE
HOPERF

RFM69HCW

ISM TRANSCEIVER MODULE
HOPERF

RFM69HCW-315S2

ISM TRANSCEIVER MODULE
HOPERF