GMS90C320Q40

更新时间:2024-09-18 01:51:05
品牌:HYNIX
描述:HYNIX SEMICONDUCTOR INC. 8-BIT SINGLE-CHIP MICROCONTROLLERS

GMS90C320Q40 概述

HYNIX SEMICONDUCTOR INC. 8-BIT SINGLE-CHIP MICROCONTROLLERS HYNIX SEMICONDUCTOR INC 。 8位单芯片微控制器 微控制器

GMS90C320Q40 规格参数

生命周期:Obsolete零件包装代码:QFP
包装说明:METRIC, PLASTIC, QFP-44针数:44
Reach Compliance Code:compliantECCN代码:3A991.A.2
HTS代码:8542.31.00.01风险等级:5.82
具有ADC:NO地址总线宽度:16
位大小:8CPU系列:8051
最大时钟频率:40 MHzDAC 通道:NO
DMA 通道:NO外部数据总线宽度:8
JESD-30 代码:S-PQFP-G44长度:10 mm
I/O 线路数量:32端子数量:44
最高工作温度:70 °C最低工作温度:
PWM 通道:NO封装主体材料:PLASTIC/EPOXY
封装代码:QFP封装等效代码:QFP44,.5SQ,32
封装形状:SQUARE封装形式:FLATPACK
电源:5 V认证状态:Not Qualified
RAM(字节):256ROM(单词):0
座面最大高度:2.35 mm速度:40 MHz
子类别:Microcontrollers最大压摆率:44 mA
最大供电电压:5.5 V最小供电电压:4.25 V
标称供电电压:5 V表面贴装:YES
技术:CMOS温度等级:COMMERCIAL
端子形式:GULL WING端子节距:0.8 mm
端子位置:QUAD宽度:10 mm
uPs/uCs/外围集成电路类型:MICROCONTROLLERBase Number Matches:1

GMS90C320Q40 数据手册

通过下载GMS90C320Q40数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HYNIX SEMICONDUCTOR INC.  
8-BIT SINGLE-CHIP MICROCONTROLLERS  
GMS90C320  
User’s Manual (Ver. 1.2)  
REVISION HISTORY  
VERSION 1.2 (Oct. 2000) This book  
Correct the pin number of 44-MQFP package type on page 6.  
VERSION 1.1 (Oct. 1999) Before version  
Version 1.2  
Published by  
MCU Application Team  
Copy right 2001 Hynix semiconductor, All right reserved.  
Additional information of this manual may be served by Hynix semiconductor offices in Korea or Distributors and Repre-  
sentatives listed at address directory.  
Hynix semiconductor reserves the right to make changes to any information here in at any time without notice.  
The information, diagrams and other data in this manual are correct and reliable; however, Hynix semiconductor is in no  
way responsible for any violations of patents or other rights of the third party generated by the use of this manual.  
GMS90C320  
Device Naming Structure  
H(G)MS90X320 XXXX  
Frequency  
Blank: 24MHz  
40:  
40MHz  
50:  
50MHz  
Package Type  
Blank: 40PDIP  
PL:  
Q:  
44PLCC  
44MQFP  
Enhanced ROM-less version  
Operating Voltage  
C: Normal voltage  
L: Low voltage  
OCT. 2000 Ver 1.2  
GMS90C320  
GMS90C320 ordering information  
Operating  
Device Name  
Voltage (V)  
ROM size  
(bytes)  
RAM size  
(bytes)  
Operating max.  
Frequency (MHz)  
Package Type  
40PDIP  
GMS90C320 40  
GMS90C320 PL40  
GMS90C320 Q40  
4.25~5.5  
ROM-less  
ROM-less  
ROM-less  
256  
256  
256  
40  
50  
24  
44PLCC  
44MQFP  
GMS90C320 50  
GMS90C320 PL50  
GMS90C320 Q50  
40PDIP  
44PLCC  
44MQFP  
GMS90L320  
GMS90L320 PL  
GMS90L320 Q  
40PDIP  
44PLCC  
44MQFP  
2.7~5.5  
OCT. 2000 Ver 1.2  
GMS90C320  
GMS90C320/L320  
CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER  
ROM-less Version for 90C52  
Operating  
Frequency (MHz)  
Operating Voltage (V)  
Device Name  
ROM  
RAM  
4.25~5.5  
2.7~5.5  
GMS90C320  
GMS90L320  
ROM-less  
ROM-less  
256 × 8bit  
256 × 8bit  
40/50  
24  
Features  
• Fully compatible to standard MCS-51 microcontroller  
• Versions for 40/50 MHz operating frequency  
• Low voltage version for 24MHz operating frequency  
• 256 bytes of on-chip data RAM  
• 64K external program memory space  
• 64K external data memory space  
• Four 8-bit ports  
• Three 16-bit Timers/Counters (Timer 2 with up/down counter feature)  
• USART  
• Six interrupt sources, two priority levels  
• Power saving Idle and power down mode  
• 2.7Volt low voltage version available  
• P-DIP-40, P-LCC-44, P-MQFP-44 package  
RAM  
I/O  
I/O  
PORT0  
256 x 8  
PORT1  
T0  
8-BIT  
CPU  
T2  
USART  
T1  
I/O  
I/O  
PORT2  
PORT3  
ROM-less  
The GMS90C320 described in this document is compatible with the standard 80C32 can be used for all present standard  
80C32 applications.  
OCT. 2000 Ver 1.2  
1
GMS90C320  
44-PLCC Pin Configuration  
(top view)  
(P-LCC-44)  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
P1.5  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P1.6  
P1.7  
8
9
RESET  
RxD/P3.0  
N.C.  
10  
11  
12  
13  
14  
15  
16  
17  
N.C.  
ALE  
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
2
OCT. 2000 Ver 1.2  
GMS90C320  
40-PDIP Pin Configuration  
(top view)  
(P-DIP-40)  
T2/P1.0  
T2EX/P1.1  
P1.2  
1
2
VCC  
40  
P0.0/AD0  
P0.1/AD1  
P0.2/AD2  
P0.3/AD3  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
3
P1.3  
4
5
P1.4  
6
P1.5  
7
P1.6  
8
P1.7  
9
RESET  
RxD/P3.0  
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
WR/P3.6  
RD/P3.7  
XTAL2  
XTAL1  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
ALE  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P2.4/A12  
P2.3/A11  
P2.2/A10  
P2.1/A9  
P2.0/A8  
OCT. 2000 Ver 1.2  
3
GMS90C320  
44-PLCC Pin Configuration  
(top view)  
(P-MQFP-44)  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
P1.5  
P1.6  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
P1.7  
3
RESET  
RxD/P3.0  
N.C.  
4
5
N.C.  
6
ALE  
7
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
PSEN  
8
P2.7/A15  
P2.6/A14  
P2.5/A13  
9
10  
11  
4
OCT. 2000 Ver 1.2  
GMS90C320  
VCC VSS  
Port 0  
8-bit Digital I/O  
XTAL1  
XTAL2  
Port 1  
8-bit Digital I/O  
RESET  
Port 2  
8-bit Digital I/O  
EA  
ALE  
Port 3  
8-bit Digital I/O  
PSEN  
Logic Symbol  
OCT. 2000 Ver 1.2  
5
GMS90C320  
Pin Definitions and functions  
Pin Number  
Input/  
Symbol  
Function  
P-MQFP-  
44  
Output  
P-LCC-44  
P-DIP-40  
P1.0-P1.7  
2-9  
1-8  
40-44,  
1-3  
I/O  
Port1  
is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins  
that have 1s written to them are pulled high by the internal pull-up  
resistors and can be used as inputs. As inputs, port 1 pins that are  
externally pulled low will source current because of the pulls-ups  
(IIL, in the DC characteristics). Pins P1.0 and P1.1 also. Port 1  
also receives the low-order address byte during program memory  
verification. Port1 also serves alternate functions of Timer 2.  
2
3
1
2
40  
41  
P1.0/T2: Timer/counter 2 external count input  
P1.1/T2EX: Timer/counter 2 trigger input  
P3.0-P3.7  
11,13-  
19  
10-17  
5, 7-  
13  
I/O  
Port 3  
is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins  
that have 1s written to them are pulled high by the internal pull-up  
resistors, and in that state they can be used as inputs. As inputs,  
port 3 pins being externally pulled low will source current (IIL, in  
the DC characteristics) because of internal pulls-up resistors. Port  
3 also serves the special features of the 80C51 family, as listed  
below.  
11  
13  
10  
11  
5
7
P3.0/RxD  
receiver data input (asynchronous) or data input  
output (synchronous) of the serial interface 0  
P3.1 / TxD  
transmitter data output (asynchronous) or clock  
output (synchronous) of the serial interface 0  
14  
15  
16  
17  
18  
12  
13  
14  
15  
16  
8
P3.2 / INT0 interrupt 0 input / timer 0 gate control  
P3.3 / INT1 interrupt 1 input / timer 1 gate control  
9
10  
11  
12  
P3.4 / T0  
P3.5 / T1  
P3.6 / WR  
counter 0 input  
counter 1 input  
the write control signal latches the data byte from  
port 0 into the external data memory  
19  
20  
21  
17  
18  
19  
13  
14  
15  
P3.7 / RD  
the read control signal enables the external data  
memory to port 0  
XTAL2  
XTAL1  
O
I
XTAL2  
Output of the inverting oscillator amplifier  
XTAL1  
Input to the inverting oscillator amplifier and input to the internal  
clock generator circuits.  
To drive the device from an external clock source, XTAL1 should  
be driven, while XTAL2 is left unconnected. There are no require-  
ments on the duty cycle of the external clock signal, since the  
input to the internal clocking circuitry is divided down by a divide-  
by-two flip-flop. Minimum and maximum high and low times as  
well as rise fall times specified in the AC characteristics must be  
observed.  
6
OCT. 2000 Ver 1.2  
GMS90C320  
Pin Number  
P-DIP-40  
Input/  
Output  
Symbol  
Function  
P-MQFP-  
44  
P-LCC-44  
P2.0-P2.7  
24-31  
21-28  
18-25  
I/O  
Port 2  
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2  
pins that have 1s written to them are pulled high by the internal  
pull-up resistors and can be used as inputs. As inputs, port 2 pins  
that are externally pulled low will source current because of the  
pulls-ups (IIL, in the DC characteristics). Port 2 emits the high-  
order address byte during fetches from external program memory  
and during accesses to external data memory that use 16-bit  
addresses (MOVX @DPTR). In this application it uses strong  
internal pull-ups when emitting 1s. During accesses to external  
data memory that use 8-bit addresses (MOVX @Ri), port 2 emits  
the contents of the P2 special function register.  
PSEN  
32  
29  
26  
O
The Program Store Enable  
The read strobe to external program memory when the device is  
executing code from the external program memory. PSEN is acti-  
vated twice each machine cycle, except that two PSEN activation  
are skipped during each access to external data memory. PSEN  
is not activated during fetches from internal program memory.  
RESET  
ALE  
10  
33  
9
4
I
RESET  
A high level on this pin for two machine cycles while the oscillator  
is running resets the device. An internal diffused resistor to VSS  
permits power-on reset using only an external capacitor to VCC  
.
30  
27  
O
The Address Latch Enable  
Output pulse for latching the low byte of the address during an  
access to external memory. In normal operation, ALE is emitted  
at a constant rate of 1/6 the oscillator frequency, and can be used  
for external timing or clocking. Note that one ALE pulse is skipped  
during each access to external data memory.  
EA  
35  
31  
29  
I
External Access Enable  
EA must be external held low to enable the device to fetch code  
from external program memory locations 0000H to FFFFH. If EA is  
held high, the device executes from internal program memory  
unless the program counter contains an address greater than its  
internal memory size.  
P0.0-P0.7  
43-36  
39-32  
37-30  
I/O  
Port 0  
Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that  
have 1s written to them float and can be used as high-impedance  
inputs. Port 0 is also the multiplexed low-order address and data  
bus during accesses to external program and data memory. In  
this application it uses strong internal pull-ups when emitting 1s.  
Port 0 also outputs the code bytes during program verification in  
the GMS97C5x. External pull-up resistors are required during  
program verification.  
VSS  
VC C  
22  
44  
20  
40  
16  
38  
-
-
-
Circuit ground potential  
Supply terminal for all operating modes  
No connection  
N.C.  
1,12,  
23,34  
6,17,  
28,39  
-
OCT. 2000 Ver 1.2  
7
GMS90C320  
Function Description  
The GMS90 series is fully compatible to the standard 8051 microcontroller family.  
It is compatible with the standard 80C32. While maintaining all architectural and operational characteristics of the standard  
80C32, the GMS90C320 incorporates some enhancements in the Timer 2 unit.  
Figure 1 shows a block diagram of the GMS90C320  
RAM  
256 x 8  
XTAL1  
OSC & Timing  
XTAL2  
CPU  
Timer 0  
RESET  
Port 0  
8-bit Digital I/O  
Port 0  
Port 1  
Port 2  
Port 3  
ALE  
Timer 1  
Port 1  
8-bit Digital I/O  
PSEN  
EA  
Timer 2  
Port 2  
8-bit Digital I/O  
Interrupt Unit  
Serial Channel  
Port 3  
8-bit Digital I/O  
Figure 1 Block Diagram of the GMS90C320  
8
OCT. 2000 Ver 1.2  
 
GMS90C320  
CPU  
The GMS90C320 is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD  
arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set con-  
sisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions are  
executed in 1.0µs.  
Special Function Register PSW  
MSB  
7
LSB  
0
Bit No.  
6
5
4
3
2
1
Addr. D0H  
CY  
AC  
F0  
RS1  
RS2  
OV  
F1  
P
PSW  
Bit  
Function  
CY  
AC  
F0  
Carry Flag  
Auxiliary Carry Flag (for BCD operation)  
General Purpose Flag  
Register Bank select control bits  
Bank 0 selected, data address 00H -07H  
Bank 1 selected, data address 08H -0FH  
Bank 2 selected, data address 10H -17H  
Bank 3 selected, data address 18H -1FH  
RS1  
RS0  
0
0
1
1
0
1
0
1
OV  
F1  
P
Overflow Flag  
General Purpose Flag  
Parity Flag  
Set/cleared by hardware each instruction cycle to indicate an odd/  
even number of “one” bits in the accumulator, i.e. even parity.  
Reset value of PSW is 00H .  
OCT. 2000 Ver 1.2  
9
GMS90C320  
Special Function Registers  
All registers, except the program counter and the four general purpose register banks, reside in the special function register  
area.  
The 27 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other  
on-chip peripherals. There are also 128 directly addressable bits within the SFR area.  
All SFRs are listed in Table 1, Table 2, and Table 3.  
In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which refer to the  
functional blocks of the GMS90C320. Table 3 illustrates the contents of the SFRs.  
Table 1  
Special Function Registers in Numeric Order of their Addresses  
Contents after  
Reset  
Contents after  
Reset  
Address  
Register  
Address  
Register  
FFH  
07H  
00H  
00H  
FFH  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
A0H  
A1H  
A2H  
A3H  
A4H  
A5H  
A6H  
A7H  
P01)  
SP  
DPL  
P21)  
H2)  
XX  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
2)  
2)  
2)  
2)  
2)  
DPH  
H2)  
H2)  
H2)  
XX  
XX  
XX  
reserved  
reserved  
reserved  
PCON  
B2)  
0XXX0000  
B2)  
0X000000  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
00H  
00H  
00H  
00H  
00H  
00H  
A8H  
A9H  
AAH  
ABH  
ACH  
ADH  
AEH  
AFH  
TCON1)  
TMOD  
TL0  
TL1  
TH0  
TH1  
reserved  
reserved  
IE1)  
H2)  
XX  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
2)  
2)  
2)  
2)  
2)  
2)  
XXH  
2)  
XXH  
P11)  
FFH  
90H  
91H  
92H  
93H  
94H  
95H  
96H  
97H  
FFH  
00H  
B0H  
B1H  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
P31)  
H2)  
XX  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
2)  
2)  
2)  
2)  
XXH  
XXH  
2)  
B2)  
XX000000  
00H  
98H  
99H  
9AH  
9BH  
9CH  
9DH  
9EH  
9FH  
B8H  
B9H  
BAH  
BBH  
BCH  
BDH  
BEH  
BFH  
SCON1)  
SBUF  
IP1)  
H2)  
XX  
H2)  
XX  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
2)  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
1)  
2)  
: Bit-addressable Special Function Register  
: X means that the value is indeterminate and the location is reserved  
10  
OCT. 2000 Ver 1.2  
 
 
 
GMS90C320  
Table 1  
Special Function Registers in numeric order of their addresses (cont’d)  
Contents after  
Contents after  
Reset  
Address  
Register  
Address  
Register  
Reset  
2)  
C0H  
C1H  
C2H  
C3H  
C4H  
C5H  
C6H  
C7H  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
00H  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
ACC1)  
2)  
2)  
XXH  
XXH  
XXH  
XXH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
XXH  
XXH  
XXH  
2)  
2)  
2)  
2)  
2)  
C8H  
C9H  
CAH  
CBH  
CCH  
CDH  
CEH  
CFH  
00H  
XXXXXXX0B  
00H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
T2CON1)  
T2MOD  
RC2L  
RC2H  
TL2  
TH2  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
2)  
2)  
2)  
00H  
00H  
00H  
2)  
2)  
2)  
2)  
XXH  
2)  
2)  
XXH  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
00H  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
00H  
PSW1)  
B1)  
2)  
2)  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
XXH  
XXH  
2)  
2)  
XXH  
XXH  
XXH  
XXH  
2)  
2)  
2)  
2)  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
1)  
2)  
: Bit-addressable Special Function Register  
: X means that the value is indeterminate and the location is reserved  
OCT. 2000 Ver 1.2  
11  
 
 
GMS90C320  
Table 2  
Special Function Registers - Functional Blocks  
Content  
after Reset  
Block  
Symbol  
Name  
Address  
1)  
CPU  
ACC  
B
DPH  
DPL  
PSW  
SP  
Accumulator  
B-Register  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Program Status Word Register  
Stack Pointer  
E0H  
F0H  
83H  
82H  
D0H  
00H  
00H  
00H  
00H  
00H  
07H  
1)  
1)  
81H  
1)  
1)  
2)  
Interrupt System  
Ports  
IE  
IP  
Interrupt Enable Register  
Interrupt Priority Register  
A8H  
B8H  
0X000000B  
XX000000B  
2)  
1)  
P0  
P1  
P2  
P3  
Port 0  
Port 1  
Port 2  
Port 3  
80H  
90H  
A0H  
B0H  
FFH  
FFH  
FFH  
FFH  
1)  
1)  
1)  
2)  
Serial Channels  
Timer 0 / Timer 1  
PCON  
SBUF  
SCON  
Power Control Register  
Serial Channel Buffer Register  
Serial Channel 0 Control Register  
87H  
99H  
98H  
0XXX0000B  
3)  
XXH  
00H  
1)  
1)  
TCON  
TH0  
TH1  
TL0  
TL1  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
88H  
00H  
00H  
00H  
00H  
00H  
00H  
8CH  
8DH  
8AH  
8BH  
89H  
TMOD  
1)  
Timer 2  
T2CON  
T2MOD  
RC2H  
RC2L  
TH2  
Timer 2 Control Register  
Timer 2 Mode Register  
Timer 2 Reload Capture Register, High Byte  
Timer 2 Reload Capture Register, Low Byte  
Timer 2, High Byte  
C8H  
C9H  
00H  
XXXXXXX0B  
2)  
CBH  
CAH  
CDH  
CCH  
00H  
00H  
00H  
00H  
TL2  
Timer 2, Low Byte  
2)  
Power Saving  
Modes  
PCON  
Power Control Register  
87H  
0XXX0000B  
1)  
2)  
3)  
Bit-addressable Special Function Registers  
This special function register is listed repeatedly since some bits of it also belong to other functional blocks  
X means that the value is indeterminate and the location is reserved  
12  
OCT. 2000 Ver 1.2  
 
 
GMS90C320  
Table 3  
Contents of SFRs, SFRs in Numeric Order  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Address  
80H  
Register  
P0  
81H  
82H  
83H  
87H  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
90H  
98H  
99H  
A0H  
A8H  
B0H  
B8H  
C8H  
C9H  
SP  
DPL  
DPH  
PCON  
TCON  
TMOD  
TL0  
SMOD  
TF1  
-
-
-
GF1  
IE1  
GF0  
IT1  
PDE  
IE0  
IDLE  
IT0  
TR1  
C/T  
TF0  
M1  
TR0  
M0  
GATE  
GATE  
C/T  
M1  
M0  
TL1  
TH0  
TH1  
P1  
SCON  
SBUF  
P2  
SM0  
EA  
SM1  
SM2  
ET2  
REN  
TB8  
RB8  
EX1  
TI  
RI  
IE  
-
ES  
PS  
ET1  
PT1  
ET0  
EX0  
P3  
IP  
-
TF2  
-
-
EXF2  
-
PT2  
RCLK  
-
PX1  
TR2  
-
PT0  
C/T2  
-
PX0  
T2CON  
T2MOD  
TCLK EXEN2  
CP/RL2  
DCEN  
-
-
SFR bit and byte addressable  
SFR not bit addressable  
-
This bit location is reserved.  
OCT. 2000 Ver 1.2  
13  
 
GMS90C320  
Table 3  
Contents of SFRs, SFRs in Numeric Order (cont’d)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Address  
CAH  
Register  
RC2L  
CBH  
CCH  
CDH  
D0H  
E0H  
F0H  
RC2H  
TL2  
TH2  
PSW  
ACC  
B
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
SFR bit and byte addressable  
SFR not bit addressable  
-
This bit location is reserved.  
14  
OCT. 2000 Ver 1.2  
GMS90C320  
Timer / Counter 0 and 1  
Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:  
Table 4  
Timer/Counter 0 and 1 Operating Modes  
TMOD  
Input Clock  
Mode  
Description  
External  
(Max.)  
GATE  
C/T  
M1  
M0  
Internal  
0
1
2
3
8-bit timer/counter with a  
divide-by-32 prescaler  
ƒOSC  
-------------------  
12 × 32  
ƒOSC  
-------------------  
24 × 32  
X
X
0
0
16-bit timer/counter  
ƒOSC  
---------------  
12  
ƒOSC  
---------------  
24  
X
X
X
X
0
1
1
0
8-bit timer/counter with 8-bit  
autoreload  
ƒOSC  
---------------  
12  
ƒOSC  
---------------  
24  
Timer/counter 0 used as one  
8-bit timer/counter and one 8-  
bit timer  
ƒOSC  
---------------  
12  
ƒOSC  
---------------  
24  
X
X
1
1
Timer 1 stops  
In the “timer” function (C/T = “0”) the register is incremented every machine cycle. Therefore the count rate is ƒOSC 12 .  
In the “counter” function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin  
(P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is ƒOSC 24 . External inputs  
INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements.  
Figure 2 illustrates the input clock logic.  
fOSC  
ƒOSC 12  
÷12  
C/T  
TMOD  
0
Timer 0/1  
Input Clock  
P3.4/T0  
P3.5/T1  
max. fOSC /24  
1
Control  
TR 0/1  
TCON  
GATE  
TMOD  
P3.2/INT0  
P3.3/INT1  
Figure 2 Timer/Counter 0 and 1 Input Clock Logic  
OCT. 2000 Ver 1.2  
15  
 
 
GMS90C320  
Timer 2  
Timer 2 is a 16-bit Timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which  
is selected by bit C/T2 (T2CON.1). It has three operating modes as shown in Table 5.  
Table 5  
Timer/Counter 2 Operating Modes  
T2CON  
Input Clock  
T2MO  
D
DECN  
T2CON P1.1  
Mode  
Remarks  
RxCLK  
or  
TxCLK  
CP/  
External  
EXEN  
T2EX  
TR2  
Internal  
(P1.0/T2)  
RL2  
16-bit Auto-  
reload  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
1
X
X
X
0
1
reload upon overflow  
reload trigger (falling edge)  
Down counting  
ƒOSC  
---------------  
12  
ƒOSC  
24  
---------------  
max.  
max.  
max.  
Up counting  
16-bit  
Capture  
0
0
1
1
1
1
X
X
0
1
X
16-bit Timer/Counter (only  
up-counting)  
capture  
ƒOSC  
---------------  
12  
ƒOSC  
---------------  
24  
TH1, TL2 RC2H, RC2L  
Baud Rate  
Generator  
1
1
X
X
1
1
X
X
0
1
X
no overflow interrupt request  
(TF2)  
extra external interrupt  
(“Timer 2”)  
ƒOSC  
---------------  
12  
ƒOSC  
---------------  
24  
off  
X
X
0
X
X
X
Timer 2 stops  
-
-
1Note: =  
falling edge  
16  
OCT. 2000 Ver 1.2  
 
GMS90C320  
Serial Interface (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated  
in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.  
Table 6  
USART Operating Modes  
SCON  
Mode  
0
Baudrate  
Description  
SM0  
SM1  
0
0
Serial data enters and exits through RxD.  
TxD outputs the shift clock.  
8-bit are transmitted/received (LSB first)  
ƒOSC  
---------------  
12  
1
2
3
0
1
1
1
0
1
Timer 1/2 overflow rate  
8-bit UART  
10 bits are transmitted (through TxD) or  
received (RxD)  
9-bit UART  
11 bits are transmitted (through TxD) or  
received (RxD)  
ƒOSC  
---------------  
32  
ƒOSC  
---------------  
64  
or  
Timer 1/2 overflow rate  
9-bit UART  
Like mode 2 except the variable baud rate  
Table 7  
Formulas for Calculating Baud rates  
Baud Rate  
derived from  
Interface Mode  
Baud rate  
Oscillator  
0
ƒOSC  
---------------  
12  
2
× ƒ  
64  
SMOD  
2
OSC  
------------------------------------------  
Timer 1 (16-bit timer)  
(8-bit timer with 8-bit autore-  
load)  
1, 3  
SMOD  
× timer 1 overflow raet  
2
--------------------------------------------------------------------------------  
32  
1, 3  
1, 3  
× ƒ  
SMOD  
2
×
OSC  
----------------------------------------------------------  
× (  
)
32 12 256 TH1  
Timer 2  
ƒOSC  
------------------------------------------------------------------------------  
× [ )]  
(  
32 65536 RC2H,RC2L  
OCT. 2000 Ver 1.2  
17  
 
 
GMS90C320  
Interrupt System  
The GMS90C320 provides 6 interrupt sources with two priority levels. Figure 3 gives a general overview of the interrupt  
sources and illustrates the request and control flags.  
High Priority  
Low Priority  
Timer 0 Overflow  
TF0  
TCON.5  
ET0  
IE.1  
PT0  
IP.1  
Timer 1 Overflow  
TF1  
TCON.7  
ET1  
IE.3  
PT1  
IP.3  
Timer 2 Overflow  
TF2  
T2CON.7  
P1.1/  
T2EX  
EXF2  
T2CON.6  
ET2  
IE.5  
PT2  
IP.5  
EXEN2  
T2CON.3  
RI  
SCON.0  
USART  
TI  
SCON.1  
ES  
PS  
IE.4  
IP.4  
P3.2/  
INT0  
IE0  
TCON.1  
EX0  
IE.0  
IT0  
PX0  
IP.0  
TCON.0  
P3.3/  
INT1  
IE1  
TCON.3  
EX1  
IE.2  
EA  
PX1  
IP.2  
IT1  
IE.7  
TCON.2  
Figure 3  
Interrupt Request Sources  
18  
OCT. 2000 Ver 1.2  
GMS90C320  
Table 8  
Interrupt Sources and their Corresponding Interrupt Vectors  
Source (Request Flags)  
Vector  
Vector Address  
IE0  
TF0  
IE1  
TF1  
RI+TI  
TF2+EXF2  
External interrupt 0  
Timer 0 interrupt  
External interrupt 1  
Timer 1 interrupt  
Serial port interrupt  
Timer 2 interrupt  
0003H  
000BH  
0013H  
001BH  
0023H  
002BH  
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority interrupt. A high-  
priority interrupt cannot be interrupted by any other interrupt source.  
If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of  
the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within  
each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.  
Table 9  
Interrupt Priority-Within-Level  
Interrupt Source  
External interrupt 0  
Priority  
IE0  
High  
TF0  
IE1  
TF1  
RI+TI  
TF2+EXF2  
Timer 0 interrupt  
External interrupt 1  
Timer 1 interrupt  
Serial port interrupt  
Timer 2 interrupt  
Low  
OCT. 2000 Ver 1.2  
19  
 
GMS90C320  
Power Saving Modes  
Two power down modes are available, the Idle Mode and Power Down Mode.  
The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If the Power Down  
mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview  
of the power saving modes.  
Table 10  
Power Saving Modes Overview  
Mode  
Entering Instruction  
Example  
Leaving by  
Remarks  
Idle mode  
ORL PCON,#01H  
- enabled interrupt  
- Hardware Reset  
CPU is gated off  
CPU status registers maintain  
their data.  
Peripherals are active  
Power-Down  
Mode  
ORL PCON,#02H  
Hardware Reset  
Oscillator is stopped, contents of  
on-chip RAM and SFR’s are main-  
tained (leaving Power Down Mode  
means redefinition of SFR con-  
tents).  
In the Power Down mode of operation, VC C can be reduced to minimize power consumption. It must be ensured, however,  
that VC C is not reduced before the Power Down mode is invoked, and that VC C is restored to its normal operating level, before  
the Power Down mode is terminated. The reset signal that terminates the Power Down Mode also restarts the oscillator. The  
reset should not be activated before VC C is restored to its normal operating level and must be held active long enough to allow  
the oscillator to restart and stabilize (similar to power-on reset).  
20  
OCT. 2000 Ver 1.2  
 
GMS90C320  
Absolute Maximum Ratings  
Ambient temperature under bias (TA ) .......................................................................................................-40 to + 85°C  
Storage temperature (TS T )..........................................................................................................................-65 to + 150°C  
Voltage on VC C pins with respect to ground (VS S ).....................................................................................-0.5 V to 6.5 V  
Voltage on any pin with respect to ground (VSS ).......................................................................................-0.5 to VC C + 0.5 V  
Input current on any pin during overload condition..................................................................................-10 mA to + 10 mA  
Absolute sum of all input currents during overload condition..................................................................| 100 mA |  
Power dissipation.......................................................................................................................................TBD  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage of the device. This is  
a stress rating only and functional operation of the device at these or any other conditions above those indicated in the oper-  
ational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may  
affect device reliability. During overload conditions (VIN > VC C or VIN < VSS) the Voltage on VCC pins with respect to ground (VSS  
)
must not exceed the values defined by the absolute maximum ratings.  
OCT. 2000 Ver 1.2  
21  
GMS90C320  
DC Characteristics  
DC Characteristics for GMS90C320  
VC C = 5V + 10%, -15%; VS S =0V; TA = 0°C to 70°C  
Limit Values  
Max.  
Parameter  
Input low voltage  
Symbol  
Unit  
Test Conditions  
Min.  
VIL  
0.2VCC - 0.1  
-0.5  
V
-
(except EA, RESET)  
Input low voltage (EA)  
Input low voltage (RESET)  
VIL1  
VIL2  
0.2VCC - 0.3  
0.2VCC + 0.1  
-0.5  
-0.5  
V
V
-
-
Input high voltage (except  
XTAL1, EA, RESET)  
VIH  
VIH1  
VIH2  
0.2VCC + 0.9  
0.7VCC  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
V
V
V
-
Input high voltage to XTAL1  
-
-
Input high voltage to EA,  
RESET  
0.6VCC  
Output low voltage  
(ports 1, 2, 3)  
IO L= 100µA  
I
O L= 1.6mA1)  
IO L= 3.5mA  
0.3  
0.45  
1.0  
VO L  
-
-
V
Output low voltage  
(port 0, ALE, PSEN)  
IO L= 200µA  
0.3  
0.45  
1.0  
VO L1  
I
O L= 3.2mA1)  
V
V
V
IO L= 7.0mA  
Output high voltage  
(ports 1, 2, 3)  
IO H= -80µA  
IO H= -10µA  
2.4  
0.9VCC  
VO H  
-
-
Output high voltage  
(port 0 in external bus mode,  
ALE, PSEN)  
IO H= -800µA2)  
IO H= -80µA2)  
2.4  
0.9VCC  
VO H1  
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
VIN= 0.45V  
VIN= 2.0V  
-10  
-65  
-50  
µA  
µA  
Logical 1-to-0 transition cur-  
rent (ports 1, 2, 3)  
ITL  
-650  
Input leakage current  
(port 0, EA)  
ILI  
0.45 < VIN < VCC  
-
-
±1  
µA  
Pin capacitance  
CIO  
fC=1MHz, TA= 25°C  
10  
pF  
Power supply current:  
Active mode, 12MHz3)  
Idle mode, 12MHz3)  
Active mode, 24 MHz3)  
Idle mode, 24MHz3)  
Active mode, 40 MHz3)  
Idle mode, 40 MHz3)  
Active mode, 50 MHz3)  
Idle mode, 50 MHz3)  
Power Down Mode3)  
ICC  
ICC  
ICC  
ICC  
ICC  
ICC  
ICC  
ICC  
IPD  
-
-
-
-
-
-
-
-
-
16  
7.5  
26  
VC C= 5V4)  
VC C= 5V5)  
VC C= 5V4)  
VC C= 5V5)  
VC C= 5V4)  
VC C= 5V5)  
VC C= 5V4)  
VC C= 5V5)  
VC C= 5.5V6)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
13.5  
44  
18  
55  
22.5  
50  
22  
OCT. 2000 Ver 1.2  
GMS90C320  
1)  
Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VO L of ALE and port 3. The  
noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions  
during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may  
exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-  
trigger strobe input.  
2)  
3)  
Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the 0.9VC C specification  
when the address lines are stabilizing.  
ICC  
at other frequencies is given by:  
m ax  
active mode: IC C = 1.0 × ƒO SC + 3.16  
idle mode: IC C = 0.37 × ƒO SC + 3.63  
where ƒO SC is the oscillator frequency in MHz. ICC values are given in mA and measured at VC C = 5V.  
4)  
ICC (active mode) is measured with:  
XTAL1 driven with tCLCH , tCHCL = 5ns, VIL = VSS + 0.5V, VIH = VCC - 0.5V; XTAL2 = N.C.;  
EA = Port 0 = RESET = VCC; all other pins are disconnected. IC C would be slightly higher if a crystal oscillator is used (appr.  
1mA).  
5)  
6)  
ICC (Idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL1 driven with tCLCH , tCHCL = 5ns, VIL = VSS + 0.5V, VIH = VCC - 0.5V; XTAL2 = N.C.;  
RESET = EA = VSS; Port0 = VCC ; all other pins are disconnected;  
IPD (Power Down Mode) is measured under following conditions:  
EA = Port 0 = VCC ; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.  
OCT. 2000 Ver 1.2  
23  
 
 
 
 
 
 
GMS90C320  
DC Characteristics for GMS90L320  
VC C = 3.3V + 0.3V, -0.6V; VS S =0V; TA = 0°C to 70°C  
Limit Values  
Max.  
Parameter  
Input low voltage  
Symbol  
Unit  
Test Conditions  
Min.  
-0.5  
2.0  
VIL  
VIH  
0.8  
V
V
-
-
Input high voltage  
VCC + 0.5  
Output low voltage  
(ports 1, 2, 3)  
IOL= 1.6mA1)  
IOL= 100µA1)  
0.45  
0.30  
VO L  
VO L1  
VO H  
-
-
V
V
V
Output low voltage  
(port 0, ALE, PSEN)  
IOL= 3.2mA1)  
IOL= 200µA1)  
0.45  
0.30  
Output high voltage  
(ports 1, 2, 3)  
IOH = -20µA  
IOH = -10µA  
2.0  
0.9VCC  
-
-
Output high voltage  
(port 0 in external bus mode, ALE,  
PSEN)  
IOH = -800µA2)  
IOH = -80µA2)  
2.0  
0.9VCC  
VO H1  
V
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
ITL  
ILI  
VIN= 0.45V  
-1  
-25  
-
-50  
-250  
±1  
µA  
µA  
µA  
pF  
Logical 1-to-0 transition current  
(ports 1, 2, 3)  
VIN= 2.0V  
Input leakage current  
(port 0, EA)  
0.45 < VIN < VCC  
Pin capacitance  
fC= 1MHz  
TA= 25°C  
CIO  
-
10  
Power supply current:  
Active mode, 16 MHz3)  
Idle mode, 16MHz3)  
Active mode, 24MHz3)  
Idle mode, 24MHz3)  
Power Down Mode3)  
ICC  
ICC  
ICC  
ICC  
IPD  
-
-
-
-
-
VC C= 3.3V4)  
VC C= 3.3V5)  
VC C= 3.3V4)  
VC C= 3.3V5)  
VC C= 3.6V6)  
10  
5.25  
16  
8.25  
10  
mA  
mA  
µA  
24  
OCT. 2000 Ver 1.2  
GMS90C320  
AC Characteristics  
Explanation of the AC Symbols  
Each timing symbol has 5 characters. The first character is always a ‘t’ (stand for time). The other characters, depending on  
their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters  
and what they stand for.  
A: Address  
T: Time  
C: Clock  
V: Valid  
D: Input Data  
W: WR signal  
X: No longer a valid logic level  
Z: Float  
H: Logic level HIGH  
I: Instruction (program memory contents)  
L: Logic level LOW, or ALE  
P: PSEN  
For example,  
Q: Output Data  
R: RD signal  
tAVLL = Time from Address Valid to ALE Low  
tLLPL = Time from ALE Low to PSEN Low  
OCT. 2000 Ver 1.2  
25  
GMS90C320  
AC Characteristics for 12MHz version  
VCC= 5V:  
VCC = 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
VCC= 3.3V:  
Variable clock:  
VCC = 3.3V + 0.3V, 0.6V; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)  
Vcc = 5V: 1/tCLC L = 3.5 MHz to 12 MHz  
Vcc = 3.3V: 1/tC LCL = 1 MHz to 12 MHz  
External Program Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 12MHz  
12 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
127  
43  
43  
-
Max.  
Min.  
Max.  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
-
2tCLCL-40  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
tCLCL-40  
-
Address setup to ALE  
-
tCLCL-40  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
233  
-
4tCLC L-100  
tLLPL  
58  
215  
-
-
tCLCL-25  
-
tPLPH  
tPLIV  
tPXIX  
-
150  
-
3tCLCL-35  
-
PSEN pulse width  
-
3tCLC L-100  
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
0
0
-
1)  
tPXIZ  
tPXAV  
tAVIV  
tAZPL  
-
63  
-
-
tCLCL-8  
-
tCLC L-20  
1)  
75  
-
-
302  
-
5tCLC L-115  
-
-10  
-10  
1)  
Interfacing the GMS90C320 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage  
to port 0 Drivers.  
26  
OCT. 2000 Ver 1.2  
 
GMS90C320  
AC Characteristics for 12MHz version  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 12MHz  
12 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
400  
400  
127  
-
Max.  
Min.  
Max.  
tRLRH  
tW LW H  
tLLAX2  
tRLDV  
tRHD X  
tRHD Z  
tLLD V  
-
6tCLCL-100  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
6tCLCL-100  
-
WR pulse width  
2tC LC L-40  
-
Address hold after ALE  
RD to valid data in  
252  
-
-
5tCLCL-165  
0
0
-
Data hold after RD  
-
97  
517  
585  
300  
-
-
-
2tCLCL-70  
Data float after RD  
-
8tCLCL-150  
ALE to valid data in  
tAVD V  
tLLW L  
tAVW L  
tW HLH  
tQ VW X  
tQ VW H  
tW HQ X  
tRLAZ  
-
-
9tCLCL-165  
Address to valid data in  
ALE to WR or RD  
200  
203  
43  
33  
433  
33  
-
3tC LC L-50  
4tCLCL-130  
tCLCL-40  
tCLCL-50  
7tCLCL-150  
tCLCL-50  
-
3tCLC L+50  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
123  
-
tC LC L+40  
-
-
-
-
-
0
0
Address float after RD  
Advance Information (12MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 12MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
Oscillator period (VC C=5V)  
Oscillator period (VC C=3.3V)  
tCLCL  
tCLCL  
83.3  
83.3  
285.7  
1
ns  
tCHC X  
tCLCX  
tCLCH  
tCHC L  
20  
20  
-
tC LCL - tC LC X  
tC LC L - tCH CX  
20  
ns  
ns  
ns  
ns  
High time  
Low time  
Rise time  
Fall time  
-
20  
OCT. 2000 Ver 1.2  
27  
GMS90C320  
AC Characteristics for 16MHz version  
VCC= 5V:  
VCC = 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
VCC= 3.3V:  
Variable clock:  
VCC = 3.3V + 0.3V, 0.6V; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)  
Vcc = 5V: 1/tCLC L = 3.5 MHz to 16 MHz  
Vcc = 3.3V: 1/tC LCL = 1 MHz to 16 MHz  
External Program Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 16MHz  
16 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
85  
23  
43  
-
Max.  
Min.  
Max.  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
-
2tC LC L-40  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
tCLCL-40  
-
Address setup to ALE  
-
150  
-
tCLCL-40  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
-
4tCLCL-100  
tLLPL  
38  
153  
-
tCLCL-25  
-
tPLPH  
tPLIV  
tPXIX  
-
3tC LC L-35  
-
PSEN pulse width  
88  
-
-
3tCLCL-100  
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
0
0
-
1)  
tPXIZ  
tPXAV  
tAVIV  
tAZPL  
-
43  
-
-
tC LC L-8  
-
tCLCL-20  
1)  
55  
-
-
198  
-
5tCLCL-115  
-
-10  
-10  
1)  
Interfacing the GMS90C320 to devices with float times up to 35 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
28  
OCT. 2000 Ver 1.2  
 
GMS90C320  
AC Characteristics for 16MHz  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 16MHz  
16 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
275  
275  
127  
-
Max.  
Min.  
Max.  
tRLRH  
tW LW H  
tLLAX2  
tRLDV  
tRHD X  
tRHD Z  
tLLD V  
-
6tCLCL-100  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
6tCLCL-100  
-
WR pulse width  
2tC LC L-40  
-
Address hold after ALE  
RD to valid data in  
183  
-
-
5tCLCL-130  
0
0
-
Data hold after RD  
-
75  
350  
398  
238  
-
-
2tCLCL-50  
Data float after RD  
-
-
8tCLCL-150  
ALE to valid data in  
tAVD V  
tLLW L  
tAVW L  
tW HLH  
tQ VW X  
tQ VW H  
tW HQ X  
tRLAZ  
-
-
9tCLCL-165  
Address to valid data in  
ALE to WR or RD  
138  
120  
28  
13  
288  
23  
-
3tCLCL50  
4tCLCL-130  
3tCLC L+50  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
97  
-
t
CLCL35  
CLCL50  
tC LC L+35  
t
-
-
-
7tCLCL-150  
-
t
CLCL40  
-
0
-
0
Address float after RD  
Advance Information (16MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 16MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHC X  
tCLCX  
tCLCH  
tCHC L  
62.5  
17  
17  
-
285.7  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
tC LCL - tC LC X  
tC LC L - tCH CX  
17  
Low time  
Rise time  
-
17  
Fall time  
OCT. 2000 Ver 1.2  
29  
GMS90C320  
AC Characteristics for 24MHz version  
VCC= 5V:  
VCC = 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
VCC= 3.3V:  
Variable clock:  
VCC = 3.3V + 0.3V, 0.6V; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)  
Vcc = 5V: 1/tCLC L = 3.5 MHz to 24 MHz  
Vcc = 3.3V: 1/tC LCL = 1 MHz to 24 MHz  
External Program Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 24MHz  
24 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
43  
17  
17  
-
Max.  
Min.  
Max.  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
-
2tC LC L-40  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
tCLCL-25  
-
Address setup to ALE  
tCLCL-25  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
80  
-
-
4tCLCL-87  
tLLPL  
22  
95  
-
tCLCL-20  
-
tPLPH  
tPLIV  
tPXIX  
-
3tC LC L-30  
-
PSEN pulse width  
60  
-
-
3tCLCL-65  
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
0
0
-
1)  
tPXIZ  
tPXAV  
tAVIV  
tAZPL  
-
32  
-
-
tC LC L-5  
-
tCLCL-10  
1)  
37  
-
-
148  
-
5tCLCL-60  
-
-10  
-10  
1)  
Interfacing the GMS90C320 to devices with float times up to 35 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
30  
OCT. 2000 Ver 1.2  
 
GMS90C320  
AC Characteristics for 24MHz  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 24MHz  
24 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
180  
180  
56  
-
Max.  
Min.  
Max.  
tRLRH  
tW LW H  
tLLAX2  
tRLDV  
tRHD X  
tRHD Z  
tLLD V  
-
6tC LC L-70  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
6tC LC L-70  
-
WR pulse width  
2tC LC L-27  
-
Address hold after ALE  
RD to valid data in  
118  
-
-
5tCLCL-90  
0
0
-
Data hold after RD  
-
63  
200  
220  
175  
-
-
-
2tCLCL-20  
Data float after RD  
-
8tCLCL-133  
ALE to valid data in  
tAVD V  
tLLW L  
tAVW L  
tW HLH  
tQ VW X  
tQ VW H  
tW HQ X  
tRLAZ  
-
-
9tCLCL-155  
Address to valid data in  
ALE to WR or RD  
75  
67  
17  
5
3tC LC L-50  
4tC LC L-97  
tCLCL-25  
tCLCL-37  
7tCLCL-122  
tCLCL-27  
-
3tCLC L+50  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
67  
-
tC LC L+25  
-
-
170  
15  
-
-
-
-
0
0
Address float after RD  
Advance Information (24MHz)  
External Clock Drive  
Table 11.  
Variable Oscillator  
(Freq. = 3.5 to 24MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHC X  
tCLCX  
tCLCH  
tCHC L  
41.7  
12  
12  
-
285.7  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
tC LCL - tC LCX  
tC LC L - tCH CX  
12  
Low time  
Rise time  
-
12  
Fall time  
OCT. 2000 Ver 1.2  
31  
GMS90C320  
AC Characteristics for 40MHz version  
VC C = 5V + 10%, 15%; VSS = 0V; TA = 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
External Program Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 40MHz  
40 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
35  
10  
10  
-
Max.  
Min.  
Max.  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
-
-
2tCLCL15  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CLCL15  
CLCL15  
-
-
Address setup to ALE  
-
t
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
55  
-
4tCLCL45  
tLLPL  
10  
60  
-
t
CLCL15  
-
tPLPH  
tPLIV  
tPXIX  
-
3tCLCL15  
-
PSEN pulse width  
25  
-
-
0
-
3tCLCL50  
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
0
-
1)  
tPXIZ  
tPXAV  
tAVIV  
tAZPL  
-
15  
-
t
CLC L10  
1)  
20  
-
t
CLCL5  
-
65  
-
-
5tCLCL60  
-5  
-5  
-
1)  
Interfacing the GMS90C320 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage  
to port 0 Drivers.  
32  
OCT. 2000 Ver 1.2  
 
GMS90C320  
AC Characteristics for 40MHz  
External Data Memory Characteristics  
Variable Clock  
1/tCLCL = 3.5 to 40MHz  
at 40 MHz Clock  
Parameter  
Symbol  
Unit  
Min.  
120  
120  
10  
-
Max.  
Min.  
Max.  
tRLRH  
tW LW H  
tLLAX2  
tRLDV  
tRHD X  
tRHD Z  
tLLD V  
-
-
6tC LC L-30  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6tC LC L-30  
-
WR pulse width  
-
tCLCL-15  
-
Address hold after ALE  
RD to valid data in  
75  
-
-
5tCLCL-50  
0
0
-
Data hold after RD  
-
38  
150  
150  
90  
-
-
2tCLCL-12  
Data float after RD  
-
-
8tCLCL-50  
ALE to valid data in  
tAVD V  
tLLW L  
tAVW L  
tW HLH  
tQ VW X  
tQ VW H  
tW HQ X  
tRLAZ  
-
-
9tCLCL-75  
Address to valid data in  
ALE to WR or RD  
60  
70  
10  
5
3tC LC L-15  
4tC LC L-30  
tCLCL-15  
tCLCL-20  
7tC LC L-50  
tCLCL-20  
-
3tCLC L+15  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
40  
-
tC LC L+15  
-
-
125  
5
-
-
-
-
0
0
Address float after RD  
Advance Information (40MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 40MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHC X  
tCLCX  
tCLCH  
tCHC L  
25  
10  
10  
-
285.7  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
tC LCL - tC LC X  
tC LC L - tCH CX  
10  
Low time  
Rise time  
-
10  
Fall time  
OCT. 2000 Ver 1.2  
33  
GMS90C320  
AC Characteristics for 50MHz version  
VC C = 5V + 10%, 15%; VSS = 0V; TA = 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
Variable Clock : VC C = 5V, 1/ tC LCL = 3.5MHz to 50 MHz  
External Program Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 50MHz  
50 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
25  
5
Max.  
Min.  
Max.  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
-
-
2tCLCL15  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CLCL15  
CLCL15  
-
-
Address setup to ALE  
5
-
t
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
-
40  
-
4tCLCL40  
tLLPL  
5
t
CLCL15  
-
tPLPH  
tPLIV  
tPXIX  
45  
-
-
3tCLCL15  
-
PSEN pulse width  
20  
-
-
0
-
3tCLCL40  
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
0
-
1)  
tPXIZ  
tPXAV  
tAVIV  
tAZPL  
-
10  
-
t
CLC L10  
1)  
15  
-
t
CLCL5  
-
45  
-
-
5tCLCL55  
-5  
-5  
-
1)  
Interfacing the GMS90C320 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage  
to port 0 Drivers.  
34  
OCT. 2000 Ver 1.2  
GMS90C320  
AC Characteristics for 50MHz  
External Data Memory Characteristics  
Variable Clock  
1/tCLCL = 3.5 to 50MHz  
at 50 MHz Clock  
Parameter  
Symbol  
Unit  
Min.  
90  
90  
25  
-
Max.  
Min.  
Max.  
tRLRH  
tW LW H  
tLLAX2  
tRLDV  
tRHD X  
tRHD Z  
tLLD V  
-
-
6tC LC L-30  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6tC LC L-30  
-
WR pulse width  
-
2tC LC L-15  
-
Address hold after ALE  
RD to valid data in  
60  
-
-
5tCLCL-40  
0
0
-
Data hold after RD  
-
28  
120  
125  
75  
-
-
2tCLCL-12  
Data float after RD  
-
-
8tCLCL-40  
ALE to valid data in  
tAVD V  
tLLW L  
tAVW L  
tW HLH  
tQ VW X  
tQ VW H  
tW HQ X  
tRLAZ  
-
-
9tCLCL-55  
Address to valid data in  
ALE to WR or RD  
45  
50  
5
3tC LC L-15  
4tC LC L-30  
tCLCL-15  
tCLCL-15  
7tC LC L-40  
tCLCL-15  
-
3tCLC L+15  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
35  
-
tC LC L+15  
5
-
-
100  
5
-
-
-
-
0
0
Address float after RD  
Advance Information (50MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 50MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHC X  
tCLCX  
tCLCH  
tCHC L  
20  
10  
10  
-
285.7  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
tC LCL - tC LC X  
tC LC L - tCH CX  
10  
Low time  
Rise time  
-
10  
Fall time  
OCT. 2000 Ver 1.2  
35  
GMS90C320  
tLHLL  
ALE  
tLLPL  
tAVLL  
tPLPH  
tLLIV  
tPLIV  
PSEN  
tPXAV  
tPXIZ  
tPXIX  
tAZPL  
tLLAX  
INSTR.  
IN  
A0-A7  
A0-A7  
PORT 0  
PORT 2  
tAVIV  
A8-A15  
A8-A15  
Figure 4 External Program Memory Read Cycle  
36  
OCT. 2000 Ver 1.2  
GMS90C320  
ALE  
tLHLL  
tW HLH  
PSEN  
RD  
tLLDV  
tLLW L  
tRLR H  
tRHDZ  
tAVLL  
tRLD V  
tRLAZ  
tLLAX2  
tR HDX  
DATA IN  
A0-A7 from  
RI or DPL  
A0-A7 from PCL  
INSTR. IN  
PORT 0  
PORT 2  
tAVW L  
tAVDV  
P2.0-P2.7 or A8-A15 from DPH  
A8-A15 from PCH  
Figure 5 External Data Memory Read Cycle  
ALE  
tLHLL  
tW HLH  
PSEN  
WR  
tLLW L  
tW LW H  
tQVW X  
tAVLL  
tW HQX  
tLLAX  
tQVW H  
A0-A7 from  
RI or DPL  
A0-A7 from PCL  
DATA OUT  
INSTR. IN  
PORT 0  
PORT 2  
tAVW L  
P2.0-P2.7 or A8-A15 from DPH  
A8-A15 from PCH  
Figure 6 External Data Memory Write Cycle  
OCT. 2000 Ver 1.2  
37  
GMS90C320  
V
C C0.5V  
0.2VCC + 0.9  
Test Points  
0.2VC C 0.1  
0.45V  
AC Inputs during testing are driven at VCC 0.5V for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made a VIH m in for a logic ‘1’ and VILm ax for a logic ‘0’.  
Figure 7 AC Testing: Input, Output Waveforms  
VLOAD + 0.1  
VOH 0.1  
Timing Reference Points  
0.2VCC 0.1  
VLOAD  
VLOAD 0.1  
VOL + 0.1  
For timing purposes a port pin is no longer floating when a 100mV change from load voltage  
occurs and begins to float when a 100mV change from the loaded VO H / VO L level occurs.  
IO L / IO H 20mA.  
Figure 8 Float Waveforms  
tCLC L  
V
CC0.5V  
0.7 VCC  
0.2 VCC 0.1  
0.45V  
tCLC X  
tC HCX  
tCLCH  
tCH CL  
Figure 9 External Clock Cycle  
38  
OCT. 2000 Ver 1.2  
GMS90C320  
OSCILLATOR CIRCUIT  
CRYSTAL OSCILLATOR MODE  
DRIVING FROM EXTERNAL SOURCE  
C2  
C1  
N.C.  
XTAL2  
XTAL2  
P-LCC-44/Pin 20  
P-DIP-40/Pin 18  
M-QFP-44/Pin 14  
P-LCC-44/Pin 20  
P-DIP-40/Pin 18  
M-QFP-44/Pin 14  
External Oscillator  
Signal  
XTAL1  
XTAL1  
P-LCC-44/Pin 21  
P-DIP-40/Pin 19  
M-QFP-44/Pin 15  
P-LCC-44/Pin 21  
P-DIP-40/Pin 19  
M-QFP-44/Pin 15  
C1, C2 = 30pF ±10pF for Crystals  
For Ceramic Resonators, contact resonator manufacturer.  
Figure 10 Recommended Oscillator Circuits  
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic  
resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external  
components.  
OCT. 2000 Ver 1.2  
39  
GMS90C320  
Plastic Package P-LCC-44  
(Plastic Leaded Chip-Carrier)  
44PLCC  
UNIT: INCH  
0.695  
0.685  
min. 0.020  
0.656  
0.650  
0.012  
0.0075  
0.050 BSC  
0.120  
0.090  
0.180  
0.165  
40  
OCT. 2000 Ver 1.2  
GMS90C320  
Plastic Package P-DIP-40  
(Plastic Dual in-Line Package)  
40DIP  
UNIT: INCH  
2.075  
2.045  
0.600 BSC  
0.550  
0.530  
0.022  
0.015  
0.065  
0.045  
0.100 BSC  
0-15°  
OCT. 2000 Ver 1.2  
41  
GMS90C320  
Plastic Package P-MQFP-44  
(Plastic Metric Quad Flat Package)  
P-MQFP-44  
13.45  
12.95  
10.10  
9.90  
UNIT: MM  
0-7°  
SEE DETAIL “A”  
1.03  
0.73  
2.35 max.  
1.60  
REF  
0.45  
0.30  
0.80 BSC  
DETAIL “A”  
42  
OCT. 2000 Ver 1.2  

GMS90C320Q40 相关器件

型号 制造商 描述 价格 文档
GMS90C320Q50 HYNIX HYNIX SEMICONDUCTOR INC. 8-BIT SINGLE-CHIP MICROCONTROLLERS 获取价格
GMS90C3X HYNIX HYNIX SEMICONDUCTOR INC. 8-BIT SINGLE-CHIP MICROCONTROLLERS 获取价格
GMS90C51 HYNIX 8-BIT SINGLE-CHIP MICROCONTROLLERS 获取价格
GMS90C51-GBXXX24 HYNIX Microcontroller, 8-Bit, MROM, 24MHz, CMOS, PDIP40, PLASTIC, DIP-40 获取价格
GMS90C51-GBXXX40 HYNIX Microcontroller, 8-Bit, MROM, 40MHz, CMOS, PDIP40, PLASTIC, DIP-40 获取价格
GMS90C51-GBXXXPL12 HYNIX Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC44, PLASTIC, LCC-44 获取价格
GMS90C51-GBXXXPL24 HYNIX Microcontroller, 8-Bit, MROM, 24MHz, CMOS, PQCC44, PLASTIC, LCC-44 获取价格
GMS90C51-GBXXXPL40 HYNIX Microcontroller, 8-Bit, MROM, 40MHz, CMOS, PQCC44, PLASTIC, LCC-44 获取价格
GMS90C51-GBXXXQ12 HYNIX Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44 获取价格
GMS90C51-GBXXXQ40 HYNIX Microcontroller, 8-Bit, MROM, 40MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44 获取价格

GMS90C320Q40 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6