HMTA8GL7AHR4A [HYNIX]

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die; DDR3 ( L) SDRAM负载降低的DIMM基于4Gb的A-模
HMTA8GL7AHR4A
型号: HMTA8GL7AHR4A
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
DDR3 ( L) SDRAM负载降低的DIMM基于4Gb的A-模

动态存储器 双倍数据速率
文件: 总35页 (文件大小:555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
240pin Load Reduced DDR3(L) SDRAM DIMM  
DDR3(L) SDRAM Load Reduced DIMM  
Based on 4Gb A-die  
HMTA8GL7AHR4A  
HMTA8GL7AHR4C  
*SK hynix reserves the right to change products or specifications without notice.  
Rev. 0.1 / Jun. 2013  
1
Revision History  
Revision No.  
History  
Draft Date  
Remark  
0.1  
Initial Release  
Jun.2013  
Rev. 0.1 / Jun. 2013  
2
Description  
SK hynix Load Reduced DDR3(L) SDRAM DIMMs are low power, high-speed operation memory modules  
that use SK hynix DDR3(L) SDRAM devices. These Load Reduced DIMMs are intended for use as main  
memory when installed in systems such as servers and workstations.  
Features  
• 240 pin Load Reduced DDR3(L) DRAM Dual In-Line Memory Module  
• Buffer performance by LRDIMM presenting less load to system  
• Compatible with RDIMM systems with appropriate BIOS changes  
• Backward Compatible with 1.5V DDR3 Memory Module  
(1.35V could not support the upper 1.5V speed)  
• Built with 4Gb DDR3 SDRAM 78ball  
• Data transfer rates: Up to PC3L-10600 / PC3-12800  
• JEDEC standard Double Data Rate3 Synchronous DRAMs(DDR3 SDRAMs) with 1.5V nominal  
• JEDEC standard Double Data Rate3L Synchronous DRAMs(DDR3L SDRAMs) with 1.35V nominal  
• Functionality and operations are same with DDR3 & DDR3L about same speed bin  
• Host interface and MB(Memory Buffer) component industry standard compliant  
• MB provides “address multiplication” to generate additional chips selects  
• Address mirroring  
• ODT (On-Die Termination)  
• 133.35 x 30.35 mm form factor  
• Full DIMM Heat Spreader  
• This product is in compliance with the RoHS directive.  
Ordering Information  
MB  
# of  
Part Number  
Density Organization Component Composition  
FDHS Height  
ranks  
Vendor version  
Montage  
Inphi  
C1  
HMTA8GL7AHR4A-H9  
HMTA8GL7AHR4C-PB  
QDP 4Gx4(H5TCAG43AHR)*36  
GS02B  
C1  
64GB  
8Gx72  
8
O
30.35mm  
Montage  
Inphi  
QDP 4Gx4(H5TQAG43AHR)*36  
GS02B  
* In order to uninstall FDHS, please contact sales administrator  
Rev. 0.1 / Jun. 2013  
3
Key Parameters  
CAS  
Latency  
(tCK)  
tCK  
(ns)  
tRCD  
(ns)  
tRP  
(ns)  
tRAS  
(ns)  
tRC  
(ns)  
MT/s  
Grade  
CL-tRCD-tRP  
DDR3-1066  
DDR3-1333  
-G7  
-H9  
1.875  
1.5  
7
9
13.125  
13.5  
13.125  
13.5  
37.5  
36  
50.625  
7-7-7  
9-9-9  
49.5  
(49.125)*  
(13.125)* (13.125)*  
13.75 13.75  
(13.125)* (13.125)*  
48.75  
(48.125)*  
DDR3-1600  
-PB  
1.25  
11  
35  
11-11-11  
*SK hynix DRAM devices support optional downbinning to CL9 and CL7. SPD setting is programmed to match.  
Speed Grade  
Frequency [MHz]  
Grade  
Remark  
CL6  
CL7  
CL8  
CL9  
CL10  
CL11  
-G7  
-H9  
-PB  
800  
800  
800  
1066  
1066  
1066  
1066  
1066  
1066  
1333  
1333  
1333  
1333  
1600  
Address Table  
64GB(8Rx4)  
Refresh Method  
Row Address  
Column Address  
Bank Address  
Page Size  
8K/64ms  
A0-A15  
A0-A9,A11  
BA0-BA2  
1KB  
Rev. 0.1 / Jun. 2013  
4
Pin Descriptions  
Num  
ber  
Num  
ber  
Pin Name  
CK0  
Description  
Pin Name  
Par_In  
Description  
Parity bit for the Address and Con-  
trol bus  
Clock Input, positive line  
Clock Input, negative line  
1
1
1
1
Parity error found on the Address  
and Control bus  
CK0  
Err_Out  
CK1  
CK1  
Clock Input, positive line  
Clock Input, negative line  
Clock Enables  
1
1
2
ODT[0]  
DQ[63:0]  
CB[7:0]  
On Die Termination Inputs  
Data Input/Output  
1
64  
8
CKE[1:0]  
Data check bits Input/Output  
Clock Enables  
On Die Termination  
CKE[3:2],  
ODT[1], TEST  
2
DQS[8:0]  
DQS[8:0]  
Data strobes  
9
Memory bus tool (Not Con-  
nected and Not Useable on  
DIMMs)  
RAS  
CAS  
Row Address Strobe  
1
1
Data strobes, negative line  
9
9
DM[8:0]/  
DQS[17:9],  
TDQS[17:9]  
Data Masks / Data strobes,  
Termination data strobes  
Column Address Strobe  
Data Masks / Data strobes,  
Termination data strobes  
DQS[17:9],  
TDQS[17:9]  
WE  
Write Enable  
Chip Selects  
1
2
9
1
1
1
Reserved for optional hardware  
temperature sensing  
S[1:0]  
EVENT  
TEST  
Chip Selects  
S[3:2], A17,  
A16  
Memory bus test tool (Not Con-  
nected and Not Usable on DIMMs)  
2
Address Inputs  
A[9:0],A11,  
A[15:13]  
Address Inputs  
14  
RESET  
Register and SDRAM control pin  
VDD  
VSS  
A10/AP  
A12/BC  
BA[2:0]  
Address Input/Autoprecharge  
Address Input/Burst chop  
SDRAM Bank Addresses  
1
1
3
Power Supply  
22  
59  
1
Ground  
VREFDQ  
Reference Voltage for DQ  
Serial Presence Detect (SPD)  
Clock Input  
VREFCA  
SCL  
1
Reference Voltage for CA  
1
VTT  
SDA  
SPD Data Input/Output  
SPD Address Inputs  
1
3
Termination Voltage  
SPD Power  
4
1
VDDSPD  
SA[2:0]  
Rev. 0.1 / Jun. 2013  
5
Input/Output Functional Descriptions  
Symbol  
Type  
Polarity  
Function  
Positive  
Line  
Positive line of the differential pair of system clock inputs that drives input to the on-  
DIMM Clock Driver.  
CK0  
IN  
Negative Negative line of the differential pair of system clock inputs that drives the input to the  
CK0  
CK1  
CK1  
IN  
IN  
IN  
Line  
on-DIMM Clock Driver.  
Positive  
Line  
Terminated but not used on RDIMMs.  
Negative  
Line  
Terminated but not used on RDIMMs.  
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input  
buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE  
POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN  
(row ACTIVE in any bank)  
Active  
High  
CKE[1:0]  
IN  
Enables the command decoders for the associated rank of SDRAM when low and dis-  
ables decoders when high. When decoders are disabled, new commands are ignored  
and previous operations continue. Other combinations of these input signals perform  
unique functions, including disabling all outputs (except CKE and ODT) of the register(s)  
on the DIMM or accessing internal control words in the register device(s). For modules  
with two registers, S[3:2] operate similarly to S[1:0] for the second set of register out-  
puts or register control words.  
Active  
Low  
S[3:0]  
IN  
IN  
Active  
High  
ODT[1:0]  
On-Die Termination control signals  
Active  
Low  
When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the  
operation to be executed by the SDRAM.  
RAS, CAS, WE  
VREFDQ  
IN  
Supply  
Supply  
Reference voltage for DQ0-DQ63 and CB0-CB7.  
Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In,  
ODT0 and ODT1.  
VREFCA  
Selects which SDRAM bank of eight is activated.  
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being  
applied. Bank address also determines mode register is to be accessed during an MRS  
cycle.  
BA[2:0]  
IN  
IN  
Provided the row address for Active commands and the column address  
and Auto Precharge bit for Read/Write commands to select one location out of the mem-  
ory array in the respective bank. A10 is sampled during a Precharge command to deter-  
mine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL  
4/8 identification for ‘’BL on the fly’’ during CAS command. The address inputs also pro-  
vide the op-code during Mode Register Set commands.  
A[15:13,  
12/BC,11,  
10/AP,[9:0]  
DQ[63:0],  
CB[7:0]  
I/O  
IN  
Data and Check Bit Input/Output pins  
Active  
High  
DM[8:0]  
Masks write data when high, issued concurrently with input data.  
V
DD, VSS  
VTT  
Supply  
Supply  
Power and ground for the DDR SDRAM input buffers and core logic.  
Termination Voltage for Address/Command/Control/Clock nets.  
Rev. 0.1 / Jun. 2013  
6
Symbol  
Type  
Polarity  
Function  
Positive  
Edge  
DQS[17:0]  
I/O  
Positive line of the differential data strobe for input and output data.  
Negative  
Edge  
DQS[17:0]  
I/O  
Negative line of the differential data strobe for input and output data.  
TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in  
MR1,DRAM will enable the same termination resistance function on TDQS/TDQS that is  
applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will  
provide the data mask function and TDQS is not used. X4 DRAMs must disable the TDQS  
function via mode register A11=0 in MR1  
TDQS[17:9]  
TDQS[17:9]  
OUT  
These signals are tied at the system planar to either VSS or VDDSPD to configure the  
serial SPD EEPROM address range.  
SA[2:0]  
SDA  
IN  
I/O  
IN  
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor  
must be connected from the SDA bus line to VDDSPD on the system planar to act as a  
pullup.  
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be con-  
nected from the SCL bus time to VDDSPD on the system planar to act as a pullup.  
SCL  
This signal indicates that a thermal event has been detected in the thermal sensing  
device.The system should guarantee the electrical level requirement is met for the  
EVENT pin on TS/SPD part.  
OUT  
(open  
drain)  
EVENT  
VDDSPD  
Active Low  
No pull-up resister is provided on DIMM.  
Serial EEPROM positive power supply wired to a separate power pin at the connector  
which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.  
Supply  
The RESET pin is connected to the RESET pin on the register and to the RESET pin on  
the DRAM.  
RESET  
Par_In  
IN  
IN  
Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even)  
OUT  
(open  
drain)  
Parity error detected on the Address and Control bus. A resistor may be connected from  
Err_Out bus line to VDD on the system planar to act as a pull up.  
Err_Out  
TEST  
Used by memory bus analysis tools (unused (NC) on memory DIMMs)  
Rev. 0.1 / Jun. 2013  
7
Pin Assignments  
Front Side  
(left 1–60)  
Back Side  
(right 121–180)  
Front Side  
(left 61–120)  
Back Side  
(right 181–240)  
Pin #  
Pin #  
Pin #  
Pin #  
1
2
3
4
VREFDQ  
121  
122  
123  
124  
V
SS  
61  
62  
63  
64  
A2  
181  
182  
183  
184  
A1  
VSS  
DQ4  
DQ5  
VDD  
VDD  
VDD  
CK0  
DQ0  
DQ1  
NC, CK1  
NC, CK1  
VSS  
DM0,DQS9,  
TDQS9  
5
6
V
SS  
125  
126  
65  
66  
VDD  
VDD  
185  
186  
CK0  
VDD  
NC,DQS9,  
TDQS9  
DQS0  
DQS0  
7
8
127  
128  
129  
130  
131  
132  
133  
VSS  
67  
68  
69  
70  
71  
72  
73  
VREFCA  
Par_In, NC  
VDD  
187  
188  
189  
190  
191  
192  
193  
EVENT, NC  
A0  
VSS  
DQ6  
DQ7  
9
DQ2  
DQ3  
VDD  
10  
11  
12  
13  
VSS  
A10 / AP  
BA0  
BA1  
VSS  
DQ12  
DQ13  
VDD  
DQ8  
DQ9  
VDD  
RAS  
VSS  
WE  
S0  
DM1,DQS10,  
TDQS10  
14  
15  
V
SS  
134  
135  
74  
75  
CAS  
VDD  
194  
195  
VDD  
NC,DQS10,  
TDQS10  
DQS1  
DQS1  
ODT0  
16  
17  
18  
19  
20  
21  
22  
136  
137  
138  
139  
140  
141  
142  
VSS  
76  
77  
78  
79  
80  
81  
82  
S1, NC  
ODT1, NC  
VDD  
196  
197  
198  
199  
200  
201  
202  
A13  
VDD  
VSS  
DQ14  
DQ15  
DQ10  
DQ11  
S3, NC  
VSS  
S2, NC  
VSS  
VSS  
DQ20  
DQ21  
VSS  
DQ36  
DQ37  
DQ16  
DQ17  
DQ32  
DQ33  
VSS  
VSS  
DM2,DQS11,  
TDQS11  
DM4,DQS13,  
TDQS13  
23  
24  
V
SS  
143  
144  
83  
84  
V
SS  
203  
204  
NC,DQS11,  
TDQS11  
NC,DQS13,  
TDQS13  
DQS2  
DQS2  
DQS4  
DQS4  
25  
26  
27  
28  
29  
30  
31  
145  
146  
147  
148  
149  
150  
151  
VSS  
85  
86  
87  
88  
89  
90  
91  
205  
206  
207  
208  
209  
210  
211  
VSS  
VSS  
DQ22  
DQ23  
VSS  
DQ38  
DQ39  
DQ18  
DQ19  
DQ34  
DQ35  
VSS  
VSS  
VSS  
DQ28  
DQ29  
VSS  
DQ44  
DQ45  
DQ24  
DQ25  
DQ40  
DQ41  
VSS  
VSS  
NC = No Connect; RFU = Reserved Future Use  
Rev. 0.1 / Jun. 2013  
8
Front Side  
(left 1–60)  
Back Side  
Front Side  
Back Side  
Pin #  
32  
Pin #  
152  
Pin #  
92  
Pin #  
212  
(right 121–180)  
(left 61–120)  
(right 181–240)  
DM3,DQS12,  
TDQS12  
DM5,DQS14,  
TDQS14  
VSS  
VSS  
NC,DQS12,  
TDQS12  
NC,DQS14,  
TDQS14  
33  
DQS3  
DQS3  
153  
93  
DQS5  
DQS5  
213  
34  
35  
36  
37  
38  
39  
40  
154  
155  
156  
157  
158  
159  
160  
VSS  
94  
95  
214  
215  
216  
217  
218  
219  
220  
VSS  
VSS  
DQ30  
DQ31  
VSS  
DQ46  
DQ47  
DQ26  
DQ27  
96  
DQ42  
DQ43  
VSS  
97  
VSS  
VSS  
CB4, NC  
CB5, NC  
98  
VSS  
DQ52  
DQ53  
CB0, NC  
CB1, NC  
99  
DQ48  
DQ49  
VSS  
100  
VSS  
NC,DM8,DQS17,  
TDQS17  
DM6,DQS15,  
TDQS15  
41  
42  
V
SS  
161  
162  
101  
102  
V
SS  
221  
222  
NC,DQS17,  
TDQS17  
NC,DQS15,  
TDQS15  
DQS8  
DQS8  
DQS6  
DQS6  
43  
44  
45  
46  
47  
48  
163  
164  
165  
166  
167  
168  
VSS  
103  
104  
105  
106  
107  
108  
109  
223  
224  
225  
226  
227  
228  
229  
VSS  
VSS  
CB6, NC  
CB7, NC  
VSS  
DQ54  
DQ55  
CB2, NC  
CB3, NC  
DQ50  
DQ51  
VSS  
VSS  
VSS  
NC(TEST)  
RESET  
VSS  
DQ60  
DQ61  
VTT, NC  
KEY  
DQ56  
DQ57  
KEY  
VSS  
DM7,DQS16,  
TDQS16  
49  
50  
VTT, NC  
CKE0  
169  
170  
CKE1, NC  
VDD  
110  
111  
V
SS  
230  
231  
NC,DQS16,  
TDQS16  
DQS7  
DQS7  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
VDD  
BA2  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
A15  
A14  
VDD  
A12 / BC  
A9  
112  
113  
114  
115  
116  
117  
118  
119  
120  
232  
233  
234  
235  
236  
237  
238  
239  
240  
VSS  
VSS  
DQ62  
DQ63  
Err_Out, NC  
VDD  
DQ58  
DQ59  
VSS  
A11  
VSS  
VDDSPD  
SA1  
A7  
VDD  
A8  
SA0  
SCL  
SA2  
VTT  
VDD  
SDA  
A5  
A6  
VSS  
A4  
VDD  
A3  
VTT  
VDD  
NC = No Connect; RFU = Reserved Future Use  
Rev. 0.1 / Jun. 2013  
9
Functional Block Diagram  
64GB, 8Gx72 Module(8Rank of x4) - page1  
QCKE2A  
QCKE0A  
QODT0A  
QCS6  
QCKE3A  
QCKE1A  
QODT1A  
QCS7  
QCS4  
QCS5  
QCS2  
QCS0  
QCS3  
QCS1  
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
MDQS11  
MDQS11  
MDQ [20:23]  
D0  
D27  
DQS  
DQS  
DQS  
DQS  
DQS11  
DQS11  
DQ [20:23]  
DQ [0:3]  
DQ [0:3]  
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS2  
MDQS2  
MDQ [16:19]  
D1  
D28
DQS  
DQS  
DQS
DQS
DQS2  
DQS2  
DQ [16:19]  
DQ [0:3]  
DQ [0:3]
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS17  
MDQS17  
MCB [4:7]  
D2  
D29
DQS  
DQS  
DQS
DQS
DQS17  
DQS17  
CB [4:7]  
DQ [0:3]  
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS1  
MDQS1  
MDQ [8:11]  
D3
D30
DQS
DQS
DQS
DQS
DQS1  
DQS1  
DQ [8:11]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS10  
MDQS10  
MDQ [12:15]  
D4
D31
DQS
DQS
DQS
DQS
DQS10  
DQS10  
DQ [12:15]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS15  
MDQS15  
MDQ [52:55]  
D5
D32
DQS
DQS
DQS
DQS
DQS15  
DQS15  
DQ [52:55]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS6  
MDQS6  
MDQ [48:51]  
D6  
D33
DQS  
DQS  
DQS
DQS
DQS6  
DQS6  
DQ [48:51]  
DQ [0:3]  
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS14  
MDQS14  
MDQ [44:47]  
D7
D34
DQS
DQS
DQS
DQS
DQS14  
DQS14  
DQ [44:47]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS5  
MDQS5  
MDQ [40:43]  
D8
D35
DQS
DQS
DQ [0:3]
DQS
DQS
DQ [0:3]
DQS5  
DQS5  
DQ [40:43]  
Notes:  
1. Unless otherwise noted, resistor values are 10 Ohms ±5%.  
2. This Design uses SDRAMz in DDP. There are four ZQ resistors per DDP. The ZQ resistors are 240 Ohms ±1%.  
3. DM pins on SDRAMs are wired to VSS.  
4. The DQ and MDQ labels reflect the byte lanes as defined at the edge connector not which Memory Buffer pins are used.  
Rev. 0.1 / Jun. 2013  
10  
32GB, 4Gx72 Module(4Rank of x4) - page2  
QCKE2B  
QCKE0B  
QODT0B  
QCS6  
QCKE3B  
QCKE1B  
QODT1B  
QCS7  
QCS4  
QCS5  
QCS2  
QCS0  
QCS3  
QCS1  
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
MDQS12  
MDQS12  
MDQ [28:31]  
D9  
D18  
DQS  
DQS  
DQS  
DQS  
DQS12  
DQS21  
DQ [28:31]  
DQ [0:3]  
DQ [0:3]  
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS3  
MDQS3  
MDQ [24:27]  
D10  
D19
DQS  
DQS  
DQS
DQS
DQS3  
DQS3  
DQ [24:27]  
DQ [0:3]  
DQ [0:3]
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS8  
MDQS8  
MCB [0:3]  
D11  
D20
DQS  
DQS  
DQS
DQS
DQS8  
DQS8  
CB [0:3]  
DQ [0:3]  
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS0  
MDQS0  
MDQ [0:3]  
D12  
D21
DQS
DQS
DQS
DQS
DQS0  
DQS0  
DQ [0:3]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS9  
MDQS9  
MDQ [4:7]  
D13  
D22
DQS
DQS
DQS
DQS
DQS9  
DQS9  
DQ [4:7]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS16  
MDQS16  
MDQ [60:63]  
D14  
D23
DQS
DQS
DQS
DQS
DQS16  
DQS16  
DQ [60:63]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1 CS2 CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS7  
MDQS7  
MDQ [56:59]  
D15  
D24
DQS  
DQS  
DQS
DQS
DQS7  
DQS7  
DQ [56:59]  
DQ [0:3]  
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS13  
MDQS13  
MDQ [36:39]  
D16  
D25
DQS
DQS
DQS
DQS
DQS13  
DQS13  
DQ [36:39]  
DQ [0:3]
DQ [0:3]
VDD  
VDD  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
CS0 CS1CS2CS3 ODT0 ODT1 CKE0 CKE1  
ZQ  
MDQS4  
MDQS4  
MDQ [32:35]  
D17  
D26
DQS
DQS
DQ [0:3]
DQS
DQS
DQ [0:3]
DQS4  
DQS4  
DQ [32:35]  
V
SPD  
DDSPD  
SCL  
EVENT  
V
DD  
D0–D35  
EVENT  
SDA  
V
TT  
VREFCA  
VREFDQ  
A0 A1 A2  
D0–D35  
D0–D35  
SA0 SA1 SA2  
Serial PD w/ stand alone Thermal sensor  
VSS  
D0–D35  
Rev. 0.1 / Jun. 2013  
11  
32GB, 4Gx72 Module(4Rank of x4) - page3  
CS[3:0]  
CS0 -> CS0: SDRAMs D[17:0]  
CS2 -> CS1: SDRAMs D[17:0]  
CS4 -> CS2: SDRAMs D[17:0]  
CS6 -> CS3: SDRAMs D[17:0]  
CS1-> CS0: SDRAMs D[35:18]  
CS3-> CS1: SDRAMs D[35:18]  
CS5-> CS2: SDRAMs D[35:18]  
CS7-> CS3: SDRAMs D[35:18]  
M
e
m
o
r
y
BA[2:0]A -> BA[2:0]: SDRAMs D[8:0], D[35:27]  
BA[2:0]B -> BA[2:0]: SDRAMs D[26:9]  
BA[2:0]  
A[15:0]  
A[15:0]A -> A[15:0]: SDRAMs D[8:0], D[35:27]  
A[15:0]B -> A[15:0]: SDRAMs D[26:9]  
RASA -> RAS: SDRAMs D[8:0], D[35:27]  
RASB -> RAS: SDRAMs D[26:9]  
RAS  
CAS  
CASA -> CAS: SDRAMs D[8:0], D[35:27]  
CASB -> CAS: SDRAMs D[26:9]  
B
u
f
f
e
r
WEA -> WE: SDRAMs D[8:0], D[35:27]  
WEB -> WE: SDRAMs D[26:9]  
WE  
CKE[1:0]  
CKE0A -> CKE0: D[8:0]  
CKE1B -> CKE0: D[35:27]  
CKE0A -> CKE0: D[17:9]  
CKE1B -> CKE0: D[26:18]  
CKE2A -> CKE1: D[8:0]  
CKE2B -> CKE1: D[35:27]  
CKE2A -> CKE1: D[17:9]  
CKE2B -> CKE1: D[26:18]  
ODT[1:0]  
ODT0A -> ODT1: SDRAMs D[8:0]  
ODT1A -> ODT1: SDRAMs D[35:27]  
ODT0B -> ODT1: SDRAMs D[17:9]  
ODT1B -> ODT1: SDRAMs D[26:18]  
CK0 -> CK: SDRAMs D[8:0]  
CK1 -> CK: SDRAMs D[35:27]  
CK2 -> CK: SDRAMs D[17:9]  
CK3 -> CK: SDRAMs D[26:18]  
CK0  
CK0  
CK0 -> CK: SDRAMs D[8:0]  
CK1 -> CK: SDRAMs D[35:27]  
CK2 -> CK: SDRAMs D[17:9]  
CK3 -> CK: SDRAMs D[26:18]  
CK1  
CK1  
PAR_IN  
RESET  
Err_Out  
QRESET: All SDRAMs  
1. CK0 and CK0 are terminated with 120 Ohms ±5% resistor.  
2. CK1 and CK1 are terminated with 120 Ohms ±5% resistor, but is not used.  
3. Unless othersiwe noted resistors are 22 Ohms ±5%  
Rev. 0.1 / Jun. 2013  
12  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
Notes  
VDD  
- 0.4 V ~ 1.80 V  
V
1,3  
VDDQ  
VIN, VOUT  
TSTG  
- 0.4 V ~ 1.80 V  
- 0.4 V ~ 1.80 V  
-55 to +100  
V
1,3  
1
V
oC  
1, 2  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than  
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Normal Operating Temperature Range  
Extended Temperature Range  
Rating  
Units  
oC  
Notes  
0 to 85  
1,2  
TOPER  
85 to 95  
oC  
1,3  
Notes:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea-  
surement conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-  
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It  
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.  
Please refer to the DIMM SPD for option availability  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the  
Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b).  
DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and/or the  
DIMM SPD for tREFI requirements in the Extended Temperature Range  
Rev. 0.1 / Jun. 2013  
13  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions - DDR3L (1.35V) operation  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
1.283  
1.35  
1.45  
V
V
1,2,3,4  
1,2,3,4  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.283  
1.35  
1.45  
Notes:  
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a  
very long period of time (e.g., 1 sec).  
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.  
3. Under these supply voltages, the device operates to this DDR3L specification.  
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and  
VDDQ are changed for DDR3 operation (see Figure 0).  
Recommended DC Operating Conditions - - DDR3 (1.5V) operation  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
1.425  
1.5  
1.575  
V
V
1,2,3  
1,2,3  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.425  
1.5  
1.575  
Notes:  
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.  
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as  
defined for this device.  
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and  
VDDQ are changed for DDR3L operation (see Figure 0).  
Rev. 0.1 / Jun. 2013  
14  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK,CK#  
tCKSRX  
Tmin = 10ns  
VDD, VDDQ (DDR3)  
VDD, VDDQ (DDR3L)  
Tmin = 10ns  
Tmin = 200us  
T = 500us  
RESET#  
Tmin = 10ns  
CKE  
VALID  
VALID  
tDLLK  
tIS  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
1)  
COMMAND  
BA  
READ  
READ  
1)  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
VALID  
tIS  
tIS  
ODT  
RTT  
READ  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
VALID  
NOTE 1: From time point Tduntil TkNOP or DES commands must be applied  
between MRS and ZQCL commands.  
DONT CARE  
TIME BREAK  
Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3  
Rev. 0.1 / Jun. 2013  
15  
Standard Speed Bins  
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3-800 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 20.  
Speed Bin  
DDR3-800E  
6-6-6  
Unit  
Notes  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
tAA  
15  
20  
ns  
ns  
ns  
ns  
ns  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tRCD  
15  
15  
tRP  
tRC  
52.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRAS  
37.5  
2.5  
9 * tREFI  
3.3  
tCK(AVG)  
ns  
CL = 6  
CWL = 5  
1,2,3  
nCK  
nCK  
6
5
Supported CL Settings  
Supported CWL Settings  
Rev. 0.1 / Jun. 2013  
16  
DDR3-1066 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 20.  
Speed Bin  
DDR3-1066F  
7-7-7  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
Internal read command to  
first data  
tAA  
13.125  
20  
ns  
ns  
ns  
ns  
ns  
ACT to internal read or  
write delay time  
tRCD  
13.125  
13.125  
50.625  
tRP  
PRE command period  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
37.5  
2.5  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 6  
ns  
ns  
1,2,3,6  
1,2,3,4  
4
CWL = 6  
Reserved  
Reserved  
CWL = 5  
CL = 7  
ns  
CWL = 6  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
1,2,3,4  
4
CWL = 5  
CL = 8  
Reserved  
ns  
CWL = 6  
ns  
1,2,3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 7, 8  
5, 6  
Rev. 0.1 / Jun. 2013  
17  
DDR3-1333 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 20.  
Speed Bin  
DDR3-1333H  
9-9-9  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.5  
max  
Internal read  
command to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)5,9  
13.5  
(13.125)5,9  
ACT to internal read or  
write delay time  
13.5  
(13.125)5,9  
PRE command period  
49.5  
(49.125)5,9  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
36  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
2.5  
ns  
ns  
ns  
ns  
1,2,3,7  
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1,2,3,4,7  
4
4
1.875  
1.875  
< 2.5  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1,2,3,4,7  
(Optional)5,9  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4  
4
Reserved  
CWL = 6  
1,2,3,7  
1,2,3,4  
4
CWL = 7  
Reserved  
Reserved  
CWL = 5, 6  
CWL = 7  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
1,2,3,4  
4
CWL = 5, 6  
Reserved  
CL = 10  
ns  
ns  
1,2,3  
5
tCK(AVG)  
CWL = 7  
(Optional)  
nCK  
Supported CL Settings  
Supported CWL Settings  
6, 7, 8, 9, 10  
nCK  
5, 6, 7  
Rev. 0.1 / Jun. 2013  
18  
DDR3-1600 Speed Bins  
For specific Notes See "Speed Bin Table Notes" on page 20.  
Speed Bin  
DDR3-1600K  
11-11-11  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.75  
max  
Internal read  
command to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
(13.125)5,9  
13.75  
(13.125)5,9  
ACT to internal read or  
write delay time  
13.75  
(13.125)5,9  
PRE command period  
48.75  
(48.125)5,9  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
35  
9 * tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
2.5  
ns  
ns  
ns  
ns  
1,2,3,8  
CL = 6  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1,2,3,4,8  
4
4
1.875  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1,2,3,4,8  
(Optional)5,9  
Reserved  
Reserved  
Reserved  
CL = 7  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3,4,8  
4
4
1.875  
1.5  
< 2.5  
1,2,3,8  
1,2,3,4,8  
1,2,3,4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
<1.875  
tCK(AVG)  
CWL = 7  
ns  
1,2,3,4,8  
(Optional)5,9  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 8  
ns  
ns  
1,2,3,4  
4
CWL = 5, 6  
Reserved  
CL = 10 CWL = 7  
CWL = 8  
1.5  
<1.875  
<1.5  
ns  
1,2,3,8  
1,2,3,4  
4
Reserved  
Reserved  
ns  
CWL = 5, 6,7  
CL = 11  
ns  
CWL = 8  
1.25  
ns  
1,2,3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, 7, 8, 9, 10, 11  
5, 6, 7, 8  
Rev. 0.1 / Jun. 2013  
19  
Speed Bin Table Notes  
Absolute Specification (T  
; V  
= V = 1.35V +1.000/- 0.067 V);  
OPER  
DDQ DD  
(T  
; V  
= V = 1.5V +/- 0.075 V);  
DDQ DD  
OPER  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When mak-  
ing a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as require-  
ments from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchro-  
nized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should  
use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculat-  
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL, where tCK(AVG) =  
3.0 ns should only be used for CL = 5 calculation.  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG)  
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is  
tCK(AVG).MAX corresponding to CL SELECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a man-  
datory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is  
supported.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the  
table which are not subject to Production Tests but verified by Design/Characterization.  
9. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must  
be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H  
devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin  
(Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to  
DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin  
(Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23)  
also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125  
ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.  
Rev. 0.1 / Jun. 2013  
20  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD and IDDQ Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure  
1. shows the setup and test load for IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,  
IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls  
of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur-  
rents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply:  
”0” and “LOW” is defined as VIN <= V  
ILAC(max).  
”1” and “HIGH” is defined as VIN >= V  
IHAC(max).  
“MID_LEVEL” is defined as inputs are VREF = VDD/2.  
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.  
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim-  
ited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0 (Output Buffer enabled in MR1);  
B
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}  
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}  
Rev. 0.1 / Jun. 2013  
21  
IDDQ (optional)  
IDD  
VDD  
RESET  
CK/CK  
VDDQ  
DDR3(L)  
SDRAM  
RTT = 25 Ohm  
CKE  
CS  
DQS, DQS  
DQ, DM,  
VDDQ/2  
RAS, CAS, WE  
TDQS, TDQS  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
[Note: DIMM level Output test load condition may be different from above  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Simulation  
IDDQ  
Simulation  
Correction  
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported  
by IDDQ Measurement  
Rev. 0.1 / Jun. 2013  
22  
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Symbol  
Unit  
7-7-7  
1.875  
7
9-9-9  
1.5  
9
11-11-11  
tCK  
1.25  
11  
11  
39  
28  
11  
24  
32  
5
ns  
CL  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nRCD  
nRC  
nRAS  
nRP  
7
9
27  
20  
7
33  
24  
9
1KB page size  
2KB page size  
1KB page size  
2KB page size  
20  
27  
4
20  
30  
4
nFAW  
nRRD  
6
5
6
nRFC -512Mb  
nRFC-1 Gb  
nRFC- 2 Gb  
nRFC- 4 Gb  
nRFC- 8 Gb  
48  
59  
86  
139  
187  
60  
74  
107  
174  
234  
72  
88  
128  
208  
280  
Table 2 -Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and  
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;  
DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buf-  
IDD0  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3.  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT,  
RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM:  
stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and  
IDD1  
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4.  
Rev. 0.1 / Jun. 2013  
23  
Symbol  
Description  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD2N  
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:  
see Table 5.  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD2NT  
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6;  
Pattern Details: see Table 6.  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-  
IDD2P0  
IDD2P1  
IDD2Q  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc)  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf-  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all  
IDD3N  
banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see  
Table 5.  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank  
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer  
IDD3P  
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Rev. 0.1 / Jun. 2013  
24  
Symbol  
Description  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address,  
Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different  
data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open,  
RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode  
IDD4R  
Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address,  
Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different  
data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open,  
WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode  
IDD4W  
Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command,  
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;  
IDD5B  
Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb);  
ODT Signal: stable at 0; Pattern Details: see Table 9.  
Self-Refresh Current: Normal Temperature Range  
TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:  
IDD6  
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer  
and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Self-Refresh Current: Extended Temperature Range (optional)  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);  
IDD6ET  
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank  
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh  
operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Rev. 0.1 / Jun. 2013  
25  
Symbol  
Description  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a),f); AL: CL-1; CS:  
High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table  
10; Data IO: read data burst with different data between one burst and the next one according to Table 10;  
DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different address-  
IDD7  
ing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern  
Details: see Table 10.  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B;  
RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable  
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range  
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B  
Rev. 0.1 / Jun. 2013  
26  
a)  
Table 3 - IDD0 Measurement-Loop Pattern  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
-
repeat pattern 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 0.1 / Jun. 2013  
27  
a)  
Table 4 - IDD1 Measurement-Loop Pattern  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRCD - 1, truncate if necessary  
RD 00  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1,2  
1*nRC+3,4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRCD  
...  
0
1
0
1
0
0
0
0
F
0
00110011  
-
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.  
Rev. 0.1 / Jun. 2013  
28  
a)  
Table 5 - IDD2N and IDD3N Measurement-Loop Pattern  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
0
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
a)  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
0
1
0
F
F
0
0
0
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 0.1 / Jun. 2013  
29  
a)  
Table 7 - IDD4R and IDDQ4R Measurement-Loop Pattern  
Datab)  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
a)  
Table 8 - IDD4W Measurement-Loop Pattern  
Datab)  
0
WR  
D
D,D  
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
2,3  
4
5
6,7  
-
-
00110011  
-
-
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 0.1 / Jun. 2013  
30  
a)  
Table 9 - IDD5B Measurement-Loop Pattern  
Datab)  
0
1
REF  
D, D  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
0
1.2  
00  
00  
3,4  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC-1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 0.1 / Jun. 2013  
31  
a)  
Table 10 - IDD7 Measurement-Loop Pattern  
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9  
Datab)  
0
1
0
1
2
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
repeat above D Command until nRRD - 1  
nRRD  
nRRD+1  
nRRD+2  
...  
2*nRRD  
3*nRRD  
4*nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2* nRRD - 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
D
1
0
0
0
0
3
00  
0
0
F
0
0
-
-
4
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
nFAW+4*nRRD  
D
1
0
0
0
0
7
00  
0
0
F
9
Assert and repeat above D Command until 2* nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2&nFAW+2  
Repeat above D Command until 2* nFAW + nRRD - 1  
2*nFAW+nRRD  
2*nFAW+nRRD+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
11  
2&nFAW+nRRD+2  
Repeat above D Command until 2* nFAW + 2* nRRD - 1  
repeat Sub-Loop 10, but BA[2:0] = 2  
repeat Sub-Loop 11, but BA[2:0] = 3  
12 2*nFAW+2*nRRD  
13 2*nFAW+3*nRRD  
D
1
0
0
0
0
3
00  
0
0
0
0
-
14 2*nFAW+4*nRRD  
Assert and repeat above D Command until 3* nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
15 3*nFAW  
16 3*nFAW+nRRD  
17 3*nFAW+2*nRRD  
18 3*nFAW+3*nRRD  
repeat Sub-Loop 11, but BA[2:0] = 5  
repeat Sub-Loop 10, but BA[2:0] = 6  
repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
0
0
-
19 3*nFAW+4*nRRD  
Assert and repeat above D Command until 4* nFAW - 1, if necessary  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 0.1 / Jun. 2013  
32  
IDD Specifications (Tcase: 0 to 95oC)  
*Module IDD values in the datasheet are only a calculation based on the component IDD spec and register  
power. The actual measurements may vary according to DQ loading cap.  
64GB, 8G x 72 LR-DIMM: HMTA8GL7AHR4A  
Symbol  
IDD0  
DDR3L 1333  
10692  
10818  
10404  
10980  
1522  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
note  
IDD1  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6  
1984  
1810  
10548  
11700  
2818  
11466  
11556  
2098  
IDD6ET  
IDD7  
2674  
12456  
64GB, 8G x 72 LR-DIMM: HMTA8GL7AHR4C  
Symbol  
IDD0  
DDR3 1600  
11472  
11616  
11166  
13038  
2050  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
note  
IDD1  
IDD2N  
IDD2NT  
IDD2P0  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
IDD4R  
IDD4W  
IDD5B  
IDD6  
2338  
11310  
12606  
3490  
12498  
12588  
14388  
2626  
IDD6ET  
IDD7  
3202  
14748  
Rev. 0.1 / Jun. 2013  
33  
Module Dimensions  
8Gx72 - HMTA8GL7AHR4A(C)  
Front  
133.35  
128.95  
Detail B  
2.20  
Detail A  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
Memory  
Buffer  
4X3.00±0.10  
1
120  
1
2X2.30±0.10  
47.00  
71.00  
Detail D  
5.175  
5.0  
Detail C  
Back  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
QDP  
121  
240  
1
Side  
4.70mm max  
Detail of Contacts D  
Detail of Contacts A  
Detail of Contacts B  
Detail of Contacts C  
1.45± 0.10  
0.80± 0.05  
2.50  
10.00±  
0.10  
0.75  
± 0.10  
8.40  
3
± 0.1  
0.3~0.1  
1.00  
1.50  
±0.10  
5.00  
1.27±010mm  
max  
Note:  
1. 0.13tolerance on all dimensions unless otherwise stated.  
Units: millimeters  
Rev. 0.1 / Jun. 2013  
34  
8Gx72 - HMTA8GL7AHR4A(C) - Heat Spreader  
Front  
133.4  
126.4  
42.3  
26.1  
2.7  
5.7  
10.8  
7.9  
3.1  
14  
16  
120  
1
34  
76.6  
69.25  
119.2  
Back  
120  
1
Side  
7.90mm max  
1.27±010mm  
Note:  
max  
1. 0.13tolerance on all dimensions unless otherwise stated.  
2.In order to uninstall FDHS, please contact sales administrator.  
Units: millimeters  
Rev. 0.1 / Jun. 2013  
35  

相关型号:

HMTA8GL7AHR4A-H9

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTA8GL7AHR4C

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTA8GL7AHR4C-PB

DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die
HYNIX

HMTMS-101-01-G-S-230-XX

Board Connector, 1 Contact(s), 1 Row(s), Male, Straight, 0.05 inch Pitch, Solder Terminal, Black Insulator, Receptacle
SAMTEC

HMTMS-101-01-L-D-230

Board Stacking Connector, 2 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-D-100

Board Stacking Connector, 2 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-D-390

Board Stacking Connector, 2 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-S-100

Board Stacking Connector, 1 Contact(s), 1 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-S-230

Board Stacking Connector, 1 Contact(s), 1 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-S-S-230-XX

Board Connector, 1 Contact(s), 1 Row(s), Male, Straight, 0.05 inch Pitch, Solder Terminal, Black Insulator, Receptacle
SAMTEC

HMTMS-101-01-S-S-390

Board Stacking Connector, 1 Contact(s), 1 Row(s), Male, Straight, Solder Terminal, ROHS COMPLIANT
SAMTEC

HMTMS-101-01-T-S-230-XX

Board Connector, 1 Contact(s), 1 Row(s), Male, Straight, 0.05 inch Pitch, Solder Terminal, Black Insulator, Receptacle
SAMTEC