HCPL0454 [HP]

High CMR, High Speed Optocouplers; 高CMR ,高速光电耦合器
HCPL0454
型号: HCPL0454
厂家: HEWLETT-PACKARD    HEWLETT-PACKARD
描述:

High CMR, High Speed Optocouplers
高CMR ,高速光电耦合器

光电
文件: 总16页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
H
High CMR, High Speed  
Optocouplers  
Technical Data  
HCPL-4504  
HCPL-0454  
HCNW4504  
Features  
• Short Propagation Delays  
for TTL and IPM  
Applications  
Description  
• Inverter Circuits and  
Intelligent Power Module  
(IPM) interfacing -  
High Common Mode Transient  
Immunity (> 10 kV/µs for an  
IPM load/drive) and (tPLH - tPHL  
Specified (See Power Inverter  
Dead Time section)  
• Line Receivers -  
Short Propagation Delays and  
Low Input-Output Capacitance  
• High Speed Logic Ground  
Isolation - TTL/TTL, TTL/  
CMOS, TTL/LSTTL  
• Replaces Pulse  
Transformers -  
Save Board Space and Weight  
• Analog Signal Ground  
Isolation -  
Integrated Photodetector  
Provides Improved Linearity  
over Phototransistors  
These optocouplers are similar to  
HPs other high speed transistor  
optocouplers but with shorter  
propagation delays and higher  
CTR. The HCPL-4504/0454 and  
HCNW4504 also have a guaran-  
teed propagation delay difference  
(tPLH - tPHL). These features make  
these optocouplers an excellent  
solution to IPM inverter dead time  
and other switching problems.  
Applications  
• 15 kV/µs Minimum Common  
Mode Transient Immunity at  
VCM = 1500 V for TTL/Load  
Drive  
• High CTR at TA = 25°C  
>25% for HCPL-4504/0454  
>23% for HCNW4504  
• Electrical Specifications for  
Common IPM Applications  
• TTL Compatible  
• Guaranteed Performance  
from 0°C to 70°C  
• Open Collector Output  
• Safety Approval  
UL Recognized - 2500 V rms  
for 1 minute (5000 V rms for  
1 minute for  
HCPL-4504#020 and  
HCNW4504)per UL1577  
CSA Approved  
)
Functional Diagram  
VDE 0884 Approved  
-VIORM = 630 V peak for  
HCPL-4504#060  
-VIORM = 1414 V peak for  
HCNW4504  
BSI Certified (HCNW4504)  
8
7
6
5
NC  
ANODE  
CATHODE  
NC  
1
2
3
4
V
CC  
TRUTH TABLE  
NC  
LED  
V
O
ON  
OFF  
LOW  
HIGH  
• Available in 8-Pin DIP, SO-8,  
Widebody Packages  
V
O
GND  
A 0.1 µF bypass capacitor between pins 5 and 8 is recommended.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
1-33  
5965-3604E  
The HCPL-4504/0454 and  
These single channel, diode-  
transistor optocouplers are  
available in 8-Pin DIP, SO-8, and  
Widebody package configura-  
tions. An insulating layer between  
a LED and an integrated  
photodetector provide electrical  
insulation between input and  
output. Separate connections for  
the photodiode bias and output-  
transistor collector increase the  
speed up to a hundred times that  
of a conventional phototransistor  
coupler by reducing the base  
collector capacitance.  
HCNW4504 CTR, propagation  
delay, and CMR are specified for  
both TTL and IPM load/drive  
conditions. Specifications and  
typical performance plots for both  
TTL and IPM conditions are  
provided for ease of application.  
Selection Guide  
Single Channel Packages  
Small Outline  
8-Pin DIP  
(300 Mil)  
Widebody  
(400 Mil)  
SO-8  
HCPL-4504  
HCPL-0454  
HCNW4504  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-4504#XXX  
020 = UL 5000 V rms/1 Minute Option*  
060 = VDE 0884 VIORM = 630 V peak Option*  
300 = Gull Wing Surface Mount Option†  
500 = Tape and Reel Packaging Option  
Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for  
information.  
*For HCPL-4504 only. Combination of Option 020 and Option 060 is not available.  
†Gull wing surface mount option applies to through hole parts only.  
Schematic  
I
CC  
8
V
CC  
I
F
+
2
ANODE  
V
F
I
O
6
5
3
V
O
CATHODE  
SHIELD  
GND  
1-34  
Package Outline Drawings  
8-Pin DIP Package (HCPL-4504)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
HP XXXXZ  
YYWW  
U R  
4
UL  
2
3
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"L" = OPTION 020  
"V" = OPTION 060  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.65 (0.025) MAX.  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4504)  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
6
5
8
1
7
4.826  
(0.190)  
TYP.  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.398 (0.370)  
9.906 (0.390)  
2
3
4
0.381 (0.015)  
0.635 (0.025)  
1.194 (0.047)  
1.778 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
4.19  
+ 0.003)  
- 0.002)  
MAX.  
(0.165)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
1-35  
Small Outline SO-8 Package (HCPL-0454)  
8
7
6
5
5.842 ± 0.203  
(0.236 ± 0.008)  
XXX  
3.937 ± 0.127  
(0.155 ± 0.005)  
YWW  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
1
2
3
4
0.381 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSG  
0.432  
(0.017)  
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.152 ± 0.051  
(0.006 ± 0.002)  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
0.305  
(0.012)  
MIN.  
8-Pin Widebody DIP Package (HCNW4504)  
11.00  
MAX.  
11.15 ± 0.15  
(0.442 ± 0.006)  
(0.433)  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
HP  
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS (INCHES).  
1-36  
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4504)  
11.15 ± 0.15  
(0.442 ± 0.006)  
PAD LOCATION (FOR REFERENCE ONLY)  
7
6
5
8
6.15  
TYP.  
(0.242)  
9.00 ± 0.15  
(0.354 ± 0.006)  
12.30 ± 0.30  
(0.484 ± 0.012)  
1
3
2
4
0.9  
(0.035)  
1.3  
(0.051)  
12.30 ± 0.30  
(0.484 ± 0.012)  
1.55  
(0.061)  
MAX.  
11.00  
MAX.  
(0.433)  
4.00  
MAX.  
(0.158)  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
Solder Reflow Temperature Profile  
(HCPL-0454 and Gull Wing Surface Mount Option Parts)  
260  
240  
T = 145°C, 1°C/SEC  
220  
T = 115°C, 0.3°C/SEC  
200  
180  
160  
140  
120  
100  
80  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
Note: Use of nonchlorine activated fluxes is highly recommended.  
1-37  
Regulatory Information  
CSA  
BSI  
The devices contained in this data  
sheet have been approved by the  
following organizations:  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
Certification according to  
BS451:1994,  
(BS EN60065:1994);  
BS EN60950:1992  
UL  
VDE  
(BS7002:1992) and  
EN41003:1993 for Class II  
applications (HCNW4504 only).  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
Approved according to VDE  
0884/06.92 (HCNW4504 and  
HCPL-4504#060 only).  
Insulation and Safety Related Specifications  
8-Pin DIP  
Widebody  
(300 Mil) SO-8 (400 Mil)  
Parameter  
Symbol  
Value  
Value  
Value  
Units  
Conditions  
Minimum External  
Air Gap (External  
Clearance)  
L(101)  
7.1  
4.9  
9.6  
mm  
Measured from input terminals  
to output terminals, shortest  
distance through air.  
Minimum External  
Tracking (External  
Creepage)  
L(102)  
7.4  
4.8  
10.0  
1.0  
mm  
mm  
Measured from input terminals  
to output terminals, shortest  
distance path along body.  
Minimum Internal  
Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
Through insulation distance,  
conductor to conductor, usually  
the direct distance between the  
photoemitter and photodetector  
inside the optocoupler cavity.  
Minimum Internal  
Tracking (Internal  
Creepage)  
NA  
200  
IIIa  
NA  
200  
IIIa  
4.0  
200  
IIIa  
mm  
Measured from input terminals  
to output terminals, along  
internal cavity.  
Tracking Resistance  
(Comparative  
Tracking Index)  
CTI  
Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group  
(DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
1-38  
VDE 0884 Insulation Related Characteristics  
(HCPL-4504 OPTION 060 ONLY)  
Description  
Symbol  
Characteristic  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
I-IV  
I-III  
55/100/21  
2
for rated mains voltage 450 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
630  
V peak  
V peak  
IORM  
V
IORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
1181  
945  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
IORM x 1.5 = VPR, Type and sample test,  
V peak  
V peak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
6000  
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 15, Thermal Derating curve.)  
Case Temperature  
TS  
IS,INPUT  
PS,OUTPUT  
175  
230  
600  
109  
°C  
mA  
mW  
Input Current  
Output Power  
Insulation Resistance at TS, V = 500 V  
RS  
IO  
VDE 0884 Insulation Related Characteristics (HCNW4504 ONLY)  
Description  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 600 V rms  
for rated mains voltage 1000 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
Symbol Characteristic Units  
I-IV  
I-III  
55/85/21  
2
V
1414  
V peak  
V peak  
IORM  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
2652  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and sample test,  
2121  
8000  
V peak  
V peak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 15, Thermal Derating curve.)  
Case Temperature  
TS  
IS,INPUT  
PS,OUTPUT  
150  
400  
700  
109  
°C  
mA  
mW  
Input Current  
Output Power  
Insulation Resistance at TS, V = 500 V  
RS  
IO  
*Refer to the front of the optocoupler section of the current catalog under Product Safety Regulations section (VDE 0884), for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
1-39  
Absolute Maximum Ratings  
Parameter  
Symbol  
Device  
Min.  
Max. Units Note  
Storage Temperature  
Operating Temperature  
T
T
A
-55  
125  
100  
°C  
°C  
S
HCPL-4504 -55  
HCPL-0454  
HCNW4504 -55  
85  
25  
Average Forward Input Current  
Peak Forward Input Current  
(50% duty cycle, 1 ms pulse width)  
(50% duty cycle, 1 ms pulse width)  
Peak Transient Input Current  
I
mA  
mA  
1
2
F(AVG)  
I
HCPL-4504  
HCPL-0454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCNW4504  
F(PEAK)  
50  
40  
1
I
A
V
F(TRANS)  
(1 µs pulse width, 300 pps)  
0.1  
5
Reverse LED Input Voltage (Pin 3-2)  
Input Power Dissipation  
V
R
3
45  
P
IN  
mW  
3
4
40  
8
16  
30  
20  
100  
Average Output Current (Pin 6)  
Peak Output Current  
Supply Voltage (Pin 8-5)  
Output Voltage (Pin 6-5)  
Output Power Dissipation  
I
mA  
mA  
V
V
mW  
O(AVG)  
I
O(PEAK)  
V
-0.5  
-0.5  
CC  
V
O
P
O
Lead Solder Temperature  
(Through-Hole Parts Only)  
1.6 mm below seating plane,  
10 seconds up to seating plane, 10 seconds  
T
HCPL-4504  
260  
260  
°C  
°C  
LS  
HCNW4504  
HCPL-0454  
and  
Option 300  
Reflow Temperature Profile  
T
RP  
See Package Outline  
Drawings section  
1-40  
Electrical Specifications (DC)  
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. See note 12.  
Parameter  
Current  
Transfer Ratio  
Symbol  
CTR  
Device  
Min. Typ.* Max. Units  
Test Conditions  
TA = 25°C VO = 0.4 V  
VO = 0.5 V  
TA = 25°C VO = 0.4 V  
VO = 0.5 V  
TA = 25°C VO = 0.4 V  
VO = 0.5 V  
TA = 25°C VO = 0.4 V  
VO = 0.5 V  
Fig. Note  
HCPL-4504  
HCPL-0454  
HCNW4504  
25  
21  
23  
19  
26  
22  
25  
21  
32  
34  
29  
31  
35  
37  
33  
35  
0.2  
60  
%
IF = 16 mA, 1, 2,  
VCC = 4.5 V  
5
4
60  
63  
65  
Current  
Transfer Ratio  
CTR  
VOL  
HCPL-4504  
HCPL-0454  
HCNW4504  
%
IF = 12 mA, 1, 2,  
5
VCC = 4.5 V  
4
65  
68  
Logic Low  
Output Voltage  
HCPL-4504  
HCPL-0454  
HCNW4504  
0.4  
0.5  
0.4  
0.5  
0.5  
1
V
TA = 25°C IO = 4.0 mA  
IO = 3.3 mA  
TA = 25°C IO = 3.6 mA  
IF = 16 mA,  
VCC = 4.5 V  
0.2  
I
O = 3.0 mA  
Logic High  
Output Current  
IOH  
0.003  
0.01  
µA  
TA = 25°C VO = VCC = 5.5 V IF = 0 mA  
TA = 25°C VO = VCC = 15 V  
5
50  
Logic Low  
Supply Current  
Logic High  
Supply Current  
Input Forward  
Voltage  
ICCL  
ICCH  
VF  
50  
200  
µA  
µA  
V
IF = 16 mA, VO = Open, VCC = 15 V  
12  
12  
0.02  
1.5  
1
2
1.7  
1.8  
1.85  
1.95  
TA = 25°C IF = 0 mA, VO = Open,  
VCC = 15 V  
TA = 25°C IF = 16 mA  
HCPL-4504  
HCPL-0454  
HCNW4504 1.45  
1.35  
HCPL-4504  
HCPL-0454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCNW4504  
HCPL-4504  
HCPL-0454  
HCNW4504  
3
1.59  
TA = 25°C IF = 16 mA  
IR = 10 µA  
Input Reverse  
Breakdown  
Voltage  
Temperature  
Coefficient of  
Forward Voltage  
Input  
BVR  
5
V
3
IR = 100 µA, TA = 25°C  
VF  
TA  
-1.6  
mV/°C IF = 16 mA  
-1.4  
60  
CIN  
pF  
f = 1 MHz, VF = 0 V  
Capacitance  
70  
*All typicals at TA = 25°C.  
1-41  
AC Switching Specifications  
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified.  
Parameter  
Symbol  
Min. Typ. Max. Units  
Test Conditions  
Fig. Note  
Propagation  
Delay Time  
to Logic Low  
at Output  
0.2  
0.3  
TA = 25°C Pulse: f = 20 kHz,  
Duty Cycle = 10%,  
6,  
8, 9  
tPHL  
µs  
9
10  
9
0.2  
0.5  
IF = 16 mA, VCC = 5.0 V,  
RL = 1.9 k, CL = 15 pF,  
V
THHL = 1.5 V  
0.2  
0.1  
0.5  
0.5  
0.7  
1.0  
TA = 25°C Pulse: f = 10 kHz,  
6,  
10-14  
Duty Cycle = 50%,  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 k, CL = 100 pF,  
THHL = 1.5 V  
V
Propagation  
Delay Time  
to Logic  
0.3  
0.3  
0.5  
0.7  
TA = 25°C Pulse: f = 20 kHz,  
Duty Cycle = 10%,  
6,  
8, 9  
tPLH  
µs  
IF = 16 mA, VCC = 5.0 V,  
RL = 1.9 k, CL = 15 pF,  
High at  
Output  
VTHLH = 1.5 V  
0.3  
0.2  
0.8  
0.8  
1.1  
1.4  
TA = 25°C Pulse: f = 10 kHz,  
6,  
10-14  
Duty Cycle = 50%,  
10  
15  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 k, CL = 100 pF,  
THLH = 2.0 V  
V
Propagation  
Delay  
-0.4  
-0.7  
0.3  
0.3  
0.9  
1.3  
TA = 25°C Pulse: f = 10 kHz,  
6,  
10-14  
t
PLH-tPHL  
µs  
Duty Cycle = 50%,  
Difference  
Between  
Any 2 Parts  
IF = 12 mA, VCC = 15.0 V,  
RL = 20 k, CL = 100 pF,  
THHL = 1.5 V, VTHLH = 2.0 V  
V
Common  
VCC = 5.0 V, RL = 1.9 k,  
Mode  
15  
15  
30  
30  
CL = 15 pF, IF = 0 mA  
7
7
7, 9  
Transient  
Immunity at  
Logic High  
Level Output  
|CMH|  
|CML|  
kV/µs TA = 25°C  
VCC = 15.0 V, RL = 20 k,  
VCM  
=
CL = 100 pF, IF = 0 mA  
8, 10  
1500 VP-P  
Common  
Mode  
Transient  
Immunity at  
Logic Low  
Level Output  
VCC = 5.0 V, RL = 1.9 k,  
CL = 15 pF, IF = 16 mA  
15  
10  
30  
30  
7
7
7, 9  
kV/µs TA = 25°C  
VCC = 15.0 V, RL = 20 k,  
VCM  
=
CL = 100 pF, IF = 12 mA  
8, 10  
1500 VP-P  
15  
30  
VCC = 15.0 V, RL = 20 k,  
CL = 100 pF, IF = 16 mA  
7
7
8, 10  
8, 10  
*All typicals at TA = 25°C.  
1-42  
Package Characteristics  
Over recommended temperature (TA = 0°C to 25°C) unless otherwise specified.  
Parameter  
Sym.  
Device  
Min. Typ.* Max. Units Test Conditions  
Fig. Note  
Input-Output  
Momentary  
Withstand  
Voltage†  
V
ISO  
HCPL-4504 2500  
HCPL-0454  
HCNW4504 5000  
V rms RH 50%,  
6, 13  
t = 1 min.,  
T = 25°C  
A
6, 14  
HCPL-4504 5000  
(Option 020)  
6, 11,  
14  
Input-Output  
Resistance  
RI-O  
HCPL-4504  
HCPL-0454  
HCNW4504  
1012  
1013  
VI-O = 500 Vdc  
6
1012  
1011  
T = 25°C  
A
T = 100°C  
A
Input-Output  
Capacitance  
CI-O  
HCPL-4504  
HCPL-0454  
HCNW4504  
0.6  
0.5  
pF  
f = 1 MHz  
6
0.6  
*All typicals at TA = 25°C..  
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if  
applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance  
Voltage.”  
Notes:  
1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8).  
2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8).  
3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8).  
4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP).  
Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8).  
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current,  
IF, times 100.  
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.  
7. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive)  
dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state  
(i.e., VO > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the  
trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).  
8. Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is  
the maximum tolerable dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a  
Logic High state (i.e., VO > 3.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/dt on  
the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low state  
(i.e., VO < 1.0 V).  
9. The 1.9 kload represents 1 TTL unit load of 1.6 mA and the 5.6 kpull-up resistor.  
10. The RL = 20 k, CL = 100 pF load represents an IPM (Intelligent Power Module) load.  
11. See Option 020 data sheet for more information.  
12. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.  
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for 1 second  
(leakage detection current limit, Ii-o 5 µA). This test is performed before the 100% Production test shown in the VDE 0884  
Insulation Related Characteristics Table, if applicable.  
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for 1 second  
(leakage detection current limit, Ii-o 5 µA). This test is performed before the 100% Production test shown in the VDE 0884  
Insulation Related Characteristics Table, if applicable.  
15. The difference between tPLH and tPHL between any two devices (same part number) under the same test condition. (See Power  
Inverter Dead Time and Propagation Delay Specifications section.)  
1-43  
HCPL-4504/0454  
HCNW4504  
40 mA  
35 mA  
T
= 25°C  
= 5.0 V  
T = 25°C  
A
CC  
A
10  
20  
18  
16  
14  
12  
10  
8
V
V
= 5.0 V  
CC  
40 mA  
35 mA  
30 mA  
25 mA  
20 mA  
30 mA  
25 mA  
20 mA  
5
15 mA  
10 mA  
15 mA  
10 mA  
6
4
I
= 5 mA  
F
2
0
I
= 5 mA  
F
0
0
20  
0
20  
10  
– OUTPUT VOLTAGE – V  
10  
– OUTPUT VOLTAGE – V  
V
V
O
O
Figure 1. DC and Pulsed Transfer Characteristics.  
HCPL-4504/0454  
1.5  
HCNW4504  
NORMALIZED  
2.0  
I
= 16 mA  
F
V
= 0.4 V  
O
V
T
= 5.0 V  
= 25°C  
A
CC  
1.6  
1.0  
1.2  
0.8  
0.5  
0.0  
NORMALIZED  
= 16 mA  
I
F
V
= 0.4 V  
O
0.4  
0
V
= 5.0 V  
= 25°C  
CC  
T
A
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
0
5
10  
15  
20  
25  
I
– INPUT CURRENT – mA  
I – INPUT CURRENT – mA  
F
F
Figure 2. Current Transfer Ratio vs. Input Current.  
HCNW4504  
HCPL-4504/0454  
1000  
100  
10  
1000  
100  
10  
T
A
= 25°C  
I
I
F
F
T
A
= 25°C  
+
V
+
V
F
F
1.0  
1.0  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
V
– FORWARD VOLTAGE – VOLTS  
V
– FORWARD VOLTAGE – VOLTS  
F
F
Figure 3. Input Current vs. Forward Voltage.  
1-44  
HCPL-4504/0454  
HCNW4504  
NORMALIZED  
4
3
2
10  
10  
10  
1.1  
1.0  
1.05  
1.0  
I
= 16 mA  
F
V
= 0.4 V  
= 5.0 V  
O
I
= 0 mA  
F
V
CC  
V
O
= V = 5.0 V  
CC  
T
= 25°C  
A
0.9  
0.8  
0.7  
0.6  
NORMALIZED  
= 16 mA  
1
0
10  
10  
0.95  
0.9  
I
F
V
= 0.4 V  
O
V
= 5.0 V  
CC  
= 25°C  
T
A
-1  
10  
10  
-2  
0.85  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120  
T
A
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
T
A
– TEMPERATURE – °C  
A
Figure 4. Current Transfer Ratio vs. Temperature.  
Figure 5. Logic High Output Current  
vs. Temperature.  
I
F
I
F
PULSE  
GEN.  
8
7
6
5
1
2
3
4
V
CC  
0
Z
t
= 50 Ω  
= 5 ns  
O
r
R
V
L
CC  
V
O
V
O
V
V
THLH  
THHL  
0.1µF  
V
I
MONITOR  
F
OL  
C
L
R
M
t
t
PHL  
PLH  
Figure 6. Switching Test Circuit.  
8
7
6
5
V
CC  
1
2
3
4
V
CM  
90% 90%  
0 V  
I
F
10%  
10%  
R
L
t
r
A
t
f
B
V
O
0.1µF  
V
V
O
CC  
SWITCH AT A: I = 0 mA  
F
C
L
V
FF  
V
V
O
V
CM  
OL  
+
SWITCH AT B: I = 12 mA, 16 mA  
F
PULSE GEN.  
Figure 7. Test Circuit for Transient Immunity and Typical Waveforms.  
1-45  
HCPL-4504/0454  
= 5.0 V  
R = 1.9 k  
C = 15 pF  
HCNW4504  
= 1.5 V  
1.4  
1.2  
1.0  
0.8  
0.50  
0.45  
0.50  
0.45  
V
= 5.0 V  
= 25° C  
= 15 pF  
= V  
CC  
V
V
= 5.0 V  
CC  
CC  
T
A
R = 1.9 kΩ  
L
L
C
L
C = 15 pF  
L
L
V
= 1.5 V  
THLH  
0.40  
0.40  
THHL  
V
= V  
= 1.5 V  
THLH  
V
= V  
THLH  
THHL  
10% DUTY CYCLE  
THHL  
t
t
PLH  
PLH  
10% DUTY CYCLE  
10% DUTY CYCLE  
t
PLH  
0.35  
0.30  
0.25  
0.35  
0.30  
0.25  
t
PHL  
0.6  
0.4  
0.2  
0.0  
t
PHL  
I
= 10 mA  
= 16 mA  
F
t
PHL  
I
F
0.20  
0.20  
I
= 10 mA  
= 16 mA  
I
= 10 mA  
= 16 mA  
F
F
0.15  
0.10  
0.15  
0.10  
I
I
F
F
0
2
4
6
8
10 12 14 16 18 20  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100  
120  
R
– LOAD RESISTANCE – k  
L
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 8. Propagation Delay Time vs. Temperature.  
Figure 9. Propagation Delay Time vs.  
Load Resistance.  
1.8  
1.1  
1.0  
2.6  
2.4  
V
= 15.0 V  
V
R
= 15.0 V  
= 20 k  
I
= 10 mA  
I = 16 mA  
F
V
= 5.0 V  
= 25° C  
CC  
= 25° C  
CC  
L
F
CC  
1.6  
1.4  
T
T
A
A
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
C = 100 pF  
C = 100 pF  
C = 100 pF  
L
L
L
0.9  
V
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
= 2.0 V  
V
= 1.5 V  
= 2.0 V  
THHL  
THLH  
THHL  
THLH  
THHL  
t
PLH  
1.2  
1.0  
0.8  
0.6  
0.4  
V
THLH  
t
PLH  
0.8  
0.7  
0.6  
50% DUTY CYCLE  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
t
PHL  
I
= 10 mA  
I = 16 mA  
F
F
t
PHL  
8
0.5  
t
PHL  
I
I
= 10 mA  
= 16 mA  
F
0.4  
0.3  
0.2  
0.0  
0.2  
0.0  
F
-60 -40 -20  
0
20 40  
0
2
4
6
10 12 14 16 18 20  
60 80 100 120  
0
5
10 15 20 25 30 35 40 45 50  
R
– LOAD RESISTANCE – k  
R – LOAD RESISTANCE – k  
T
A
– TEMPERATURE – °C  
L
L
Figure 10. Propagation Delay Time vs.  
Load Resistance.  
Figure 11. Propagation Delay Time vs.  
Temperature.  
Figure 12. Propagation Delay Time vs.  
Load Resistance.  
3.5  
1.2  
V
= 15.0 V  
= 25° C  
T
R
= 25° C  
= 20 k  
C = 100 pF  
L
CC  
A
L
t
PLH  
PHL  
1.1  
1.0  
T
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
R = 20 k  
L
V
= 1.5 V  
= 2.0 V  
V
V
= 1.5 V  
THHL  
THLH  
THHL  
0.9  
0.8  
0.7  
V
= 2.0 V  
THLH  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
PLH  
t
0.6  
0.5  
0.4  
0.3  
0.2  
t
PHL  
I
= 10 mA  
= 16 mA  
F
I
= 10 mA  
= 16 mA  
F
I
F
I
F
0.0  
0
100 200 300 400 500 600 700 800 9001000  
– LOAD CAPACITANCE – pF  
10 11 12 13 14 15 16 17 18 19 20  
– SUPPLY VOLTAGE – V  
R
V
L
CC  
Figure 13. Propagation Delay Time vs.  
Load Capacitance.  
Figure 14. Propagation Delay Time vs.  
Supply Voltage.  
1-46  
HCPL-4504 OPTION 060  
(mW)  
800  
700  
600  
500  
400  
300  
+HV  
P
S
+
I
(mA)  
S
HCPL-4504/0454  
HCNW4504  
8
7
6
2
3
LED 1  
BASE/GATE  
DRIVE CIRCUIT  
Q1  
OUT 1  
(230)  
200  
5
100  
0
0
25 50 75 100 125 150 175 200  
+
HCPL-4504/0454  
HCNW4504  
T
– CASE TEMPERATURE – °C  
S
8
7
6
HCNW4504  
2
3
LED 2  
1000  
P
(mW)  
S
900  
800  
700  
600  
500  
400  
300  
200  
BASE/GATE  
DRIVE CIRCUIT  
Q2  
I
(mA)  
S
OUT 2  
5
–HV  
Figure 16. Typical Power Inverter.  
100  
0
0
25  
50 75 100 125 150 175  
T
– CASE TEMPERATURE – °C  
S
Figure 15. Thermal Derating Curve,  
Dependence of Safety Limiting Valve  
with Case Temperature per VDE 0884.  
LED 1  
OUT 1  
Power Inverter Dead  
Time and Propagation  
Delay Specifications  
t
PLH min  
(t  
–t )  
PLH max PLH min  
The HCPL-4504/0454 and  
t
PLH max  
HCNW4504 include a specifica-  
tion intended to help designers  
minimize “dead time” in their  
power inverter designs. The new  
“propagation delay difference”  
specification (tPLH - tPHL) is useful  
for determining not only how  
much optocoupler switching delay  
is needed to prevent “shoot-  
through” current, but also for  
determining the best achievable  
worst-case dead time for a given  
design.  
TURN-ON DELAY  
–t  
(t  
)
PLH max PLH min  
LED 2  
OUT 2  
t
PHL min  
(t  
–t  
)
PHL max PHL min  
t
PHL max  
MAXIMUM DEAD TIME  
When inverter power transistors  
switch (Q1 and Q2 in Figure 17),  
it is essential that they never  
Figure 17. LED Delay and Dead Time Diagram.  
1-47  
conduct at the same time.  
transistor turns off when the  
optocoupler LED turns on; this  
type of design, however, requires  
additional fail-safe circuitry to  
turn off the power transistor if an  
over-current condition is  
detected. The timing illustrated in  
Figure 17 assumes that the power  
transistor turns on when the  
optocoupler LED turns on.  
time is the sum of the maximum  
difference in turn-on delay plus  
the maximum difference in turn-  
off delay,  
Extremely large currents will flow  
if there is any overlap in their  
conduction during switching  
transitions, potentially damaging  
the transistors and even the sur-  
rounding circuitry. This “shoot-  
through” current is eliminated by  
delaying the turn-on of one  
transistor (Q2) long enough to  
ensure that the opposing  
transistor (Q1) has completely  
turned off. This delay introduces a  
small amount of “dead time” at  
the output of the inverter during  
which both transistors are off  
during switching transitions.  
Minimizing this dead time is an  
important design goal for an  
inverter designer.  
[(tPLHmax-tPLHmin)+(tPHLmax-tPHLmin)].  
This expression can be  
rearranged to obtain  
[(tPLHmax-tPHLmin)-(tPHLmin-tPHLmax)],  
and further rearranged to obtain  
The LED signal to turn on Q2  
should be delayed enough so that  
an optocoupler with the very  
fastest turn-on propagation delay  
(tPHLmin) will never turn on before  
an optocoupler with the very  
[(tPLH-tPHL max  
)
-(tPLH-tPHL)min],  
which is the maximum minus the  
slowest turn-off propagation delay minimum data sheet values of  
(tPLHmax) turns off. To ensure this, (tPLH-tPHL). The difference  
the turn-on of the optocoupler  
should be delayed by an amount  
no less than (tPLHmax - tPHLmin),  
which also happens to be the  
maximum data sheet value for the  
propagation delay difference  
specification, (tPLH - tPHL). The  
HCPL-4504/0454 and  
HCNW4504 specify a maximum  
(tPLH - tPHL) of 1.3 µs over an  
operating temperature range  
of 0-70°C.  
between the maximum and  
minimum values depends directly  
on the total spread in propagation  
delays and sets the limit on how  
good the worst-case dead time  
can be for a given design.  
Therefore, optocouplers with tight  
propagation delay specifications  
(and not just shorter delays or  
lower pulse-width distortion) can  
achieve short dead times in power  
inverters. The HCPL-4504/0454  
and HCNW4504 specify a  
The amount of turn-on delay  
needed depends on the propaga-  
tion delay characteristics of the  
optocoupler, as well as the  
characteristics of the transistor  
base/gate drive circuit. Consider-  
ing only the delay characteristics  
of the optocoupler (the charac-  
teristics of the base/gate drive  
circuit can be analyzed in the  
same way), it is important to  
know the minimum and maximum  
Although (tPLH-tPHL max  
)
tells the  
minimum (tPLH - tPHL) of -0.7 µs  
over an operating temperature  
range of 0-70°C, resulting in a  
turn-on (tPHL) and turn-off (tPLH  
propagation delay specifications,  
preferably over the desired  
)
designer how much delay is  
needed to prevent shoot-through  
current, it is insufficient to tell the maximum dead time of 2.0 µs  
operating temperature range. The  
importance of these specifications  
is illustrated in Figure 17. The  
waveforms labeled “LED1”,  
designer how much dead time a  
design will have. Assuming that  
the optocoupler turn-on delay is  
when the LED turn-on delay is  
equal to (tPLH-tPHL max, or 1.3 µs.  
)
exactly equal to (tPLH - tPHL max  
)
,
It is important to maintain  
accurate LED turn-on delays  
because delays shorter than  
“LED2”, “OUT1”, and “OUT2” are  
the input and output voltages of  
the optocoupler circuits driving  
Q1 and Q2 respectively. Most  
inverters are designed such that  
the power transistor turns on  
when the optocoupler LED turns  
on; this ensures that both power  
transistors will be off in the event  
of a power loss in the control  
circuit. Inverters can also be  
designed such that the power  
the minimum dead time is zero  
(i.e., there is zero time between  
the turn-off of the very slowest  
optocoupler and the turn-on of  
the very fastest optocoupler).  
(tPLH - tPHL max may allow shoot-  
)
through currents, while longer  
delays will increase the worst-case  
dead time.  
Calculating the maximum dead  
time is slightly more complicated.  
Assuming that the LED turn-on  
delay is still exactly equal to  
(tPLH - tPHL max  
)
, it can be seen in  
Figure 17 that the maximum dead  
1-48  

相关型号:

HCPL0466#560

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL0500

HIGH SPEED TRANSISTOR OPTOCOUPLERS
FAIRCHILD

HCPL0500

8 引脚 SOIC 1 Mbit/s 单沟道高速晶体管输出光耦合器
ONSEMI

HCPL0500R1

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, 1MBps, SOP-8
FAIRCHILD

HCPL0500R1V

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, 1MBps, SOP-8
FAIRCHILD

HCPL0500R2

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, 1MBps, SOP-8
FAIRCHILD

HCPL0500R2

8 引脚 SOIC 1 Mbit/s 单沟道高速晶体管输出光耦合器
ONSEMI

HCPL0500R2V

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, 1MBps, SOP-8
FAIRCHILD

HCPL0500R2V

8 引脚 SOIC 1 Mbit/s 单沟道高速晶体管输出光耦合器
ONSEMI

HCPL0500V

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, 1MBps, SOP-8
FAIRCHILD

HCPL0500V

8 引脚 SOIC 1 Mbit/s 单沟道高速晶体管输出光耦合器
ONSEMI

HCPL0501

HIGH SPEED TRANSISTOR OPTOCOUPLERS
FAIRCHILD