GMS97C56PL [HYNIX]

Microcontroller, 8-Bit, OTPROM, 24MHz, CMOS, PQCC44, PLASTIC, LCC-44;
GMS97C56PL
型号: GMS97C56PL
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

Microcontroller, 8-Bit, OTPROM, 24MHz, CMOS, PQCC44, PLASTIC, LCC-44

可编程只读存储器 微控制器
文件: 总59页 (文件大小:724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HYUNDAI MICRO ELECTRONICS  
8-BIT SINGLE-CHIP MICROCONTROLLERS  
GMS90C3X  
GMS90C5X  
GMS97C5X  
User’s Manual (Ver. 3.1a)  
ꢀ ꢁ ꢂ ꢃ ꢄ ꢅ ꢆ  
MicroElectronics  
Semiconductor Group of Hyundai Electronics Industrial Co., Ltd.  
Version 3.1a  
Published by  
MCU Application Team  
1999 HYUNDAI MicroElectronics All right reserved.  
Additional information of this manual may be served by HYUNDAI MicroElectronics offices in Korea or Dis-  
tributors and Representatives listed at address directory.  
HYUNDAI MicroElectronics reserves the right to make changes to any information here in at any time without  
notice.  
The information, diagrams and other data in this manual are correct and reliable; however, HYUNDAI Micro-  
Electronics is in no way responsible for any violations of patents or other rights of the third party generated by  
the use of this manual.  
GMS90 Series  
HYUNDAI MicroElectronics  
Device Naming Structure  
GMS90X5X - GBXXX XX XX  
Frequency  
Blank: 12MHz  
16:  
24:  
40:  
16MHz  
24MHz  
40MHz  
Package Type  
Blank: 40PDIP  
PL:  
Q:  
44PLCC  
44MQFP  
ROM Code serial No.  
ROM size  
1: 4k bytes  
2: 8k bytes  
4: 16k bytes  
6: 24k bytes  
8: 32k bytes  
Operating Voltage  
C: 4.25~5.5V  
L: 2.7~3.6V  
GMS97X5X X XX  
Package Type  
Blank: 40PDIP  
PL:  
Q:  
44PLCC  
44MQFP  
Frequency  
Blank: 12/24(5V),12MHz(3V)  
H:  
33MHz  
ROM size  
1: 4k bytes  
2: 8k bytes  
4: 16k bytes  
6: 24k bytes  
8: 32k bytes  
Operating Voltage  
C: 4.25~5.5V  
L: 2.7~3.6V  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
GMS90 Series Selection Guide  
ROM size  
(bytes)  
Operating  
Voltage  
RAM size  
(bytes)  
Operating  
Device Name  
Frequency  
(V)  
(MHz)  
MASK  
ROM-less  
OTP  
128  
256  
GMS90C31  
GMS90C32  
12/24/40  
12/24/40  
4K  
8K  
16K  
24K  
32K  
-
-
-
-
-
128  
256  
256  
256  
256  
GMS90C51  
GMS90C52  
GMS90C54  
GMS90C56  
GMS90C58  
12/24/40  
12/24/40  
12/24/40  
12/24/40  
12/24/40  
-
-
-
-
-
-
-
-
-
-
4K  
4K  
8K  
8K  
16K  
16K  
24K  
24K  
32K  
32K  
128  
128  
256  
256  
256  
256  
256  
256  
256  
256  
GMS97C51  
GMS97C51H  
GMS97C52  
GMS97C52H  
GMS97C54  
GMS97C54H  
GMS97C56  
GMS97C56H  
GMS97C58  
GMS97C58H  
12/24  
33  
12/24  
33  
12/24  
33  
12/24  
33  
4.25~5.5  
12/24  
33  
128  
256  
GMS90L31  
GMS90L32  
12/16  
12/16  
ROM-less  
4K  
8K  
16K  
24K  
32K  
-
-
-
-
-
128  
256  
256  
256  
256  
GMS90L51  
GMS90L52  
GMS90L54  
GMS90L56  
GMS90L58  
12/16  
12/16  
12/16  
12/16  
12/16  
2.7~3.6  
-
-
-
-
-
4K  
8K  
16K  
24K  
32K  
128  
256  
256  
256  
256  
GMS97L51  
GMS97L52  
GMS97L54  
GMS97L56  
GMS97L58  
12  
12  
12  
12  
12  
Oct. 2000 Ver 3.1a  
 
GMS90 Series  
HYUNDAI MicroElectronics  
GMS90C31/51, 97C51  
GMS90L31/51, 97L51 (Low voltage versions)  
• Fully compatible to standard MCS-51 microcontroller  
• Wide operating frequency up to 40MHz (for more detail, see “GMS90 Series Selection Guide”)  
• 4K × 8 (EP)ROM  
• 128 × 8 RAM  
• 64K external program memory space  
• 64K external data memory space  
• Four 8-bit ports  
• Two 16-bit Timers / Counters  
• USART  
• Five interrupt sources, two priority levels  
• Power saving Idle and power down mode  
• Quick pulse programming algorithm (in the OTP devices)  
• 2-level program memory lock (in the OTP devices)  
• 2.7Volt low voltage version available  
• P-DIP-40, P-LCC-44, P-MQFP-44 package  
Block Diagram  
RAM  
I/O  
PORT 0  
128 × 8  
T 0  
T 1  
I/O  
I/O  
I/O  
PORT 1  
PORT 2  
PORT 3  
8-BIT  
USART  
CPU  
ROM / EPROM  
4K × 8  
Oct. 2000 Ver 3.1a  
1
HYUNDAI MicroElectronics  
GMS90 Series  
GMS90C32/52, 97C52  
GMS90L32/52, 97L52 (Low voltage versions)  
• Fully compatible to standard MCS-51 microcontroller  
• Wide operating frequency up to 40MHz (for more detail, see “GMS90 Series Selection Guide”)  
• 8K × 8 (EP)ROM  
• 256 × 8 RAM  
• 64K external program memory space  
• 64K external data memory space  
• Four 8-bit ports  
• Three 16-bit Timers / Counters (Timer2 with up/down counter feature)  
• USART  
• Six interrupt sources, two priority levels  
• Power saving Idle and power down mode  
• Quick pulse programming algorithm (in the OTP devices)  
• 2-level program memory lock (in the OTP devices)  
• 2.7Volt low voltage version available  
• P-DIP-40, P-LCC-44, P-MQFP-44 package  
Block Diagram  
RAM  
I/O  
PORT 0  
256 × 8  
T 0  
T 1  
I/O  
I/O  
I/O  
PORT 1  
PORT 2  
PORT 3  
8-BIT  
USART  
CPU  
T 2  
ROM / EPROM  
8K × 8  
2
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
GMS90C54/56/58, 97C54/56/58  
GMS90L54/56/58, 97L54/56/58 (Low voltage versions)  
• Fully compatible to standard MCS-51 microcontroller  
• Wide operating frequency up to 40MHz (for more detail, see “GMS90 Series Selection Guide”)  
• 16K/24K/32K bytes (EP)ROM  
• 256 × 8 RAM  
• 64K external program memory space  
• 64K external data memory space  
• Four 8-bit ports  
• Three 16-bit Timers / Counters (Timer2 with up/down counter feature)  
• USART  
• One clock output port  
• Programmable ALE pin enable / disable  
• Six interrupt sources, two priority levels  
• Power saving Idle and power down mode  
• Quick pulse programming algorithm (in the OTP devices)  
• 2-level program memory lock (in the OTP devices)  
• 2.7Volt low voltage version available  
• P-DIP-40, P-LCC-44, P-MQFP-44 package  
Block Diagram  
RAM  
I/O  
PORT 0  
256 × 8  
T 0  
T 1  
I/O  
I/O  
PORT 1  
PORT 2  
8-BIT  
USART  
CPU  
T 2  
ROM / EPROM  
GMS9XX54: 16K × 8  
GMS9XX56: 24K × 8  
GMS9XX58: 32K × 8  
I/O  
PORT 3  
Oct. 2000 Ver 3.1a  
3
HYUNDAI MicroElectronics  
GMS90 Series  
PIN CONFIGURATION  
44-PLCC Pin Configuration (top view)  
INDEX  
CORNER  
P0.4 / AD4  
P0.5 / AD5  
P0.6 / AD6  
P0.7 / AD7  
P1.5  
P1.6  
39  
38  
37  
36  
7
8
P1.7  
9
RESET  
10  
EA / V  
PP  
RxD / P3.0  
N.C.*  
35  
34  
33  
32  
31  
30  
29  
11  
12  
13  
14  
15  
16  
17  
N.C.*  
ALE / PROG  
PSEN  
TxD / P3.1  
INT0 / P3.2  
INT1 / P3.3  
T0 / P3.4  
T1 / P3.5  
P2.7 / A15  
P2.6 / A14  
P2.5 / A13  
N.C.: Do not connect.  
4
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
40-PDIP Pin Configuration (top view)  
V
T2 / P1.0  
T2EX / P1.1  
P1.2  
CC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P0.0 / AD0  
P0.1 / AD1  
P0.2 / AD2  
P0.3 / AD3  
P0.4 / AD4  
P0.5 / AD5  
P0.6 / AD6  
P0.7 / AD7  
3
P1.3  
4
P1.4  
5
P1.5  
6
P1.6  
7
P1.7  
8
RESET  
RxD / P3.0  
TxD / P3.1  
INT0 / P3.2  
INT1 / P3.3  
T0 / P3.4  
T1 / P3.5  
WR / P3.6  
RD / P3.7  
XTAL2  
9
EA / V  
PP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
ALE / PROG  
PSEN  
P2.7 / A15  
P2.6 / A14  
P2.5 / A13  
P2.4 / A12  
P2.3 / A11  
P2.2 / A10  
P2.1 / A9  
P2.0 / A8  
XTAL1  
V
SS  
Oct. 2000 Ver 3.1a  
5
HYUNDAI MicroElectronics  
GMS90 Series  
44-MQFP Pin Configuration (top view)  
P1.5  
P1.6  
33  
32  
31  
30  
P0.4 / AD4  
P0.5 / AD5  
P0.6 / AD6  
P0.7 / AD7  
1
2
3
4
P1.7  
RESET  
RxD / P3.0  
N.C.*  
5
6
29  
28  
27  
26  
25  
24  
23  
EA / V  
N.C.*  
PP  
TxD / P3.1  
INT0 / P3.2  
INT1 / P3.3  
T0 / P3.4  
T1 / P3.5  
ALE / PROG  
PSEN  
7
8
P2.7 / A15  
P2.6 / A14  
P2.5 / A13  
9
10  
11  
N.C.: Do not connect.  
6
Oct. 2000 Ver 3.1a  
GMS90 Series  
Logic Symbol  
HYUNDAI MicroElectronics  
VCC VSS  
XTAL1  
XTAL2  
Port 0  
8-bit Digital I/O  
Port 1  
8-bit Digital I/O  
RESET  
Port 2  
8-bit Digital I/O  
EA/VPP  
ALE/PROG  
PSEN  
Port 3  
8-bit Digital I/O  
Oct. 2000 Ver 3.1a  
7
HYUNDAI MicroElectronics  
GMS90 Series  
PIN DEFINITIONS AND FUNCTIONS  
Pin Number  
Input/  
Symbol  
Function  
PLCC-  
44  
PDIP-  
40  
MQFP-  
44  
Output  
Port1  
P1.0-P1.7  
2-9  
1-8  
40-44,  
1-3  
I/O  
Port 1 is an 8-bit bidirectional I/O port with internal  
pull-ups. Port 1 pins that have 1s written to them are  
pulled high by the internal pull-up resistors and can be  
used as inputs. As inputs, port 1 pins that are  
externally pulled low will source current because of  
the pulls-ups (IIL, in the DC characteristics). Pins P1.0  
and P1.1 also. Port1 also receives the low-order  
address byte during program memory verification.  
Port1 also serves alternate functions of Timer 2.  
2
3
1
2
40  
41  
P1.0 / T2 :  
Timer/counter 2 external count input  
P1.1 / T2EX : Timer/counter 2 trigger input  
In GMS9XC54/56/58:  
2
1
40  
P1.0 / T2, Clock Out : Timer/counter 2 external count  
input, Clock Out  
Port 3  
P3.0-P3.7  
11,  
10-17  
5, 7-13  
I/O  
13-19  
Port 3 is an 8-bit bidirectional I/O port with internal  
pull-ups. Port 3 pins that have 1s written to them are  
pulled high by the internal pull-up resistors and can be  
used as inputs. As inputs, port 3 pins that are  
externally pulled low will source current because of  
the pulls-ups (IIL, in the DC characteristics). Port 3 also  
serves the special features of the 80C51 family, as  
listed below.  
11  
13  
10  
11  
5
7
P3.0 / RxD receiver data input (asynchronous) or  
data input output(synchronous) of serial  
interface 0  
P3.1 / TxD transmitter data output (asynchronous)  
or clock output (synchronous) of the  
serial interface 0  
14  
15  
16  
17  
18  
12  
13  
14  
15  
16  
8
9
10  
11  
12  
P3.2 /INT0 interrupt 0 input/timer 0 gate control  
P3.3 / INT1  
P3.4 /T0  
interrupt 1 input/timer 1 gate control  
counter 0 input  
P3.5 /T1  
counter 1 input  
P3.6 / WR  
the write control signal latches the data  
byte from port 0 into the external data  
memory  
19  
20  
17  
18  
13  
14  
P3.7 /RD  
the read control signal enables the  
external data memory to port 0  
XTAL2  
XTAL2  
O
Output of the inverting oscillator amplifier.  
8
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
Pin Number  
Input/  
Symbol  
Function  
PLCC-  
44  
PDIP-  
40  
MQFP-  
44  
Output  
XTAL1  
XTAL1  
21  
19  
15  
I
Input to the inverting oscillator amplifier and input to  
the internal clock generator circuits.To drive the  
device from an external clock source, XTAL1 should  
be driven, while XTAL2 is left unconnected. There are  
no requirements on the duty cycle of the external  
clock signal, since the input to the internal clocking  
circuitry is divided down by a divide-by-two flip-flop.  
Minimum and maximum high and low times as well as  
rise fall times specified in the AC characteristics must  
be observed.  
Port 2  
P2.0-P2.7  
24-31  
21-28  
18-25  
I/O  
Port 2 is an 8-bit bidirectional I/O port with internal  
pull-ups. Port 2 pins that have 1s written to them are  
pulled high by the internal pull-up resistors and can be  
used as inputs. As inputs, port 2 pins that are  
externally pulled low will source current because of  
the pulls-ups (IIL, in the DC characteristics).Port 2  
emits the high-order address byte during fetches from  
external program memory and during accesses to  
external data memory that use 16-bit addresses  
(MOVX @DPTR). In this application it uses strong  
internal pull-ups when emitting 1s. During accesses to  
external data memory that use 8-bit addresses  
(MOVX @Ri), port 2 emits the contents of the P2  
special function register.  
The Program Store Enable  
PSEN  
32  
29  
26  
O
The read strobe to external program memory when  
the device is executing code from the external  
program memory. PSEN is activated twice each  
machine cycle, except that two PSEN activations are  
skipped during each access to external data memory.  
PSEN is not activated during fetches from internal  
program memory.  
RESET  
RESET  
10  
9
4
I
A high level on this pin for two machine cycles while  
the oscillator is running resets the device. An internal  
diffused resistor to VSS permits power-on reset using  
only an external capacitor to VCC  
.
Oct. 2000 Ver 3.1a  
9
HYUNDAI MicroElectronics  
GMS90 Series  
Pin Number  
Symbol  
Input/  
Output  
Function  
PLCC-  
44  
PDIP-  
40  
MQFP-  
44  
The Address Latch Enable / Program pulse  
Output pulse for latching the low byte of the address  
during an access to external memory. In normal  
operation, ALE is emitted at a constant rate of 1/6 the  
oscillator frequency, and can be used for external  
timing or clocking. Note that one ALE pulse is skipped  
during each access to external data memory. This pin  
is also the program pulse input (PROG) during  
EPROM programming.  
ALE /  
PROG  
33  
30  
27  
O
In GMS9XC54/56/58:  
If desired, ALE operation can be disabled by setting  
bit 0 of SFR location 8EH. With this bit set, the pin is  
weakly pulled high. The ALE disable feature will be  
terminated by reset. Setting the ALE-disable bit has  
no affect if the microcontroller is in external execution  
mode.  
EA / VPP  
35  
31  
29  
I
External Access Enable / Program Supply Voltage  
EA must be external held low to enable the device to  
fetch code from external program memory locations  
0000H to FFFFH. If EA is held high, the device  
executes from internal program memory unless the  
program counter contains an address greater than its  
internal memory size. This pin also receives the  
12.75V programming supply voltage (VPP) during  
EPROM programming.  
Note;  
however, that if any of the Lock bits are  
programmed, EA will be internally  
latched on reset.  
Port 0  
P0.0-P0.7  
36-43  
32-39  
30-37  
I/O  
Port 0 is an 8-bit open-drain bidirectional I/O port.  
Port 0 pins that have 1s written to them float and can  
be used as high-impedance inputs.  
Port 0 is also the multiplexed low-order address and  
data bus during accesses to external program and  
data memory. In this application it uses strong internal  
pull-ups when emitting 1s. Port 0 also outputs the  
code bytes during program verification in the  
GMS97X5X. External pull-up resistors are required  
during program verification.  
VSS  
VCC  
N.C.  
22  
44  
20  
40  
-
16  
38  
-
-
-
Circuit ground potential  
Supply terminal  
No connection  
for all operating modes  
1,12  
23,34  
6,17  
28,39  
10  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
FUNCTIONAL DESCRIPTION  
The GMS90 series is fully compatible to the standard 8051 microcontroller family.  
It is compatible with the general 8051 family. While maintaining all architectural and operational characteristics  
of the general 8051 family.  
Figure 1 shows a block diagram of the GMS90 series  
ROM/EPROM  
RAM  
XTAL1  
XTAL2  
4K/8K/16K  
24K/32K  
OSC & TIMING  
128/256×8  
CPU  
Timer 0  
RESET  
EA/V  
PP  
Port 0  
8-bit Digit. I/O  
Port 0  
Port 1  
ALE/PROG  
PSEN  
Timer 1  
Port 1  
8-bit Digit. I/O  
Timer 2  
Port 2  
8-bit Digit. I/O  
Port 2  
Port 3  
Interrupt Unit  
Serial Channel  
Port 3  
8-bit Digit. I/O  
Figure 1. Block Diagram of the GMS90 series  
Oct. 2000 Ver 3.1a  
11  
 
HYUNDAI MicroElectronics  
GMS90 Series  
CPU  
The GMS90 series is efficient both as a controller and as an arithmetic processor. It has extensive facilities for  
binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results  
from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12  
MHz crystal, 58% of the instructions are executed in 1.0µs (40MHz: 300ns).  
Special Function Register PSW  
LSB  
0
MSB  
7
Bit No.  
6
5
4
3
2
1
Addr. D0  
H
PSW  
CY AC F0 RS1 RS0 OV F1  
P
Bit  
Function  
Carry Flag  
CY  
AC  
F0  
Auxiliary Carry Flag  
(for BCD operations)  
General Purpose Flag  
Register Bank select control bits  
RS1  
RS0  
0
0
1
1
0
1
0
1
Bank 0 selected, data address 00H - 07H  
Bank 1 selected, data address 08H - 0FH  
Bank 2 selected, data address 10H - 17H  
Bank 3 selected, data address 18H - 1FH  
Overflow Flag  
OV  
F1  
P
General Purpose Flag  
Parity Flag  
Set/cleared by hardware each instruction cycle to indicate an odd/even  
number of "one" bits in the accumulator, i.e. even parity.  
Reset value of PSW is 00H.  
12  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
SPECIAL FUNCTION REGISTERS  
All registers, except the program counter and the four general purpose register banks, reside in the special func-  
tion register area.  
The 28 special function registers (SFR) include pointers and registers that provide an interface between the CPU  
and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.  
All SFRs are listed in Table 1, Table 1, and Table 3.  
In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which  
refer to the functional blocks of the GMS90 series. Table 3 illustrates the contents of the SFRs.  
Table 1. Special Function Registers in Numeric Order of their Addresses  
Contents after  
Reset  
Contentsafter  
Reset  
Address  
Register  
Address  
Register  
P0 1)  
SP  
DPL  
P1 1)  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
FFH  
07H  
00H  
00H  
XXH 2)  
XXH 2)  
XXH 2)  
90H  
91H  
92H  
93H  
94H  
95H  
96H  
97H  
FFH  
00H  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
DPH  
reserved  
reserved  
reserved  
PCON  
2)  
0XX0000B  
TCON 1)  
TMOD  
TL0  
TL1  
TH0  
SCON 1)  
SBUF  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
00H  
00H  
00H  
00H  
00H  
00H  
98H  
99H  
9AH  
9BH  
9CH  
9DH  
9EH  
9FH  
00H  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
TH1  
8EH 3)  
8FH  
3)  
3)  
reserved  
XXH 2)  
1) Bit-addressable Special Function Register.  
2) X means that the value is indeterminate and the location is reserved.  
3) The GMS9XX54/56/58 have the AUXR0 register at address 8E .  
H
GMS9XX51/52  
GMS9XX54/56/58  
8EH  
2)  
2)  
XXXXXXXXB  
8EH  
reserved  
AUXR0  
XXXXXXX0B  
Oct. 2000 Ver 3.1a  
13  
 
 
 
 
HYUNDAI MicroElectronics  
GMS90 Series  
Table 1. Special Function Registers in Numeric Order of their Addresses  
Contents after  
(cont’d)  
Contentsafter  
Reset  
Address  
Register  
Address  
Register  
Reset  
P2 1)  
T2CON 1)  
T2MOD  
RC2L  
RC2H  
TL2  
TH2  
reserved  
reserved  
A0H  
A1H  
A2H  
A3H  
A4H  
A5H  
A6H  
A7H  
FFH  
C8H  
00H  
3)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
C9H 3)  
CAH  
CBH  
CCH  
CDH  
CEH  
CFH  
00H  
00H  
00H  
00H  
XXH 2)  
XXH 2)  
IE 1)  
0X000000B 2)  
XXH 2)  
PSW 1)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
00H  
A8H  
A9H  
AAH  
ABH  
ACH  
ADH  
AEH  
AFH  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
P3 1)  
B0H  
B1H  
B2H  
B3H  
B4H  
B5H  
B6H  
B7H  
FFH  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
IP 1)  
XX000000B 2)  
XXH 2)  
ACC 1)  
B8H  
B9H  
BAH  
BBH  
BCH  
BDH  
BEH  
BFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
00H  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
C0H  
C1H  
C2H  
C3H  
C4H  
C5H  
C6H  
C7H  
XXH  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
14  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
Table 1. Special Function Registers in Numeric Order of their Addresses  
Contents after  
(cont’d)  
Contentsafter  
Reset  
Address  
Register  
Address  
Register  
Reset  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
B 1)  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
00H  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
XXH 2)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
1) Bit-addressable Special Function Register.  
2) X means that the value is indeterminate and the location is reserved.  
3) Address C9 is configured as below.  
H
GMS9XX51/52  
GMS9XX54/56/58  
2)  
2)  
C9H  
reserved  
XXXXXXX0B  
C9H  
T2MOD  
XXXXXX00B  
Oct. 2000 Ver 3.1a  
15  
 
HYUNDAI MicroElectronics  
GMS90 Series  
Table 2. Special Function Registers - Functional Blocks  
Contents  
after Reset  
Block  
Symbol  
Name  
Address  
E0H 1)  
F0H 1)  
83H  
82H  
D0H 1)  
81H  
CPU  
ACC  
B
DPH  
DPL  
PSW  
SP  
Accumulator  
B-Register  
00H  
00H  
00H  
00H  
00H  
07H  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Program Status Word Register  
Stack Pointer  
A8H 1)  
B8H 1)  
0X000000B 2)  
XX000000B 2)  
Interrupt System IE  
IP  
Interrupt Enable Register  
Interrupt Priority Register  
80H 1)  
90H 1)  
A0H 1)  
B0H 1)  
Ports  
P0  
P1  
P2  
P3  
Port 0  
Port 1  
Port 2  
Port 3  
FFH  
FFH  
FFH  
FFH  
PCON 3)  
SBUF  
SCON  
0XXX0000B 2)  
XXH 2)  
Serial Channels  
Power Control Register  
Serial Channel Buffer Reg.  
Serial Channel 0 Control Reg.  
87H  
99H  
98H 1)  
00H  
88H 1)  
8CH  
8DH  
8AH  
8BH  
89H  
Timer 0/ Timer 1 TCON  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
00H  
00H  
00H  
00H  
00H  
00H  
TH0  
TH1  
TL0  
TL1  
TMOD  
C8H 1)  
C9H  
CBH  
CAH  
CDH  
CCH  
8EH  
Timer 2  
T2CON  
T2MOD  
RC2H  
RC2L  
TH2  
TL2  
AUXR0 4)  
Timer 2 Control Register  
Timer 2 Mode Register  
Timer 2 Reload Capture Reg., High Byte  
Timer 2 Reload Capture Reg., Low Byte  
Timer 2, High Byte  
00H  
00H  
00H  
00H  
00H  
00H  
Timer 2, Low Byte  
Aux. Register 0  
XXXXXXX0B 2)  
3)  
0XXX0000B 2)  
Power  
Modes  
Saving  
Power Control Register  
87H  
PCON  
1) Bit-addressable Special Function register  
2) X means that the value is indeterminate and the location is reserved  
3) This special function register is listed repeatedly since some bit of it also belong to other functional blocks  
4) The AUXR0 is in the GMS9XX54/56/58 only.  
16  
Oct. 2000 Ver 3.1a  
 
 
 
GMS90 Series  
HYUNDAI MicroElectronics  
Table 3. Contents of SFRs, SFRs in Numeric Order  
Address  
Register  
Bit 7  
6
5
4
3
2
1
0
80H  
P0  
81H  
82H  
83H  
87H  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
SP  
DPL  
DPH  
PCON  
TCON  
TMOD  
TL0  
SM OD  
TF1  
-
-
-
GF1  
IE1  
GF0  
IT1  
PDE  
IE0  
M1  
IDLE  
IT0  
TR1  
C/T  
TF0  
M1  
TR0  
MT  
GATE  
GATE  
C/T  
M0  
TL1  
TH0  
TH1  
AUXR0 †  
P1  
A0 †  
RI  
-
-
-
-
-
-
-
90H  
98H  
99H  
A0H  
A8H  
B0H  
B8H  
SCON  
SBUF  
P2  
SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
IE  
EA  
-
-
-
ET2  
PT2  
ES  
PS  
ET1  
PT1  
EX1  
PX1  
ET0  
PT0  
EX0  
PX0  
P3  
IP  
† indicates resident in the GMS9XX54/56/58, not in 9XX51/52.  
SFR bit and byte addressable  
SFR not bit addressable  
- : this bit location is reserved  
Oct. 2000 Ver 3.1a  
17  
HYUNDAI MicroElectronics  
GMS90 Series  
Table 3. Contents of SFRs, SFRs in Numeric Order  
(cont’d)  
Address  
Register  
Bit 7  
6
5
4
3
2
1
0
C8H  
T2CON  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
C9H  
T2MOD  
-
-
-
-
-
-
DCEN  
T2OE  
CAH  
CBH  
CCH  
CDH  
D0H  
E0H  
F0H  
RC2L  
RC2H  
TL2  
TH2  
PSW  
ACC  
B
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
† indicates resident in the GMS9XX54/56/58, not in 9XX51/52.  
A0  
8EH  
A0 : ALE Signal Disable bit  
0 : Enable ALE Signal (Generated ALE Signal)  
1 : Disable ALE Signal (Not Generated ALE Signal)  
T2OE  
C9H  
T2OE : Timer2 Output Enable bit  
0 : Disable Timer2 Output  
1 : Enable Timer2 Output  
SFR bit and byte addressable  
SFR not bit addressable  
- : this bit location is reserved  
18  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
TIMER / COUNTER 0 AND 1  
Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:  
Table 4. Timer/Counter 0 and 1 Operating Modes  
TMOD  
Input Clock  
Mode  
Description  
Gate  
X
C/T  
X
M1  
0
M0  
0
internal  
external (Max.)  
8-bit timer/counter with a  
divide-by-32 prescaler  
f
OSC ÷(12×32)  
fOSC ÷(24×32)  
0
1
2
f
f
OSC ÷12  
OSC ÷12  
f
f
OSC ÷24  
OSC ÷24  
16-bit timer/counter  
X
X
0
1
8-bit timer/counter with  
8-bit auto-reload  
X
X
1
0
Timer/counter 0 used as  
one 8-bit timer/counter and  
one 8-bit timer Timer 1  
stops  
f
OSC ÷12  
f
OSC ÷24  
3
X
X
1
1
In the "timer" function (C/T = "0") the register is incremented every machine cycle. Therefore the count rate is  
OSC/12.  
f
In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding exter-  
nal input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate  
is fOSC/24. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate  
pulse width measurements. Figure 2 illustrates the input clock logic.  
f
÷
12  
OSC  
f
÷ 12  
OSC  
C/T  
TMOD  
0
Timer 0/1  
Input Clock  
P3.4/T0  
P3.5/T1  
1
Max. f  
/24  
OSC  
TR0 / 1  
TCON  
&
Gate  
=1  
TMOD  
1  
P3.2 / INT0  
P3.3 / INT1  
Figure 2. Timer/Counter 0 and 1 Input Clock Logic  
Oct. 2000 Ver 3.1a  
19  
 
 
HYUNDAI MicroElectronics  
GMS90 Series  
TIMER 2  
Timer 2 is a 16-bit timer/Counter with an up/down count feature. It can operate either as timer or as an event  
counter which is selected by bit C/T2 (T2CON.1). It has three operating modes as shown in Table 5.  
Table 5. Timer/Counter 2 Operating Modes  
T2MO  
T2CON  
T2CON  
Input Clock  
D
P1.1/  
T2EX  
Mode  
Remarks  
RCLKor  
TCLK  
external  
CP/RL2  
TR2  
DCEN EXEN2  
internal  
(P1.0/T2)  
16-bit Auto-  
Reload  
0
0
0
1
0
0
0
1
X
reload upon over-  
flow  
reload trigger (fall-  
ing edge)  
Max.  
OSC ÷24  
0
1
f
OSC ÷ 12  
f
0
0
0
0
1
1
1
1
X
X
0
1
Down counting  
Up counting  
16-bit  
Capture  
0
1
1
X
0
X
16 bit Timer/ Coun-  
ter (only up-count-  
ing)  
Max.  
OSC ÷ 24  
f
f
OSC ÷ 12  
f
0
1
1
1
1
X
X
1
0
capture TH2,TL2  
RC2H,RC2L  
Baud Rate  
Generator  
X
X
no overflow  
interrupt request  
(TF2)  
Max.  
OSC ÷ 24  
OSC ÷ 12  
f
1
X
X
1
0
X
X
1
extra external inter-  
rupt ("Timer 2")  
Off  
X
X
X
Timer 2 stops  
-
-
Note: =  
falling edge  
20  
Oct. 2000 Ver 3.1a  
 
GMS90 Series  
HYUNDAI MicroElectronics  
SERIAL INTERFACE (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes)  
as illustrated in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.  
Table 6. USART Operating Modes  
SCON  
Mode  
Baudrate  
Description  
SM0  
SM1  
Serial data enters and exits through RxD.  
TxD outputs the shift clock. 8-bit are transmit-  
ted/received (LSB first)  
f
--O----S----C--  
0
1
0
0
12  
8-bit UART  
10 bits are transmitted (through TxD) or  
received (RxD)  
0
1
Timer 1/2 overflow rate  
9-bit UART  
f
fOSC  
--O----S----C--  
------------  
2
3
1
1
0
1
or  
11 bits are transmitted (TxD) or received (RxD)  
32  
64  
9-bit UART  
Like mode 2 except the variable baud rate  
Timer 1/2 overflow rate  
Table 7. Formulas for Calculating Baud rates  
Baud Rate  
Interface Mode  
derived from  
Baudrate  
fOSC  
0
------------  
12  
Oscillator  
2SMOD  
64  
2
------------------  
× fOSC  
2SMOD  
------------------  
32  
1,3  
× (Timer 1 overflow)  
Timer 1 (16-bit timer)  
(8-bit timer with  
8-bit auto reload)  
2SMOD  
f
------------------ ---------------------O----S----C---------------------  
1,3  
×
32  
12 × [256 (TH1)]  
fOSC  
Timer 2  
1,3  
---------------------------------------------------------------------------------  
32 × [65536 (RC2H, RC2L)]  
Oct. 2000 Ver 3.1a  
21  
 
 
HYUNDAI MicroElectronics  
GMS90 Series  
INTERRUPT SYSTEM  
The GMS90 series provides 5 (4K bytes ROM version) or 6 (above 8K bytes ROM version) interrupt sources  
with two priority levels. Figure 3 gives a general overview of the interrupt sources and illustrates the request and  
control flags.  
High  
Priority  
Timer 0 Overflow  
Timer 1 Overflow  
TF0  
Low  
Priority  
TCON.5  
ET0  
IE.1  
PT0  
IP.1  
TF1  
TCON.7  
ET1  
IE.3  
PT1  
IP.3  
Timer 2 Overflow  
TF2  
1  
1  
T2CON.7  
P1.1/  
T2EX  
EXF2  
ET2  
IE.5  
PT2  
IP.5  
T2CON.6  
EXEN2  
T2CON.3  
RI  
SCON.0  
UART  
TI  
ES  
PS  
SCON.1  
IE.4  
IP.4  
P3.2/  
INT0  
IE0  
TCON.1  
EX0  
IE.0  
PX0  
IP.0  
IT0  
TCON.0  
P3.3/  
INT1  
IE1  
TCON.3  
EA  
IT1  
EX1  
IE.2  
PX1  
IP.2  
IE.7  
TCON.2  
: Low level triggered  
: Falling edge triggered  
Figure 3. Interrupt Request Sources  
22  
Oct. 2000 Ver 3.1a  
 
GMS90 Series  
HYUNDAI MicroElectronics  
Table 8. Interrupt Sources and their Corresponding Interrupt Vectors  
Source (Request Flags)  
RESET  
IE0  
TF0  
IE1  
TF1  
RI + TI  
TF2 + EXF2  
Vectors  
Vector Address  
RESET  
0000H  
0003H  
000BH  
0013H  
001BH  
0023H  
002BH  
External interrupt 0  
Timer 0 interrupt  
External interrupt 1  
Timer 1 interrupt  
Serial port interrupt  
Timer 2 interrupt  
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority in-  
terrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.  
If two requests of different priority level are received simultaneously, the request of higher priority is serviced.  
If requests of the same priority are received simultaneously, an internal polling sequence determines which re-  
quest is serviced. Thus within each priority level there is a second priority structure determined by the polling  
sequence as shown in Table 9.  
Table 9. Interrupt Priority-Within-Level  
Interrupt Source  
Priority  
External Interrupt 0  
IE0  
High  
Timer 0 Interrupt  
External Interrupt 1  
Timer 1 Interrupt  
Serial Channel  
TF0  
IE1  
TF1  
RI + TI  
TF2 + EXF2  
Low  
Timer 2 Interrupt  
Oct. 2000 Ver 3.1a  
23  
 
HYUNDAI MicroElectronics  
GMS90 Series  
Power Saving Modes  
Two power down modes are available, the Idle Mode and Power Down Mode.  
The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If  
the Power Down mode and the Idle mode are set at the same time, the Power Down mode takes precedence.  
Table 10 gives a general overview of the power saving modes.  
Table 10. Power Saving Modes Overview  
Entering  
Instruction  
Example  
Mode  
Leaving by  
Remarks  
Idle mode  
ORL PCON, #01H  
- Enabled interrupt  
- Hardware Reset  
CPU is gated off  
CPU status registers maintain their  
data.  
Peripherals are active  
Power-Down mode  
ORL PCON, #02H  
Hardware Reset  
Oscillator is stopped, contents of on-  
chip RAM and SFR’s are maintained  
(leaving Power Down Mode means  
redefinition of SFR contents).  
In the Power Down mode of operation, VCC can be reduced to minimize power consumption. It must be ensured,  
however, that VCC is not reduced before the Power Down mode is invoked, and that VCC is restored to its normal  
operating level, before the Power Down mode is terminated. The reset signal that terminates the Power Down  
mode also restarts the oscillator. The reset should not be activated before VCC is restored to its normal operating  
level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on  
reset).  
24  
Oct. 2000 Ver 3.1a  
 
GMS90 Series  
HYUNDAI MicroElectronics  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
Ambient temperature under bias (TA)...................................................................................... -40 to + 85 °C  
Storage temperature (TST)...................................................................................................... -65 to + 150 °C  
Voltage on VCC pins with respect to ground (VSS) ................................................................. -0.5V to 6.5V  
Voltage on any pin with respect to ground (VSS) ..........................................................-0.5V to VCC + 0.5V  
Input current on any pin during overload condition............................................................-15mA to +15mA  
Absolute sum of all input currents during overload condition...........................................................|100mA|  
Power dissipation ....................................................................................................................................1.5W  
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the de-  
vice. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for longer periods may affect device reliability. During overload conditions (VIN > VCC or VIN < VSS  
)
the Voltage on VCC pins with respect to ground (VSS) must not exceed the values defined by the absolute maxi-  
mum ratings.  
Oct. 2000 Ver 3.1a  
25  
HYUNDAI MicroElectronics  
GMS90 Series  
DC Characteristics  
DC Characteristics for GMS90C31/32, GMS90C51/52/54/56/58  
VCC= 5V + 10%, -15%; VSS=0V; TA= 0°C to 70°C  
Limit Values  
Max.  
Parameter  
Symbol  
Unit  
Test Conditions  
Min.  
Input low voltage  
(except EA, RESET)  
VIL  
0.2VCC - 0.1  
-0.5  
V
-
Input low voltage (EA)  
VIL1  
VIL2  
0.2VCC - 0.3  
0.2VCC + 0.1  
-0.5  
-0.5  
V
V
-
-
Input low voltage (RESET)  
Input high voltage (except  
XTAL1, EA, RESET)  
VIH  
VIH1  
VIH2  
0.2VCC + 0.9  
0.7VCC  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
V
V
V
-
-
-
Input high voltage to XTAL1  
Input high voltage to EA,  
RESET  
0.6VCC  
Output low voltage  
(ports 1, 2, 3)  
OL= 1.6mA 1)  
OL= 3.2mA 1)  
VOL  
VOL1  
VOH  
-
-
0.45  
0.45  
-
V
V
V
I
I
Output low voltage  
(port 0, ALE, PSEN)  
Output high voltage  
(ports 1, 2, 3)  
IOH= -80µA  
IOH= -10µA  
2.4  
0.9VCC  
Output high voltage  
(port 0 in external bus  
mode, ALE, PSEN)  
IOH= -800µA 2)  
IOH= -80µA 2)  
2.4  
0.9VCC  
VOH1  
-
V
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
ITL  
ILI  
VIN= 0.45V  
-10  
-65  
-
-50  
-650  
±1  
µA  
µA  
µA  
pF  
Logical 1-to-0 transition cur-  
rent (ports 1, 2, 3)  
VIN= 2.0V  
Input leakage current  
(port 0, EA)  
0.45 < VIN < VCC  
Pin capacitance  
fC= 1MHz  
TA= 25°C  
CIO  
-
10  
Power supply current:  
Active mode, 12MHz 3)  
Idle mode, 12MHz 3)  
Active mode, 24 MHz 3)  
Idle mode, 24MHz 3)  
Active mode, 40 MHz 3)  
Idle mode, 40 MHz 3)  
Power Down Mode 3)  
VCC= 5V 4)  
VCC= 5V 5)  
VCC= 5V 4)  
VCC= 5V 5)  
VCC= 5V 4)  
VCC= 5V 5)  
VCC= 5V 6)  
ICC  
ICC  
ICC  
ICC  
ICC  
ICC  
IPD  
-
-
-
-
-
-
-
21  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
4.8  
36.2  
8.2  
58.5  
12.5  
50  
26  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V of ALE and port 3.  
OL  
The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 tran-  
sitions during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE  
line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with  
a schmitt-trigger strobe input.  
2) Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specifica-  
OH  
CC  
tion when the address lines are stabilizing.  
3) I Max at other frequencies is given by:  
CC  
active mode: I = 1.27 × f  
+ 5.73  
CC  
OSC  
idle mode:  
where f  
I
= 0.28 × f  
+ 1.45 (except OTP devices)  
CC  
OSC  
is the oscillator frequency in MHz. I values are given in mA and measured at V = 5V.  
OSC  
CC  
CC  
4) I (active mode) is measured with:  
CC  
XTAL1 driven with t  
, t  
= 5ns, V = V + 0.5V, V = V - 0.5V; XTAL2 = N.C.;  
CLCH CHCL IL SS IH CC  
EA = Port0 = RESET = V ; all other pins are disconnected. I would be slightly higher if a crystal oscillator is used (appr.  
CC  
CC  
1mA).  
5) I (Idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
CC  
XTAL1 driven with t  
, t  
= 5ns, V = V + 0.5V, V = V - 0.5V; XTAL2 = N.C.;  
CLCH CHCL IL SS IH CC  
RESET = EA = V ; Port0 = V ; all other pins are disconnected;  
SS  
CC  
6) I (Power Down Mode) is measured under following conditions:  
PD  
EA = Port0 = V ; RESET = V ; XTAL2 = N.C.; XTAL1 = V ; all other pins are disconnected.  
CC  
SS  
SS  
Oct. 2000 Ver 3.1a  
27  
 
 
 
 
 
 
HYUNDAI MicroElectronics  
GMS90 Series  
DC Characteristics for GMS97C51/52/54/56/58 (H)  
VCC= 5V + 10%, -15%; VSS=0V; TA= 0°C to 70°C  
Limit Values  
Max.  
Parameter  
Symbol  
Unit  
Test Conditions  
Min.  
Input low voltage  
(except EA, RESET)  
VIL  
0.2VCC - 0.1  
-0.5  
V
-
Input low voltage (EA)  
VIL1  
VIL2  
0.2VCC - 0.3  
0.2VCC + 0.1  
-0.5  
-0.5  
V
V
-
-
Input low voltage (RESET)  
Input high voltage (except  
XTAL1, EA, RESET)  
VIH  
VIH1  
VIH2  
0.2VCC + 0.9  
0.7VCC  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
V
V
V
-
-
-
Input high voltage to XTAL1  
Input high voltage to EA,  
RESET  
0.6VCC  
Output low voltage  
(ports 1, 2, 3)  
OL= 1.6mA 1)  
VOL  
VOL1  
VOH  
-
-
0.45  
0.45  
-
V
V
V
I
Output low voltage  
(port 0, ALE, PSEN)  
IOL= 3.2mA 1)  
Output high voltage  
(ports 1, 2, 3)  
IOH= -80µA  
IOH= -10µA  
2.4  
0.9VCC  
Output high voltage  
(port 0 in external bus  
mode, ALE, PSEN)  
IOH= -800µA 2)  
IOH= -80µA 2)  
2.4  
0.9VCC  
VOH1  
-
V
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
ITL  
ILI  
VIN= 0.45V  
-10  
-65  
-
-50  
-650  
±1  
µA  
µA  
µA  
pF  
Logical 1-to-0 transition cur-  
rent (ports 1, 2, 3)  
VIN= 2.0V  
Input leakage current  
(port 0, EA)  
0.45 < VIN < VCC  
Pin capacitance  
fC= 1MHz  
TA= 25°C  
CIO  
-
10  
Power supply current:  
Active mode, 12MHz 3)  
Idle mode, 12MHz 3)  
Active mode, 24 MHz 3)  
Idle mode, 24MHz 3)  
Active mode, 33 MHz 3)  
Idle mode, 33 MHz 3)  
Power Down Mode 3)  
VCC= 5V 4)  
VCC= 5V 5)  
VCC= 5V 4)  
VCC= 5V 5)  
VCC= 5V 4)  
VCC= 5V 5)  
VCC= 5V 6)  
ICC  
ICC  
ICC  
ICC  
ICC  
ICC  
IPD  
-
-
-
-
-
-
-
21  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
4.8  
36.2  
8.2  
45  
10  
50  
28  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
DC Characteristics for GMS90L31/32, GMS90L51/52/54/56/58  
VCC= 3.3V + 0.3V, -0.6V; VSS=0V; TA= 0°C to 70°C  
Limit Values  
Max.  
Parameter  
Symbol  
Unit  
Test Conditions  
Min.  
-0.5  
2.0  
Input low voltage  
Input high voltage  
VIL  
0.8  
V
V
-
VIH  
VCC + 0.5  
-
OL= 1.6mA 1)  
Output low voltage  
(ports 1, 2, 3)  
I
0.45  
0.30  
VOL  
-
-
V
IOL= 100µA 1)  
IOL= 3.2mA 1)  
IOL= 200µA 1)  
Output low voltage  
(port 0, ALE, PSEN)  
0.45  
0.30  
VOL1  
V
V
Output high voltage  
(ports 1, 2, 3)  
IOH= -20µA  
IOH= -10µA  
2.0  
0.9VCC  
VOH  
-
-
Output high voltage  
(port 0 in external bus  
mode, ALE, PSEN)  
IOH= -800µA 2)  
IOH= -80µA 2)  
2.0  
0.9VCC  
VOH1  
V
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
ITL  
ILI  
VIN= 0.45V  
-1  
-25  
-
-50  
-250  
±1  
µA  
µA  
µA  
pF  
Logical 1-to-0 transition cur-  
rent (ports 1, 2, 3)  
VIN= 2.0V  
Input leakage current  
(port 0, EA)  
0.45 < VIN < VCC  
Pin capacitance  
fC= 1MHz  
TA= 25°C  
CIO  
-
10  
Power supply current:  
Active mode, 16 MHz 3)  
Idle mode, 16MHz 3)  
Power Down Mode 3)  
VCC= 3.6V 4)  
VCC= 2.6V 5)  
VCC=2~ 5.5V 6)  
ICC  
ICC  
IPD  
-
-
-
mA  
mA  
µA  
15  
5
10  
Oct. 2000 Ver 3.1a  
29  
HYUNDAI MicroElectronics  
GMS90 Series  
DC Characteristics for GMS97L51/52/54/56/58  
VCC= 3.3V + 0.3V, -0.6V; VSS=0V; TA= 0°C to 70°C  
Limit Values  
Parameter  
Symbol  
Unit  
Test Conditions  
Min.  
-0.5  
2.0  
max.  
Input low voltage  
Input high voltage  
VIL  
VIH  
0.8  
V
V
-
VCC + 0.5  
-
OL= 1.6mA 1)  
Output low voltage  
(ports 1, 2, 3)  
I
0.45  
0.30  
VOL  
-
-
V
IOL= 100µA 1)  
IOL= 3.2mA 1)  
IOL= 200µA 1)  
Output low voltage  
(port 0, ALE, PSEN)  
0.45  
0.30  
VOL1  
V
V
Output high voltage  
(ports 1, 2, 3)  
IOH= -20µA  
IOH= -10µA  
2.0  
0.9VCC  
VOH  
-
-
Output high voltage  
(port 0 in external bus  
mode, ALE, PSEN)  
IOH= -800µA 2)  
IOH= -80µA 2)  
2.0  
0.9VCC  
VOH1  
V
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
ITL  
ILI  
VIN= 0.45V  
-1  
-25  
-
-50  
-250  
±1  
µA  
µA  
µA  
pF  
Logical 1-to-0 transition cur-  
rent (ports 1, 2, 3)  
VIN= 2.0V  
Input leakage current  
(port 0, EA)  
0.45 < VIN < VCC  
Pin capacitance  
fC= 1MHz  
TA= 25°C  
CIO  
-
10  
Power supply current:  
Active mode, 12MHz 3)  
Idle mode, 12MHz 3)  
Power Down Mode 3)  
VCC= 3.6V 4)  
VCC= 2.6V 5)  
VCC=2~ 5.5V 6)  
ICC  
ICC  
IPD  
-
-
-
15  
5
mA  
mA  
µA  
10  
30  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
AC Characteristics  
Explanation of the AC Symbols  
Each timing symbol has 5 characters. The first character is always a ‘t’ (stand for time). The other characters,  
depending on their positions, stand for the name of a signal or the logical status of that signal. The following is  
a list of all the characters and what they stand for.  
A: Address  
T: Time  
C: Clock  
V: Valid  
D: Input Data  
W: WR signal  
X: No longer a valid logic level  
Z: Float  
H: Logic level HIGH  
I: Instruction (program memory contents)  
L: Logic level LOW, or ALE  
P: PSEN  
For example,  
Q: Output Data  
t
AVLL = Time from Address Valid to ALE Low  
R: RD signal  
tLLPL = Time from ALE Low to PSEN Low  
AC Characteristics for GMS90 series (12MHz version)  
VCC= 5V :  
VCC= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
V
CC= 3.3V :  
VCC= 3.3V + 0.3V, 0.6V; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)  
Variable clock :  
Vcc = 5V : 1/tCLCL = 3.5 MHz to 12 MHz  
Vcc = 3.3V : 1/tCLCL = 1 MHz to 12 MHz  
External Program Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 12MHz  
12 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
127  
43  
30  
-
Max.  
Min.  
Max.  
tLHLL  
-
2tCLCL-40  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
tLLAX  
tLLIV  
-
tCLCL-40  
-
Address setup to ALE  
-
233  
-
tCLCL-53  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
-
4tCLCL-100  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
58  
215  
-
tCLCL-25  
-
-
3tCLCL-35  
-
PSEN pulse width  
150  
-
-
0
-
3tCLCL-100  
-
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
0
-
63  
tCLCL-20  
ns  
ns  
tPXIZ  
75  
-
tCLCL-8  
-
Address valid after PSEN  
tPXAV  
Oct. 2000 Ver 3.1a  
31  
HYUNDAI MicroElectronics  
GMS90 Series  
Variable Oscillator  
1/tCLCL = 3.5 to 12MHz  
12 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
Max.  
302  
-
Min.  
Max.  
tAVIV  
tAZPL  
-
-
5tCLCL-115  
-
Address to valid instruction in  
Address float to PSEN  
ns  
ns  
0
0
Interfacing the GMS90 series to devices with float times up to 75 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
32  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
AC Characteristics for GMS90 series (12MHz)  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 12MHz  
12 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
400  
400  
53  
-
Max.  
Min.  
Max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
-
6tCLCL-100  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
6tCLCL-100  
-
WR pulse width  
tCLCL-30  
-
Address hold after ALE  
RD to valid data in  
252  
-
-
5tCLCL-165  
0
0
-
Data hold after RD  
-
97  
517  
585  
300  
-
-
2tCLCL-70  
Data float after RD  
-
-
8tCLCL-150  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
-
-
9tCLCL-165  
200  
203  
43  
33  
433  
33  
-
3tCLCL-50  
4tCLCL-130  
tCLCL-40  
tCLCL-50  
7tCLCL-150  
tCLCL-50  
-
3tCLCL+50  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
123  
-
tCLCL+40  
-
-
-
-
-
0
0
Advance Information (12MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 12MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
Oscillator period (VCC=5V)  
Oscillator period (VCC=3.3V)  
tCLCL  
tCLCL  
83.3  
83.3  
285.7  
1
ns  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
20  
20  
-
tCLCL - tCLCX  
ns  
ns  
ns  
ns  
High time  
Low time  
Rise time  
Fall time  
tCLCL - tCHCX  
20  
20  
-
Oct. 2000 Ver 3.1a  
33  
HYUNDAI MicroElectronics  
GMS90 Series  
AC Characteristics for GMS90 series (16MHz version)  
VCC= 3.3V + 0.3V, 0.6V; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)  
External Program Memory Characteristics  
16 MHz Oscillator  
Variable Oscillator  
1/tCLCL = 3.5 to 16MHz  
Parameter  
Symbol  
Unit  
Min.  
85  
23  
23  
-
Max.  
Min.  
Max.  
tLHLL  
-
2tCLCL-40  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
tLLAX  
tLLIV  
-
-
tCLCL-40  
-
Address setup to ALE  
tCLCL-40  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
150  
-
-
4tCLCL-100  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
38  
153  
-
tCLCL-25  
-
-
3tCLCL-35  
-
PSEN pulse width  
88  
-
-
0
-
3tCLCL-100  
-
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
0
-
43  
tCLCL-20  
ns  
ns  
tPXIZ  
55  
-
tCLCL-8  
-
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
-
198  
-
-
5tCLCL-115  
-
ns  
ns  
0
0
Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
34  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
AC Characteristics for GMS90 series (16MHz)  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 16MHz  
16 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
275  
275  
23  
-
Max.  
Min.  
Max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
-
6tCLCL-100  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
6tCLCL-100  
-
WR pulse width  
tCLCL-40  
-
Address hold after ALE  
RD to valid data in  
183  
-
-
5tCLCL-130  
0
0
-
Data hold after RD  
-
75  
350  
398  
238  
-
-
2tCLCL-50  
Data float after RD  
-
-
8tCLCL-150  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
-
-
9tCLCL-165  
138  
120  
28  
13  
288  
23  
-
3tCLCL50  
4tCLCL-130  
3tCLCL+50  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
97  
-
t
t
CLCL35  
CLCL50  
tCLCL+35  
-
-
-
7tCLCL-150  
-
t
CLCL40  
-
0
-
0
Advance Information (16MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 16MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
62.5  
17  
17  
-
285.7  
tCLCL - tCLCX  
tCLCL - tCHCX  
17  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
Low time  
Rise time  
-
17  
Fall time  
Oct. 2000 Ver 3.1a  
35  
HYUNDAI MicroElectronics  
GMS90 Series  
AC Characteristics for GMS90 series (24MHz version)  
VCC= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
External Program Memory Characteristics  
24 MHz Oscillator  
Variable Oscillator  
1/tCLCL = 3.5 to 24MHz  
Parameter  
Symbol  
Unit  
Min.  
43  
17  
17  
-
Max.  
Min.  
Max.  
tLHLL  
-
-
2tCLCL-40  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
tLLAX  
tLLIV  
tCLCL-25  
-
Address setup to ALE  
-
tCLCL-25  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
80  
-
-
4tCLCL-87  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
22  
95  
-
tCLCL-20  
-
-
3tCLCL-30  
-
PSEN pulse width  
60  
-
-
0
-
3tCLCL-65  
-
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
0
-
32  
tCLCL-10  
ns  
ns  
tPXIZ  
37  
-
tCLCL-5  
-
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
-
148  
-
-
5tCLCL-60  
-
ns  
ns  
0
0
Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
36  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
AC Characteristics for GMS90 series (24MHz)  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 24MHz  
24 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
180  
180  
15  
-
Max.  
Min.  
Max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
-
6tCLCL-70  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
6tCLCL-70  
-
WR pulse width  
tCLCL-27  
-
Address hold after ALE  
RD to valid data in  
118  
-
-
5tCLCL-90  
0
0
-
Data hold after RD  
-
63  
200  
220  
175  
-
-
-
2tCLCL-20  
Data float after RD  
-
8tCLCL-133  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
-
-
9tCLCL-155  
75  
67  
17  
5
3tCLCL-50  
4tCLCL-97  
tCLCL-25  
tCLCL-37  
7tCLCL-122  
tCLCL-27  
-
3tCLCL+50  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
67  
-
tCLCL+25  
-
-
170  
15  
-
-
-
-
0
0
Advance Information (24MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 24MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
41.7  
12  
12  
-
285.7  
tCLCL - tCLCX  
tCLCL - tCHCX  
12  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
Low time  
Rise time  
-
12  
Fall time  
Oct. 2000 Ver 3.1a  
37  
HYUNDAI MicroElectronics  
GMS90 Series  
AC Characteristics for GMS90 series (33MHz version)  
VCC= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
External Program Memory Characteristics  
33 MHz Oscillator  
Variable Oscillator  
1/tCLCL = 3.5 to 33MHz  
Parameter  
Symbol  
Unit  
Min.  
40  
10  
10  
-
Max.  
Min.  
Max.  
tLHLL  
-
-
2tCLCL-20  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
tLLAX  
tLLIV  
tCLCL-20  
-
Address setup to ALE  
-
tCLCL-20  
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
56  
-
-
4tCLCL-65  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
15  
80  
-
tCLCL-15  
-
-
3tCLCL-20  
-
PSEN pulse width  
35  
-
-
0
-
3tCLCL-55  
-
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
0
-
20  
tCLCL-10  
ns  
ns  
tPXIZ  
25  
-
tCLCL-5  
-
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
-
91  
-
-
5tCLCL-60  
-
ns  
ns  
0
0
Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
38  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
AC Characteristics for GMS90 series (33MHz)  
External Data Memory Characteristics  
Variable Oscillator  
1/tCLCL = 3.5 to 33MHz  
33 MHz Oscillator  
Parameter  
Symbol  
Unit  
Min.  
132  
132  
10  
-
Max.  
Min.  
Max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
-
-
6tCLCL-50  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6tCLCL-50  
-
WR pulse width  
-
tCLCL-20  
-
Address hold after ALE  
RD to valid data in  
81  
-
-
5tCLCL-70  
0
0
-
Data hold after RD  
-
46  
153  
183  
111  
-
-
2tCLCL-15  
Data float after RD  
-
-
8tCLCL-90  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
-
-
9tCLCL-90  
71  
66  
10  
5
3tCLCL-20  
4tCLCL-55  
tCLCL-20  
tCLCL-25  
7tCLCL-70  
tCLCL-20  
-
3tCLCL+20  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
40  
-
tCLCL+20  
-
-
142  
10  
-
-
-
-
0
0
Advance Information (33MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 24MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
30.3  
11.5  
11.5  
-
285.7  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
tCLCL - tCLCX  
tCLCL - tCHCX  
Low time  
5
5
Rise time  
-
Fall time  
Oct. 2000 Ver 3.1a  
39  
HYUNDAI MicroElectronics  
GMS90 Series  
AC Characteristics for GMS90 series (40MHz version)  
VCC= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C  
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)  
External Program Memory Characteristics  
40 MHz Oscillator  
Variable Oscillator  
1/tCLCL = 3.5 to 40MHz  
Parameter  
Symbol  
Unit  
Min.  
35  
10  
10  
-
Max.  
Min.  
Max.  
tLHLL  
-
-
2tCLCL15  
-
ALE pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
tLLAX  
tLLIV  
t
t
CLCL15  
CLCL15  
-
-
Address setup to ALE  
-
-
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
55  
-
4tCLCL45  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
10  
60  
-
t
CLCL15  
-
-
3tCLCL15  
-
PSEN pulse width  
25  
-
-
0
-
3tCLCL50  
PSEN to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
0
-
-
15  
t
CLCL10  
ns  
ns  
tPXIZ  
20  
-
t
CLCL5  
-
Address valid after PSEN  
Address to valid instruction in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
-
65  
-
-
5tCLCL60  
ns  
ns  
5
5
-
Interfacing the GMS90 series to devices with float times up to 20 ns is permissible. This limited bus contention will not cause  
any damage to port 0 Drivers.  
40  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
AC Characteristics for GMS90 series (40MHz)  
External Data Memory Characteristics  
Variable Clock  
1/tCLCL = 3.5 to 40MHz  
at 40 MHz Clock  
Parameter  
Symbol  
Unit  
Min.  
120  
120  
10  
-
Max.  
Min.  
Max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
-
-
6tCLCL-30  
-
RD pulse width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6tCLCL-30  
-
WR pulse width  
-
tCLCL-15  
-
Address hold after ALE  
RD to valid data in  
75  
-
-
5tCLCL-50  
0
0
-
Data hold after RD  
-
38  
150  
150  
90  
-
-
2tCLCL-12  
Data float after RD  
-
-
8tCLCL-50  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
-
-
9tCLCL-75  
60  
70  
10  
5
3tCLCL-15  
4tCLCL-30  
tCLCL-15  
tCLCL-20  
7tCLCL-50  
tCLCL-20  
-
3tCLCL+15  
-
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
40  
-
tCLCL+15  
-
-
125  
5
-
-
-
-
0
0
Advance Information (40MHz)  
External Clock Drive  
Variable Oscillator  
(Freq. = 3.5 to 40MHz)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
25  
10  
10  
-
285.7  
tCLCL - tCLCX  
tCLCL - tCHCX  
10  
Oscillator period  
High time  
ns  
ns  
ns  
ns  
ns  
Low time  
Rise time  
-
10  
Fall time  
Oct. 2000 Ver 3.1a  
41  
HYUNDAI MicroElectronics  
GMS90 Series  
t
LHLL  
ALE  
t
LLPL  
t
t
PLPH  
AVLL  
t
LLIV  
t
PLIV  
PSEN  
t
t
PXAV  
PXIZ  
t
AZPL  
t
LLAX  
t
PXIX  
INSTR.  
IN  
A0-A7  
A0-A7  
PORT 0  
PORT 2  
t
AVIV  
A8-A15  
A8-A15  
Figure 4. External Program Memory Read Cycle  
42  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
ALE  
t
LHLL  
t
WHLH  
PSEN  
RD  
t
LLDV  
t
t
RLRH  
LLWL  
t
RHDZ  
t
AVLL  
t
RLDV  
t
t
LLAX2  
t
RHDX  
DATA IN  
RLAZ  
A0-A7 from  
RI or DPL  
A0-A7 from PCL  
INSTR. IN  
PORT 0  
PORT 2  
t
AVWL  
t
AVDV  
P2.0-P2.7 or A8-A15 from DPH  
A8-A15 from PCH  
Figure 5. External Data Memory Read Cycle  
ALE  
t
LHLL  
t
WHLH  
PSEN  
WR  
t
t
WLWH  
LLWL  
t
QVWX  
t
t
WHQX  
AVLL  
t
LLAX2  
t
QVWH  
A0-A7 from  
RI or DPL  
A0-A7 from PCL  
DATA OUT  
INSTR. IN  
PORT 0  
PORT 2  
t
AVWL  
P2.0-P2.7 or A8-A15 from DPH  
A8-A15 from PCH  
Figure 6. External Data Memory Write Cycle  
Oct. 2000 Ver 3.1a  
43  
HYUNDAI MicroElectronics  
GMS90 Series  
V
0.5V  
CC  
0.2V + 0.9  
CC  
Test Points  
0.2V 0.1  
CC  
0.45V  
AC Inputs during testing are driven at VCC0.5V for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made a VIHmin for a logic ‘1’ and VILmax for a logic ‘0’.  
Figure 7. AC Testing: Input, Output Waveforms  
V
+ 0.1  
0.1  
V
0.1  
+ 0.1  
LOAD  
OH  
Timing Reference Points  
0.2V 0.1  
V
LOAD  
CC  
V
V
OL  
LOAD  
For timing purposes a port pin is no longer floating when a 100mV change from load voltage  
occurs and begins to float when a 100mV change from the loaded VOH / VOL level occurs.  
IOL / IOH 20mA.  
Figure 8. Float Waveforms  
t
CLCL  
V
0.5V  
CC  
0.7 V  
CC  
0.2 V 0.1  
CC  
0.45V  
t
t
CLCX  
CHCX  
t
CLCH  
t
CHCL  
Figure 9. External Clock Cycle  
44  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
OSCILLATOR CIRCUIT  
CRYSTAL OSCILLATOR MODE  
DRIVING FROM EXTERNAL SOURCE  
C2  
C1  
N.C.  
XTAL2  
XTAL2  
P-LCC-44/Pin 20  
P-DIP-40/Pin 18  
M-QFP-44/Pin 14  
P-LCC-44/Pin 20  
P-DIP-40/Pin 18  
M-QFP-44/Pin 14  
External Oscillator  
Signal  
XTAL1  
XTAL1  
P-LCC-44/Pin 21  
P-DIP-40/Pin 19  
M-QFP-44/Pin 15  
P-LCC-44/Pin 21  
P-DIP-40/Pin 19  
M-QFP-44/Pin 15  
C1, C2 = 30pF ±10pF for Crystals  
For Ceramic Resonators, contact resonator manufacturer.  
Figure 10. Recommended Oscillator Circuits  
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal  
and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for ap-  
propriate values of external components.  
Oct. 2000 Ver 3.1a  
45  
HYUNDAI MicroElectronics  
GMS90 Series  
OTP ROM Verification Characteristics  
ROM Verification Mode 1  
Limit Values  
Max.  
Parameter  
Symbol  
Unit  
Min.  
tAVQV  
tCLCL  
tEHQZ  
1/tCLCL  
-
-
48tCLCL  
48tCLCL  
48tCLCL  
6
Address to valid data  
ENABLE to valid data  
Data float after ENABLE  
Oscillator frequency  
ns  
0
4
MHz  
P1.0-P1.7  
P2.0-P2.4  
Address  
t
AVQV  
Data Out  
PORT 0  
t
ELQV  
t
EHQZ  
P2.7  
ENABLE  
P1.0-P1.7 = A0-A7  
P2.0-P2.5 = A8-A13  
P3.4 = A14  
Input:  
Address:  
Data:  
P2.6-P2.7, PSEN = VSS  
ALE = VIH  
EA, RESET = VIH2  
P0.0-P0.7 = D0-D7  
Figure 11. OTP ROM Verification Mode 1  
46  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
EPROM CHARACTERISTICS  
The GMS97C5X, 97L5X are programmed by using a modified Quick-Pulse ProgrammingTM algorithm. It dif-  
fers from older methods in the value used for VPP (programming supply voltage) and in the width and number  
of the ALE/PROG pulses. The GMS97C5X, 97L5X contains two signature bytes that can be read and used by  
an EPROM programming system to identify the device. The signature bytes identify the device as an manufac-  
tured by HME. Table 11 shows the logic levels for reading the signature byte, and for programming the program  
memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse  
programming are shown in Figure 12 and Figure 13. Figure 14 show the circuit configuration for normal pro-  
gram memory verification.  
Reading the Signature Bytes :  
The GMS97X51/52 signature bytes in locations 030H and 031H, the GMS97X54/56/58 signature bytes in loca-  
tions 05EH and 07CH. To read these bytes follow the procedure for EPROM verify, except that P3.6 and P3.7  
need to be pulled to a logic low.  
The values are:  
Device  
Location  
Contents  
Remarks  
GMS97X51  
30H  
31H  
E0H  
73H  
Manufacturer ID  
Device ID  
GMS97X52  
GMS97X54  
GMS97X56  
GMS97X58  
30H  
31H  
E0H  
71H  
Manufacturer ID  
Device ID  
5EH  
7CH  
E0H  
54H  
Manufacturer ID  
Device ID  
5EH  
7CH  
E0H  
56H  
Manufacturer ID  
Device ID  
5EH  
7CH  
E0H  
58H  
Manufacturer ID  
Device ID  
Quick-pulse programming  
The setup for microcontroller quick-pulse programming is shown in Figure 13. Note that the GMS97C5X,  
97L5X is running with a 4 to 6MHz oscillator. The reason the oscillator needs to be running is that the device  
is executing internal address and program data transfers.  
The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 12. The  
code byte to be programmed into that location is applied to port 0, RST, PSENand pins of port 2 and 3 in Table  
11 are held at the "Program Code Data" levels indicated in Table 11. The ALE/PROGis pulsed low 25 times(10  
times for 97X54/56/58) as shown Figure 13.  
To program the encryption table, repeat the 25 pulses (10 pulses for 97X54/56/58) programming sequence for  
addresses 0 through 1FH(3FH for 97X54/56/58), using the "Program Encryption Table" levels. Do not forget  
that after the encryption table is programmed, verification cycles will produce only encrypted data.  
To program the security bits, repeat the 25 pulses (10 pulses for 97X54/56/58) programming sequence using the  
"Pgm Security Bit" levels after one security bit is programmed, further programming of the code memory and  
Oct. 2000 Ver 3.1a  
47  
HYUNDAI MicroElectronics  
GMS90 Series  
encryption table is disabled. However, the other security bit can still be programmed. Note that the EA/VPP pin  
must not be allowed to go above the maximum specified VPP level for any amount of time. Even a narrow glitch  
above that voltage can cause permanent damage to the device. The VPP source should be well regulated and free  
glitches and overshoot.  
+5V  
V
CC  
P1  
A0-A7  
PROGRAM DATA  
+12.75V  
P0  
P2.0  
-P2.5  
A8-A13  
EA/V  
PP  
P3.4  
A14  
1
1
1
RST  
P3.6  
P3.7  
NOTE  
ALE/PROG  
0
1
PSEN  
P2.7  
XTAL2  
XTAL1  
4~6MHz  
P2.6  
1
V
SS  
NOTE:  
GMS97X51/52:  
100µs × 25 pulses to GND  
GMS97X54/56/58: 100µs × 10 pulses to GND  
Figure 12. Programming Configuration  
Program Verification  
If security bit 2 has not been programmed, the on-chip program memory can be read out for program verifica-  
tion. The address of the program memory location to be read is applied to ports 1 and 2 as shown in Figure 15.  
The other pins are held at the "Verify Code Data" levels indicated in Table 11. The contents of the address lo-  
cation will be emitted on port 0 for this operation. If the encryption table has been programmed, the data pre-  
sented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will  
have to know the encryption table contents in order to correctly decode the verification data. The encryption  
table itself cannot be read out.  
48  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
Program Memory Lock Bits  
Lock Bit Protection Modes  
The two-level Program Lock system consists of 2  
Lock bits and a 32-byte (64-byte for GMS97X54/  
56/58) Encryption Array which are used to protect  
the program memory against software piracy.  
Mode LB1 LB2  
Protection Type  
1
2
U
P
U
U
No program lock features  
Further programming of the  
EPROM is disabled  
Encryption Array:  
3
P
P
Same as mode 2, also verify is  
disabled  
Within the EPROM array are 32 bytes (64 bytes  
for GMS97X54/56/58) of Encryption Array that  
are initially unprogrammed (all 1s). Every time  
that a byte is addressed during a verify, address  
U: unprogrammed, P: programmed  
lines are used to select a byte of the Encryption array. This byte is then exclusive-NORed (XNOR) with the code  
byte, creating an Encrypted Verify byte.  
The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified  
form, It is recommended that whenever the Encryption Array is used, at least one of the Lock Bits be pro-  
grammed as well.  
Program / Verify algorithms  
Any algorithm in agreement with the conditions listed in Table 11, and which satisfies the timing specifications  
is suitable.  
Table 11. EPROM programming modes  
EA/  
VPP  
ALE/  
PROG  
MODE  
RST  
PSEN  
P2.7  
P2.6  
P3.7  
P3.6  
Read Signature  
1
1
1
1
1
1
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
0
VPP  
1
Program Code Data  
Verify Code Data  
VPP  
VPP  
VPP  
Program encryption table  
Program security bit 1  
Program security bit 2  
Notes:  
1. “0” = Valid low for that pin, "1" = valid high for that pin.  
2. VPP = 12.75V ± 0.25V  
3. VCC = 5V ± 10% during programming and verification.  
4. ALE/PROG receives 25 (10 for GMS97X54/56/58) programming pulses while VPP is held at 12.75V.  
Each programming pulse is low for 100us (± 10us) and high for a minimum of 10µs.  
Oct. 2000 Ver 3.1a  
49  
 
HYUNDAI MicroElectronics  
GMS90 Series  
25 PULSES  
In the GMS97X51/52  
ALE/PROG  
Min. 10µs  
100µs ±10  
100µs ±10  
Enlarged View  
10 PULSES  
In the GMS97X54/56/58  
ALE/PROG  
Figure 13. PROG Waveform  
+5V  
V
CC  
P1  
10kΩ  
A0-A7  
P2.0  
-P2.5  
PROGRAM DATA  
P0  
A8-A13  
A14  
P3.4  
EA/V  
1
PP  
1
1
1
RST  
P3.6  
P3.7  
1
0
0
ALE/PROG  
PSEN  
P2.7  
XTAL2  
XTAL1  
4~6MHz  
1
P2.6  
V
SS  
Figure 14. Program Verification  
50  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
EPROM Programming and Verification Characteristics  
TA= 21°C to 27°C, VCC= 5V + 10%, 15%; VSS=0V;  
Limit Values  
Parameter  
Symbol  
Unit  
Min.  
Max.  
VPP  
IPP  
12.5  
13.0  
V
Programming supply voltage  
Programming supply current  
Oscillator frequency  
-
50  
mA  
1/tCLCL  
tAVGL  
tGHAX  
tDVGL  
tGHDX  
tEHSH  
tSHGL  
tGHSL  
tGLGL  
tAVQV  
tELQV  
tEHQZ  
tGHGL  
4
6
MHz  
48tCLCL  
-
-
-
Address setup to PROG low  
Address hold after PROG  
Data setup to PROG  
48tCLCL  
-
48tCLCL  
-
-
48tCLCL  
-
-
Data hold after PROG  
P2.7 (ENABLE) high to VPP  
VPP setup to PROG  
48tCLCL  
-
-
10  
10  
90  
-
-
-
µs  
µs  
µs  
-
VPP hold after PROG  
110  
PROG width  
48tCLCL  
48tCLCL  
48tCLCL  
-
Address to data valid  
-
-
ENABLE low to data valid  
Data float after ENABLE  
PROG high to PROG low  
0
-
10  
µs  
PROGRAMMING  
VERIFICATION  
P1.0-P1.7  
P2.0-P2.5  
P3.4  
ADDRESS  
ADDRESS  
DATA OUT  
t
AVQV  
PORT 0  
DATA IN  
t
DVGL  
t
GHDX  
25 or 10  
PULSES  
t
t
AVGL  
GHAX  
ALE/PROG  
t
t
SHGL  
GHGL  
t
GHSL  
tG LG L  
V
PP  
EA/V  
PP  
TTL HIGH  
TTL HIGH  
TTL HIGH  
t
ELQV  
t
t
EHQZ  
EHSH  
P2.7  
(ENABLE)  
Figure 15. EPROM Programming and Verification  
Oct. 2000 Ver 3.1a  
51  
HYUNDAI MicroElectronics  
GMS90 Series  
Plastic Package P-LCC-44  
(Plastic Leaded Chip-Carrier)  
44PLCC  
UNIT: INCH  
0.695  
0.685  
min. 0.020  
0.656  
0.650  
0.012  
0.0075  
0.050 BSC  
0.120  
0.090  
0.180  
0.165  
52  
Oct. 2000 Ver 3.1a  
GMS90 Series  
HYUNDAI MicroElectronics  
Plastic Package P-DIP-40  
(Plastic Dual in-Line Package)  
40DIP  
UNIT: INCH  
2.075  
2.045  
0.600 BSC  
0.550  
0.530  
0.022  
0.015  
0.065  
0.045  
0.100 BSC  
0-15°  
Oct. 2000 Ver 3.1a  
53  
HYUNDAI MicroElectronics  
GMS90 Series  
Plastic Package P-MPQF-44  
(Plastic Metric Quad Flat Package)  
44MQFP  
13.45  
12.95  
UNIT: MM  
10.10  
9.90  
0-7°  
SEE DETAIL "A"  
1.03  
0.73  
2.35 max.  
1.60  
REF  
0.45  
0.30  
0.80 BSC  
DETAIL "A"  
54  
Oct. 2000 Ver 3.1a  
MASK ORDER & VERIFICATION SHEET  
GMS90X5X-GB  
Customer should write inside thick line box.  
1. Customer Information  
2. Device Information  
Package  
ROM size  
Vol. / Freq.  
12MHz  
Company Name  
44MQFP  
44PLCC  
40PDIP  
4K  
Application  
8K  
5V  
3V  
24MHz  
40MHz  
12MHz  
16MHz  
YYYY  
M M  
DD  
16K  
24K  
32K  
Order Date  
Tel:  
Fax:  
Name &  
Signature:  
ROM: 4K,8K  
ROM: 16,24,32K  
ROM Protection  
Without  
Normal  
Super  
File Name: (  
.HEX)  
Check Sum:  
Internet  
Chollian  
Hitel  
3. Marking Specification  
(Please check mark into  
)
40PDIP or 44PLCC  
44MQFP  
HME  
GMS90  
HME  
5
90  
ROM size  
1: 4K  
2: 8K  
C: 5V  
L: 3V  
5
-GB  
-GB  
4: 16K  
6: 24K  
8: 32K  
YYW W  
KOREA  
YYW W  
KOREA  
SIEMENS ’92  
SIEMENS ’92  
Customer’s part number  
4. Delivery Schedule  
Quantity  
Date  
LG Confirmation  
YYYY  
MM  
DD  
DD  
pcs  
pcs  
Customer Sample  
Risk Order  
YYYY  
MM  
5. ROM Code Verification  
This box is written after “5.Verification”.  
YYYY  
MM  
DD  
YYYY  
MM  
DD  
Verification Date:  
Approval Date:  
Please confirm our verification data.  
I agree with your verification data and confirm you to  
m ake m ask set.  
Check Sum:  
Fax:  
Tel:  
Fax:  
Tel:  
Name &  
Signature:  
Name &  
Signature:  
HYUNDAI MicroElectronics  

相关型号:

GMS97C56Q

Microcontroller, 8-Bit, OTPROM, 24MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
HYNIX

GMS97C58

8-BIT SINGLE-CHIP MICROCONTROLLERS
HYNIX

GMS97C58H

8-BIT SINGLE-CHIP MICROCONTROLLERS
HYNIX

GMS97C58HPL

Microcontroller, 8-Bit, OTPROM, 33MHz, CMOS, PQCC44, PLASTIC, LCC-44
HYNIX

GMS97C58HQ

Microcontroller, 8-Bit, OTPROM, 33MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
HYNIX

GMS97C58PL

Microcontroller, 8-Bit, OTPROM, 24MHz, CMOS, PQCC44, PLASTIC, LCC-44
HYNIX

GMS97C58Q

Microcontroller, 8-Bit, OTPROM, 24MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
HYNIX

GMS97L1051

8-Bit CMOS Microcontorller
HYNIX

GMS97L1051-D

8-Bit CMOS Microcontorller
HYNIX

GMS97L2051

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDIP20, 0.300 INCH, PLASTIC, DIP-20
HYNIX

GMS97L2051-D

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
HYNIX

GMS97L51

8-BIT SINGLE-CHIP MICROCONTROLLERS
HYNIX