HY27US16122B-TIB [HYNIX]

Flash, 32MX16, 18ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48;
HY27US16122B-TIB
型号: HY27US16122B-TIB
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

Flash, 32MX16, 18ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48

光电二极管
文件: 总40页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
512Mb NAND FLASH  
HY27US(08/16)12(1/2)B  
HY27US0812(1/2)B  
HY27US1612(1/2)B  
This document is a general product description and is subject to change without notice. Hynix does not assume any responsibility for  
use of circuits described. No patent licenses are implied.  
Rev 0.5 / Jul. 2007  
1
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Document Title  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash Memory  
Revision History  
Revision  
History  
No.  
Draft Date  
Remark  
0.0  
0.1  
Oct. 19. 2006 Preliminary  
Mar. 07. 2007  
Initial Draft.  
1) Correct Figure 14 & 15  
1) Add AC Characteristics  
- tRB : Last RE High to busy (at sequential read)  
- tCRY : CE High to Ready (in case of interception by CE at read)  
- tCEH : CE High Hold Time (at the last serial read)  
0.2  
0.3  
0.4  
Mar. 26. 2007  
Apr. 27. 2007  
May. 29. 2007  
1) Add sequential row read feature and figure  
2) Modify Block Replacement  
1) Add x16 Characteristics  
2) Modify read2 operation (sequential row read)  
3) Add AC Characteristics  
- tOH : RE or CE High to Output Hold  
1) Correct Read ID Table 16  
0.5  
Jul. 20. 2007  
2) Correct System Interface Using CE don’t care operation  
3) Correct Command Set Table 5  
Rev 0.5 / Jul. 2007  
2
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
FEATURES SUMMARY  
HIGH DENSITY NAND FLASH MEMORIES  
FAST BLOCK ERASE  
- Block erase time: 2ms (Typ.)  
- Cost effective solutions for mass storage applications  
STATUS REGISTER  
NAND INTERFACE  
- x8 or x16 bus width.  
- Multiplexed Address/ Data  
- Pinout compatibility for all densities  
ELECTRONIC SIGNATURE  
- 1st cycle: Manufacturer Code  
- 2nd cycle: Device Code  
SUPPLY VOLTAGE  
- VCC = 2.7 to 3.6V : HY27US(08/16)12(1/2)B  
CHIP ENABLE DON’T CARE  
- Simple interface with microcontroller  
Memory Cell Array  
x8 : (512+16) Bytes x 32 Pages x 4,096 Blocks  
x16 : (256+8) Words x 32 Pages x 4,096 Blocks  
HARDWARE DATA PROTECTION  
- Program/Erase locked during Power transitions  
PAGE SIZE  
CE DON’t CARD OPTION ONLY  
- x8 device : (512+16) Bytes  
: HY27US0812(1/2)B  
- x16 device : (256+8) Words  
: HY27US1612(1/2)B  
DATA RETENTION  
- 100,000 Program/Erase cycles (with 1bit/512byte ECC)  
- 10 years Data Retention  
PACKAGE  
- HY27US(08/16)12(1/2)B-T(P)  
: 48-Pin TSOP1 (12 x 20 x 1.2 mm)  
- HY27US(08/16)12(1/2)B-T (Lead)  
- HY27US(08/16)12(1/2)B-TP (Lead Free)  
BLOCK SIZE  
- x8 device: (16K + 512 spare) Bytes  
- x16 device: (8K + 256 spare) Words  
PAGE READ / PROGRAM  
- HY27US0812(1/2)B-S(P)  
- Random access: 12us (max.)  
- Sequential access: 30ns (min.)  
- Page program time: 200us (typ.)  
: 48-Pin USOP1 (12 x 17 x 0.65 mm)  
- HY27US0812(1/2)B-S (Lead)  
- HY27US0812(1/2)B-SP (Lead Free)  
- HY27US0812(1/2)B-F(P)  
COPY BACK PROGRAM MODE  
- Fast page copy without external buffering  
: 63-Ball FBGA (9 x 11 x 1.0 mm)  
- HY27US0812(1/2)B-F (Lead)  
- HY27US0812(1/2)B-FP (Lead Free)  
Rev 0.5 / Jul. 2007  
3
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
1. SUMMARY DESCRIPTION  
The Hynix HY27US(08/16)12(1/2)B series is a 64Mx8bit with spare 2Mx8 bit capacity. The device is offered in 3.3V Vcc  
Power Supply.  
Their NAND cell provides the most cost-effective solution for the solid state mass storage market.  
The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is  
erased.  
The memory contains 4096 blocks, composed by 32 pages consisting in two NAND structures of 16 series connected Flash  
cells.  
A program operation allows to write the 512-byte (x8 device) or 256-word (x16 device) page in typical 200us and an erase  
operation can be performed in typical 2ms on a 16K-byte (X8 device) block.  
Data in the page can be read out at 30ns cycle time (3.3V device) per byte. The I/O pins serve as the ports for address and  
data input/output as well as command input. This interface allows a reduced pin count and easy migration towards differ-  
ent densities, without any rearrangement of footprint.  
Commands, Data and Addresses are synchronously introduced using CE, WE, ALE and CLE input pin.  
The on-chip Program/Erase Controller automates all program and erase functions including pulse repetition, where  
required, and internal verification and margining of data.  
The modify operations can be locked using the WP input pin .  
The output pin R/B (open drain buffer) signals the status of the device during each operation. In a system with multiple  
memories the R/B pins can be connected all together to provide a global status signal.  
Even the write-intensive systems can take advantage of the HY27US(08/16)12(1/2)B extended reliability of 100K pro-  
gram/erase cycles by providing ECC (Error Correcting Code) with real time mapping-out algorithm.  
The chip is offered with the CE don’t care function. This option allows the direct download of the code from the NAND Flash  
memory device by a microcontroller, since the CE transitions do not stop the read operation.  
The copy back function allows the optimization of defective blocks management: when a page program operation fails the  
data can be directly programmed in another page inside the same array section without the time consuming serial data  
insertion phase.  
This device includes also extra features like OTP/Unique ID area, Read ID2 extension.  
The HY27US(08/16)12(1/2)B is available in 48 - TSOP1 12 x 20 mm package, 48 - USOP1 12 x 17 mm, FBGA 9 x 11 mm.  
1.1 Product List  
PART NUMBER  
HY27US0812(1/2)B  
HY27US1612(1/2)B  
ORIZATION  
VCC RANGE  
PACKAGE  
48TSOP1/ 48USOP1/ 63FBGA  
48TSOP1  
x8  
2.7V - 3.6 Volt  
x16  
Rev 0.5 / Jul. 2007  
4
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
9&&  
,2ꢀa,2ꢁ  
&(  
,2ꢂa,2ꢃꢄꢅꢆ[ꢃꢇꢅRQO\ꢈ  
:(  
5ꢉ%  
5(  
$/(  
&/(  
:3  
966  
Figure1: Logic Diagram  
IO15 - IO8  
IO7 - IO0  
CLE  
Data Input / Outputs (x16 only)  
Data Inputs / Outputs  
Command latch enable  
Address latch enable  
Chip Enable  
ALE  
CE  
RE  
Read Enable  
WE  
Write Enable  
WP  
Write Protect  
R/B  
Ready / Busy  
Vcc  
Power Supply  
Vss  
Ground  
NC  
No Connection  
Table 1: Signal Names  
Rev 0.5 / Jul. 2007  
5
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
ꢄꢉ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
9VV  
ꢄꢉ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
1&  
1&  
1&  
1&  
,ꢀ2ꢁ  
,ꢀ2ꢂ  
,ꢀ2ꢃ  
,ꢀ2ꢄ  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
1&  
,ꢀ2ꢅ  
,ꢀ2ꢆ  
,ꢀ2ꢇ  
,ꢀ2ꢈ  
1&  
1&  
1&  
1&  
,ꢀ2ꢇꢃ  
,ꢀ2ꢁ  
,ꢀ2ꢇꢄ  
,ꢀ2ꢂ  
,ꢀ2ꢇꢅ  
,ꢀ2ꢃ  
,ꢀ2ꢇꢆ  
,ꢀ2ꢄ  
1&  
1&  
9FF  
1&  
1&  
&(  
&(  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
1$1'ꢅ)ODVK  
7623ꢃ  
1$1'ꢅ)ODVK  
7623ꢃ  
ꢇꢆ  
ꢇꢅ  
ꢅꢁ  
ꢅꢂ  
ꢇꢆ  
ꢇꢅ  
ꢅꢁ  
ꢅꢂ  
1&  
ꢆ[ꢃꢇꢈ  
ꢆ[ꢂꢈ  
,ꢀ2ꢇꢇ  
,ꢀ2ꢅ  
,ꢀ2ꢇꢈ  
,ꢀ2ꢆ  
,ꢀ2ꢊ  
,ꢀ2ꢇ  
,ꢀ2ꢉ  
,ꢀ2ꢈ  
9VV  
ꢆꢄ  
ꢆꢃ  
ꢆꢄ  
ꢆꢃ  
Figure 2. 48TSOP1 Contactions, x8 and x16 Device  
ꢄꢉ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
1&  
1&  
1&  
1&  
,ꢀ2ꢁ  
,ꢀ2ꢂ  
,ꢀ2ꢃ  
,ꢀ2ꢄ  
1&  
&(  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
1&  
1$1'ꢅ)ODVK  
8623ꢃ  
9FF  
9VV  
1&  
1&  
1&  
,ꢀ2ꢅ  
,ꢀ2ꢆ  
,ꢀ2ꢇ  
,ꢀ2ꢈ  
1&  
ꢇꢆ  
ꢇꢅ  
ꢅꢁ  
ꢅꢂ  
ꢆ[ꢂꢈ  
1&  
1&  
1&  
ꢆꢄ  
ꢆꢃ  
Figure 3. 48USOP1 Contactions, x8  
Rev 0.5 / Jul. 2007  
6
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
ꢃꢅꢅꢅꢅꢅꢅꢅꢅꢊꢅꢅꢅꢅꢅꢅꢅꢋꢅꢅꢅꢅꢅꢅꢅꢌꢅꢅꢅꢅꢅꢅꢅꢄꢅꢅꢅꢅꢅꢅꢇꢅꢅꢅꢅꢅꢅꢅꢅꢁꢅꢅꢅꢅꢅꢅꢅꢂꢅꢅꢅꢅꢅꢅꢅꢍꢅꢅꢅꢅꢅꢅꢃꢀ  
$
%
1&  
1&  
1&  
1&  
1&  
1&  
1&  
&
$/( 9VV  
:3  
1&  
1&  
&(  
1&  
:(  
1&  
5%  
1&  
'
&/(  
5(  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
9FF  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
9FF  
(
)
1&  
1&  
1&  
1&  
9VV  
1&  
*
+
-
,ꢀ2ꢈ  
,ꢀ2ꢇ  
,ꢀ2ꢆ  
,ꢀ2ꢃ ,ꢀ2ꢁ  
9VV  
,ꢀ2ꢅ ,ꢀ2ꢄ  
,ꢀ2ꢂ  
.
/
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
0
Figure 4. 63FBGA Contactions, x8 Device (Top view through package)  
Rev 0.5 / Jul. 2007  
7
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
1.2 PIN DESCRIPTION  
Pin Name  
Description  
DATA INPUTS/OUTPUTS  
The IO pins allow to input command, address and data and to output data during read / program  
IO0-IO7  
IO8-IO15(1) operations. The inputs are latched on the rising edge of Write Enable (WE).  
The I/O buffer float to High-Z when the device is deselected or the outputs are disabled.  
COMMAND LATCH ENABLE  
CLE  
ALE  
CE  
This input activates the latching of the IO inputs inside the Command Register on the Rising edge of  
Write Enable (WE).  
ADDRESS LATCH ENABLE  
This input activates the latching of the IO inputs inside the Address Register on the Rising edge of  
Write Enable (WE).  
CHIP ENABLE  
This input controls the selection of the device. When the device is busy CE low does not deselect the  
memory.  
WRITE ENABLE  
WE  
This input acts as clock to latch Command, Address and Data. The IO inputs are latched on the rise  
edge of WE.  
READ ENABLE  
The RE input is the serial data-out control, and when active drives the data onto the I/O bus. Data is  
valid tREA after the falling edge of RE which also increments the internal column address counter by  
one.  
RE  
WRITE PROTECT  
WP  
The WP pin, when Low, provides an Hardware protection against undesired modify (program / erase)  
operations.  
READY BUSY  
R/B  
The Ready/Busy output is an Open Drain pin that signals the state of the memory.  
SUPPLY VOLTAGE  
The VCC supplies the power for all the operations (Read, Write, Erase).  
VCC  
VSS  
NC  
GROUND  
NO CONNECTION  
Table 2: Pin Description  
NOTE:  
1. For x16 Version Only  
2. A 0.1uF capacitor should be connected between the Vcc Supply Voltage pin and the Vss Ground pin to decouple  
the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required  
during program and erase operations.  
Rev 0.5 / Jul. 2007  
8
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
IO0  
A0  
IO1  
A1  
IO2  
A2  
IO3  
A3  
IO4  
A4  
IO5  
A5  
IO6  
A6  
IO7  
A7  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
A9  
A10  
A18  
A11  
A19  
A12  
A20  
A13  
A21  
A14  
A22  
A15  
A23  
A16  
A24  
A17  
A25  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
Table 3: Address Cycle Map(x8)  
NOTE:  
1. L must be set to Low.  
2. A8 is set to LOW or High by the 00h or 01h Command.  
IO0  
A0  
IO1  
A1  
IO2  
A2  
IO3  
IO4  
IO5  
IO6  
IO7  
IO8-IO15  
L(1)  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
A3  
A4  
A5  
A6  
A7  
A12  
A20  
A13  
A21  
A14  
A22  
A15  
A23  
A16  
A24  
L(1)  
A9  
A10  
A18  
A11  
A19  
L(1)  
A17  
A25  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
L(1)  
Table 4: Address Cycle Map(x16)  
NOTE:  
1. L must be set to Low.  
Acceptable command  
during busy  
FUNCTION  
1st CYCLE 2nd CYCLE 3rd CYCLE 4th CYCLE  
READ 1  
READ 2  
READ ID  
RESET  
00h/01h  
50h  
-
-
-
-
-
-
-
-
-
-
-
-
90h  
FFh  
Yes  
Yes  
PAGE PROGRAM  
(start)  
80h  
00h  
10h  
8Ah  
-
-
-
-
COPY BACK PGM  
(start)  
BLOCK ERASE  
60h  
70h  
D0h  
-
-
-
-
-
READ STATUS REGISTER  
Table 5: Command Set  
Rev 0.5 / Jul. 2007  
9
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
CLE  
H
L
ALE  
L
CE  
L
WE  
Rising  
Rising  
Rising  
Rising  
Rising  
H
RE  
WP  
MODE  
H
X
Command Input  
Address Input(4 cycles)  
Command Input  
Address Input(4 cycles)  
Read Mode  
H
L
L
H
X
H
L
L
H
H
Write Mode  
Data Input  
H
L
L
H
H
L
L
H
H
L(1)  
L
L
L
Falling  
X
Sequential Read and Data Output  
During Read (Busy)  
During Program (Busy)  
During Erase (Busy)  
Write Protect  
L
L
H
H
X
X
X
X
X
X
X
X
X
H
X
X
X
X
H
L
X
X
X
X
X
X
H
X
0V/Vcc  
Stand By  
Table 6: Mode Selection  
NOTE:  
1. With the CE high during latency time does not stop the read operation  
Rev 0.5 / Jul. 2007  
10  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
2. BUS OPERATION  
There are six standard bus operations that control the device. These are Command Input, Address Input, Data Input,  
Data Output, Write Protect, and Standby.  
Typically glitches less than 5 ns on Chip Enable, Write Enable and Read Enable are ignored by the memory and do not  
affect bus operations.  
2.1 Command Input.  
Command Input bus operation is used to give a command to the memory device. Command are accepted with Chip  
Enable low, Command Latch Enable High, Address Latch Enable low and Read Enable High and latched on the rising  
edge of Write Enable. Moreover for commands that starts a modify operation (write/erase) the Write Protect pin must  
be high. See figure 6 and table 13 for details of the timings requirements. Command codes are always applied on  
IO7:0, disregarding the bus configuration (X8/X16).  
2.2 Address Input.  
Address Input bus operation allows the insertion of the memory address. To insert the 25 addresses needed to access  
the 512Mbit 4 clock cycles (x8 version) are needed. Addresses are accepted with Chip Enable low, Address Latch  
Enable High, Command Latch Enable low and Read Enable High and latched on the rising edge of Write Enable. More-  
over for commands that starts a modify operation (write/erase) the Write Protect pin must be high. See figure 7 and  
table 13 for details of the timings requirements. Addresses are always applied on IO7:0, disregarding the bus configu-  
ration (X8/X16).  
2.3 Data Input.  
Data Input bus operation allows to feed to the device the data to be programmed. The data insertion is serially and  
timed by the Write Enable cycles. Data are accepted only with Chip Enable low, Address Latch Enable low, Command  
Latch Enable low, Read Enable High, and Write Protect High and latched on the rising edge of Write Enable. See figure  
8 and table 13 for details of the timings requirements.  
2.4 Data Output.  
Data Output bus operation allows to read data from the memory array and to check the status register content, the  
lock status and the ID data. Data can be serially shifted out toggling the Read Enable pin with Chip Enable low, Write  
Enable High, Address Latch Enable low, and Command Latch Enable low. See figures 9 to 15 and table 13 for details of  
the timings requirements.  
2.5 Write Protect.  
Hardware Write Protection is activated when the Write Protect pin is low. In this condition modify operation do not  
start and the content of the memory is not altered. Write Protect pin is not latched by Write Enable to ensure the pro-  
tection even during the power up.  
2.6 Standby.  
In Standby mode the device is deselected, outputs are disabled and Power Consumption is reduced.  
Rev 0.5 / Jul. 2007  
11  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
3. DEVICE OPERATION  
3.1 Page Read.  
Three types of operations are available: random read, serial page read and sequential row read.  
The random read mode is enabled when the page address is changed. The 528 bytes (x8 device) or 264 words (x16  
device) of data within the selected page are transferred to the data registers in less than access random read time tR  
(12us). The system controller can detect the completion of this data transfer tR (12us) by analyzing the output of R/B  
pin. Once the data in a page is loaded into the registers, they may be read out in 30ns cycle time by sequentially puls-  
ing RE. High to low transitions of the RE clock output the data stating from the selected column address up to the last  
column address.  
After the data of last column address is clocked out, the next page is automatically selected for sequential row read.  
Waiting tR again allows reading the selected page. The sequential row read operation is terminated by bringing CE  
high.  
The way the Read1 and Read2 commands work is like a pointer set to either the main area or the spare area. Writing  
the Read2 command user may selectively access the spare area of bytes 512 to 527 (x8 device) or words 256 to 263  
(x16 device). Addresses A0 to A3 set the starting address of the spare area while addresses A4 to A7 are ignored.  
Unless the operation is aborted, the page address is automatically incremented for sequential row  
Read as in Read1 operation and spare sixteen bytes of each page (x8 device) or eight words of each page (x16 device)  
may be sequentially read. The Read1 command (00h/01h) is needed to move the pointer back to the main area.  
The Read2 command (50h) is needed to move the pointer back to the spare area.  
Figure_11 to 14 show typical sequence and timings for each read operation.  
3.2 Page Program.  
The device is programmed basically on a page basis, but it does allow multiple partial page programming of a byte or  
consecutive bytes up to 528 (x8 device), in a single page program cycle. The number of consecutive partial page pro-  
gramming operations within the same page without an intervening erase operation must not exceed 1 for main array  
and 2 for spare array. The addressing may be done in any random order in a block. A page program cycle consists of a  
serial data loading period in which up to 528 bytes (x8 device) or 264 word (x16 device) of data may be loaded into  
the page register, followed by a non-volatile programming period where the loaded data is programmed into the  
appropriate cell. Serial data loading can be started from 2nd half array by moving pointer. About the pointer operation,  
please refer to Figure 24 The data-loading sequence begins by inputting the Serial Data Input command (80h), fol-  
lowed by the four address input cycles and then serial data loading. The Page Program confirm command (10h) starts  
the programming process. Writing 10h alone without previously entering the serial data will not initiate the program-  
ming process. The internal Program Erase Controller automatically executes the algorithms and timings necessary for  
program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the Read  
Status Register command may be entered, with RE and CE low, to read the status register. The system controller can  
detect the completion of a program cycle by monitoring the R/B output, or the Status bit (I/O 6) of the Status Register.  
Only the Read Status command and Reset command are valid while programming is in progress. When the Page Pro-  
gram is complete, the Write Status Bit (I/O 0) may be checked in Figure 15 The internal write verify detects only errors  
for "1"s that are not successfully programmed to "0"s. The command register remains in Read Status command mode  
until another valid command is written to the command register.  
Rev 0.5 / Jul. 2007  
12  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
3.3 Block Erase.  
The Erase operation is done on a block (16K Byte) basis. It consists of an Erase Setup command (60h), a Block  
address loading and an Erase Confirm Command (D0h). The Erase Confirm command (D0h) following the block  
address loading initiates the internal erasing process. This two-step sequence of setup followed by execution com-  
mand ensures that memory contents are not accidentally erased due to external noise conditions.  
The block address loading is accomplished three cycles. Only block addresses (A14 to A25 , highest address depending  
on the device density) are needed while A9 to A13 is ignored.  
At the rising edge of WE after the erase confirm command input, the internal Program Erase Controller handles erase  
and erase-verify. When the erase operation is completed, the Write Status Bit (I/O 0) may be checked. Figure 17  
details the sequence.  
3.4 Copy-Back Program.  
The copy-back program is provided to quickly and efficiently rewrite data stored in one page within the plane to  
another page within the same plane without using an external memory. Since the time-consuming sequential reading  
and its reloading cycles are removed, the system performance is improved. The benefit is especially  
obvious when a portion of a block is updated and the rest of the block also need to be copied to the newly assigned  
free block. The operation for performing a copy-back program is a sequential execution of page-read without burst-  
reading cycle and copying-program with the address of destination page. A normal read operation with "00h" com-  
mand and the address of the source page moves the whole 528byte data into the internal buffer.  
As soon as the device returns to Ready state, Page-Copy Data-input command (8Ah) with the address cycles of desti-  
nation page followed may be written. The Program Confirm command (10h) is not needed to actually begin the pro-  
gramming operation. For backward-compatibility, issuing Program Confirm command during copy-back does not affect  
correct device operation.  
Copy-Back Program operation is allowed only within the same memory plane. Once the Copy-Back Program is finished,  
any additional partial page programming into the copied pages is prohibited before erase. Plane address must be the  
same between source and target page.  
"When there is a program-failure at Copy-Back operation, error is reported by pass/fail status. But, if Copy-Back oper-  
ations are accumulated over time, bit error due to charge loss is not checked by external error detection/correction  
scheme. For this reason, two bit error correction is recommended for the use of Copy-Back operation."  
Figure 16 shows the command sequence for the copy-back operation.  
The Copy Back Program operation requires three steps:  
1. The source page must be read using the Read A command (one bus write cycle to setup the command and then  
4 bus write cycles to input the source page address). This operation copies all 2KBytes from the page into the Page  
Buffer.  
2. When the device returns to the ready state (Ready/Busy High), the second bus write cycle of the command is  
given with the 4bus cycles to input the target page address. The value for A25 from second to the last page address  
must be same as the value given to A25 in first address.  
3. Then the confirm command is issued to start the P/E/R Controller.  
Rev 0.5 / Jul. 2007  
13  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
3.5 Read Status Register.  
The device contains a Status Register which may be read to find out whether read, program or erase operatio is com-  
pleted, and whether the read, program or erase operation is completed successfully. After writing 70h command to the  
command register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of CE or  
RE, whichever occurs last. This two-line control allows the system to poll the progress of each device in multiple mem-  
ory connections even when R/B pins are common-wired. RE or CE does not need to be toggled for updated status.  
Refer to Table 14 for specific Status Register definitions. The command register remains in Status Read mode until fur-  
ther commands are issued to it. Therefore, if the status register is read during a random read cycle, a read command  
(00h or 50h) should be given before sequential page read cycle.  
3.6 Read ID.  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an  
address input of 00h. Four read cycles sequentially output the 1st cycle (ADh), and 2nd cycle (the device code) and  
3rd cycle ID, 4th cycle ID, respectively. The command register remains in Read ID mode until further commands are  
issued to it. Figure 18 shows the operation sequence, while Tables 16 explain the byte meaning.  
3.7 Reset.  
The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state  
during random read, program or erase mode, the reset operation will abort these operations. The contents of memory  
cells being altered are no longer valid, as the data will be partially programmed or erased.  
The command register is cleared to wait for the next command, and the Status Register is cleared to value C0h when  
WP is high. Refer to table 14 for device status after reset operation. If the device is already in reset state a new reset  
command will not be accepted by the command register. The R/B pin transitions to low for tRST after the Reset com-  
mand is written. Refer to Figure 21 below.  
Rev 0.5 / Jul. 2007  
14  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
4. OTHER FEATURES  
4.1 Data Protection for Power on/off Sequence  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal  
voltage detector disables all functions whenever Vcc is below about 2.0V(3.0V device). WP pin provides hardware pro-  
tection and is recommended to be kept at VIL during power-up and power-down. A recovery time of minimum 10us is  
required before internal circuit gets ready for any command sequences as shown in Figure 22. The two-step command  
sequence for program/erase provides additional software protection.  
4.2 Ready/Busy.  
The device has a Ready/Busy output that provides method of indicating the completion of a page program, erase,  
copy-back and random read completion. The R/B pin is normally high and goes to low when the device is busy (after a  
reset, read, program, erase operation). It returns to high when the internal controller has finished the operation. The  
pin is an open-drain driver thereby allowing two or more R/B outputs to be Or-tied.  
Because pull-up resistor value is related to tr(R/B) and current drain during busy (Ibusy), an appropriate value can be  
obtained with the following reference chart in Figure 23. Its value can be determined by the following guidance.  
Rev 0.5 / Jul. 2007  
15  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Valid Block Number  
NVB  
4016  
4096  
Blocks  
Table 7: Valid Blocks Number  
NOTE:  
1. The 1st block is guaranteed to be a valid block up to 1K cycles with ECC. (1bit/528bytes)  
Value  
3.3V  
Symbol  
Parameter  
Unit  
Ambient Operating Temperature (Temperature Range Option 1)  
Ambient Operating Temperature (Industrial Temperature Range)  
Temperature Under Bias  
0 to 70  
V
TA  
-40 to 85  
-50 to 125  
-65 to 150  
TBIAS  
TSTG  
Storage Temperature  
(2)  
Input or Output Voltage  
Supply Voltage  
-0.6 to 4.6  
-0.6 to 4.6  
V
VIO  
Vcc  
V
Table 8: Absolute maximum ratings  
NOTE:  
1. Except for the rating “Operating Temperature Range, stresses above those listed in the Table “Absolute  
Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and operation of  
the device at these or any other conditions above those indicated in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
2. Minimum Voltage may undershoot to -2V during transition and for less than 20ns during transitions.  
Rev 0.5 / Jul. 2007  
16  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
$ꢆꢃꢋaꢋ$ꢈ  
$''5(66  
5(*,67(5ꢀ  
&2817(5  
352*5$0  
(5$6(  
;
&21752//(5  
+9ꢋ*(1(5$7,21  
ꢄꢃꢊꢅ0ELWꢎꢅꢃꢇ0ELW  
1$1'ꢅ)ODVK  
0(025<ꢅ$55$<  
'
(
&
2
'
(
5
$/(  
&/(  
:(  
&(  
:3  
&200$1'  
,17(5)$&(  
/2*,&  
5(  
3$*(ꢋ%8))(5  
<ꢋ'(&2'(5  
&200$1'  
5(*,67(5  
'$7$  
5(*,67(5  
%8))(56  
,2  
Figure 5: Block Diagram  
Rev 0.5 / Jul. 2007  
17  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
3.3Volt  
Parameter  
Symbol  
Test Conditions  
Unit  
Min  
Typ  
Max  
tRC=30ns  
CE=VIL,  
IOUT=0mA  
Sequential  
Read  
ICC1  
-
15  
30  
mA  
Operating  
Current  
Program  
Erase  
ICC2  
ICC3  
-
-
-
-
15  
15  
30  
30  
mA  
mA  
CE=VIH,  
WP=0V/Vcc  
Stand-by Current (TTL)  
Stand-by Current (CMOS)  
ICC4  
-
-
-
1
mA  
uA  
CE=Vcc-0.2,  
WP=0V/Vcc  
ICC5  
ILI  
10  
50  
Input Leakage Current  
Output Leakage Current  
Input High Voltage  
VIN=0 to Vcc (max)  
-
-
-
-
-
-
uA  
uA  
V
± 10  
± 10  
Vcc+0.3  
Vccx0.2  
-
ILO  
VIH  
VIL  
VOUT =0 to Vcc (max)  
-
Vccx0.8  
-0.3  
2.4  
-
Input Low Voltage  
-
V
Output High Voltage Level  
Output Low Voltage Leve  
VOH  
VOL  
IOH=-400uA  
IOL=2.1mA  
V
-
0.4  
V
IOL  
(R/B)  
Output Low Current (R/B)  
VOL=0.4V  
8
10  
-
mA  
Table 9: DC and Operating Characteristics  
Value  
3.3Volt  
0V to Vcc  
5ns  
Parameter  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load (2.7V - 3.6V)  
Vcc / 2  
1 TTL GATE and CL=50pF  
Table 10: AC Conditions  
Rev 0.5 / Jul. 2007  
18  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Item  
Input / Output Capacitance  
Input Capacitance  
Symbol  
CI/O  
Test Condition  
VIL=0V  
Min  
Max  
10  
Unit  
pF  
-
-
CIN  
VIN=0V  
10  
pF  
Table 11: Pin Capacitance (TA=25C, F=1.0MHz)  
Parameter  
Symbol  
tPROG  
NOP  
Min  
Typ  
Max  
700  
1
Unit  
Program Time  
-
-
-
-
200  
us  
Main Array  
Spare Array  
-
-
Cycles  
Cycles  
ms  
Number of partial Program Cycles in the same page  
Block Erase Time  
NOP  
2
tBERS  
2
3
Table 12: Program / Erase Characteristics  
Rev 0.5 / Jul. 2007  
19  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
3.3Volt  
Parameter  
Symbol  
Unit  
Min  
15  
5
Max  
CLE Setup time  
tCLS  
tCLH  
tCS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLE Hold time  
CE setup time  
20  
5
CE hold time  
tCH  
WE pulse width  
tWP  
tALS  
tALH  
tDS  
15  
15  
5
ALE setup time  
ALE hold time  
Data setup time  
15  
5
Data hold time  
tDH  
tWC  
tWH  
tR  
Write Cycle time  
30  
10  
WE High hold time  
Data Transfer from Cell to register  
ALE to RE Delay  
12  
tAR  
10  
10  
20  
15  
CLE to RE Delay  
tCLR  
tRR  
Ready to RE Low  
RE Pulse Width  
tRP  
WE High to Busy  
Read Cycle Time  
RE Access Time  
tWB  
tRC  
100  
30  
tREA  
tRHZ  
tCHZ  
tOH  
tREH  
tIR  
18  
50  
50  
RE High to Output High Z  
CE High to Output High Z  
RE or CE high to Output hold  
RE High Hold Time  
Output High Z to RE low  
CE Access Time  
10  
10  
0
tCEA  
tWHR  
tRB  
25  
WE High to RE low  
60  
Last RE High to busy (at sequential read)  
CE High to Ready (in case of interception by CE at read)  
CE High Hold Time (at the last serial read)(3)  
Device Resetting Time (Read / Program / Erase)  
Write Protection time  
100  
(4)  
ns  
ns  
us  
ns  
tCRY  
tCEH  
tRST  
60+tr(R/B#)  
100  
100  
(1,2)  
5/10/500  
(5)  
tWW  
Table 13: AC Timing Characteristics  
NOTE:  
1. If Reset Command (FFh) is written at Ready state, the device goes into Busy for maximum 5us  
2. The time to Ready depends on the value of the pull-up resistor tied R/B pin.ting time.  
3. To break the sequential read cycle, CE must be held for longer time than tCEH.  
4. The time to Ready depends on the value of the pull-up resistor tied R/B pin.  
5. Program / Erase Enable Operation : WP high to WE High.  
Program / Erase Disable Operation : WP Low to WE High.  
Rev 0.5 / Jul. 2007  
20  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Pagae  
Program  
Block  
Erase  
Cache  
Read  
IO  
Read  
CODING  
0
Pass / Fail  
Pass / Fail  
NA  
Pass: ‘0’ Fail: ‘1’  
Pass: ‘0’ Fail: ‘1’ (Only for  
Cache Program, else Don’t  
care)  
1
NA  
NA  
NA  
2
3
4
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
P/E/R  
Controller Bit  
5
6
7
Ready/Busy  
Ready/Busy  
Write Protect  
Ready/Busy  
Ready/Busy  
Write Protect  
Ready/Busy  
Ready/Busy  
Write Protect  
Active: ‘0’ Idle: ‘1’  
Busy: ‘0’ Ready’: ‘1’  
Ready/Busy  
Protected: ‘0’  
Not Protected: ‘1’  
Table 14: Status Register Coding  
DEVIIDENTIFIER CYCLE  
DESCRIPTION  
1st  
Manufacturer Code  
Device Identifier  
2nd  
Table 15: Device Identifier Coding  
1st cycle  
(Manufacture Code)  
2nd cycle  
(Device Code)  
Part Number  
Voltage  
Bus Width  
HY27US0812(1/2)B  
HY27US1612(1/2)B  
3.3V  
3.3V  
x8  
ADh  
ADh  
76h  
56h  
x16  
Table 16: Read ID Data Table  
Rev 0.5 / Jul. 2007  
21  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
W&/  
6
W&/+  
W&+  
&/(  
W&6  
&(  
W:3  
:(  
W$/6  
W$/+  
$/(  
W'6  
W'+  
,ꢀ2ꢋ[  
&RPPDQG  
Figure 6: Command Latch Cycle  
W&/6  
W&6  
&/(  
&(  
W:&  
W:&  
W:&  
W:3  
W:3  
W:3  
W:3  
:(  
W:+  
W:+  
W:+  
W$/6  
W$/6  
W$/6  
W$/+  
W$/+  
W$/+  
W$/+  
W'+  
W$/6  
$/(  
W'+  
W'+  
W'+  
W'6  
W'6  
W'6  
W'6  
,ꢉ2[  
&ROꢌꢋ$GGꢇ  
&ROꢌꢋ$GGꢆ  
5RZꢋ$GGꢇ  
5RZꢋ$GGꢆ  
Figure 7: Address Latch Cycle  
Rev 0.5 / Jul. 2007  
22  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
W&/+  
W&+  
&/(  
&(  
W:&  
$/(  
W$/6  
W:3  
W:3  
W:3  
:(  
W:+  
W'+  
W'+  
W'+  
',1ꢀꢂ  
W'6  
W'6  
',1ꢀILQDOꢃ  
W'6  
',1ꢀꢁ  
,ꢀ2[  
Figure 8. Input Data Latch Cycle  
t
CEA  
CE  
t
CHZ*  
t
REH  
t
REA  
t
REA  
tREA  
t
OH  
t
RP  
RE  
t
RHZ  
t
RHZ*  
OH  
t
I/Ox  
Dout  
Dout  
Dout  
t
RR  
t
RC  
R/B  
Notes : Transition is measured ±±22mꢀ from steady state voltage with load.  
This parameter is sampled and not 122% tested.  
Figure 9: Sequential Out Cycle after Read (CLE=L, WE=H, ALE=L)  
Rev 0.5 / Jul. 2007  
23  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
tCLR  
CLE  
CE  
tCLS  
tCS  
tCLH  
tCH  
tWP  
WE  
tCEA  
t2H  
tCHZ  
tWHR  
RE  
t2H  
tDH  
tREA  
tDS  
72h  
tIR  
tRH=  
I/Ox  
Status Output  
Figure 10: Status Read Cycle  
&/(  
&(  
W&(+  
W&+=  
W:&  
:(  
$/(  
5(  
W:%  
W$5  
W&5<  
W5+=  
W5  
W5&  
W53  
ꢈꢈKꢋRUꢋꢈꢇK &ROꢌꢋ$GGꢇ 5RZꢋ$GGꢇ 5RZꢋ$GGꢆ 5RZꢋ$GGꢅ  
'RXWꢋ1  
'RXWꢋ1ꢍꢇ  
'RXWꢋ1ꢍꢆ  
'RXWꢋꢃꢆꢁ  
,ꢀ2[  
&ROXPQ  
W5%  
3DJHꢎ5RZꢏꢋ$GGUHVV  
$GGUHVV  
%XV\  
5ꢀ%  
Figure 11: Read1 Operation (Read One Page)  
Rev 0.5 / Jul. 2007  
24  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
&/(  
&(  
:(  
W:%  
W&+=  
W$5  
$/(  
W5  
W5&  
5(  
W55  
ꢈꢈKꢋRUꢋꢈꢇK &ROꢌꢋ$GGꢇ 5RZꢋ$GGꢇ 5RZꢋ$GGꢆ 5RZꢋ$GGꢅ  
'RXWꢋ1  
'RXWꢋ1ꢍꢇ  
'RXWꢋ1ꢍꢆ  
,ꢀ2[  
5ꢀ%  
&ROꢌꢋ$GG  
5RZꢋ$GG  
%XV\  
Figure 12: Read1 Operation intercepted by CE  
&/(  
&(  
:(  
$/(  
5(  
'RXW  
'RXW  
'RXW  
ꢃꢆꢁ  
'RXW  
ꢃꢆꢁ  
ꢃꢈK &ROꢌꢋ$GGꢇ 5RZꢋ$GGꢇ 5RZꢋ$GGꢆ 5RZꢋ$GGꢅ  
ꢃꢇꢆꢍ1  
ꢃꢇꢆꢍ1  
,ꢀ2[  
5ꢀ%  
5HDG\  
%XV\  
%XV\  
0
0ꢍꢇ  
1
2XWSXW  
2XWSXW  
Figure 13: Read2 Operation (Sequential Row Read)  
Rev 0.5 / Jul. 2007  
25  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
&/(  
&(  
:(  
$/(  
5(  
'RXW  
1
'RXW  
ꢃꢆꢁ  
'RXW  
'RXW  
1ꢍꢇ  
'RXW  
ꢃꢆꢁ  
'RXW  
ꢈꢈK &ROꢌꢋ$GGꢇ 5RZꢋ$GGꢇ 5RZꢋ$GGꢆ 5RZꢋ$GGꢅ  
,ꢀ2[  
5ꢀ%  
5HDG\  
%XV\  
%XV\  
0
0ꢍꢇ  
1
2XWSXW  
2XWSXW  
Figure 14: Sequential Row Read Operation Within a Block  
&/(  
&(  
W:&  
W:&  
W:&  
:(  
W:%  
W352*  
$/(  
5(  
'LQ  
1
'LQ  
0
,ꢉ2[  
&ROꢅꢀ$GGꢂ  
ꢂꢁK  
ꢇꢁK  
,ꢈ2R  
ꢄꢁK  
5RZꢀ$GGꢂ 5RZꢀ$GGꢆ 5RZꢀ$GGꢉ  
6HULDOꢀ'DWD  
3URJUDP  
5HDGꢀ6WDWXV  
&RPPDQG  
&ROXPQ  
$GGUHVV  
5RZꢀ$GGUHVV  
[ꢄꢀꢅꢃꢀXSꢀWRꢀꢆꢃꢇꢀ%\WH  
[ꢃꢈꢀꢅꢀꢃꢀXSꢀWSꢀꢇꢆꢈꢀ:RUG  
6HULDOꢀ,QSXW  
,QSXWꢀ&RPPDQG  
&RPPDQG  
5ꢉ%  
,ꢁ2R ꢂꢀ6XFFHVVIXOꢀ3URJUDP  
,ꢁ2R ꢃꢀ(UURUꢀLQꢀ3URJUDP  
Figure 15: Page Program Operation  
Rev 0.5 / Jul. 2007  
26  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Figure 16 : Copy Back Program  
Rev 0.5 / Jul. 2007  
27  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
&/(  
&(  
W:&  
:(  
W:%  
W%(56  
$/(  
5(  
,ꢉ2  
[
ꢂꢈK 5RZꢋ$GGꢇ 5RZꢋ$GGꢆ 5RZꢋ$GGꢅ 'ꢈK  
ꢁꢈK  
,ꢀ2ꢈ  
5RZꢋ$GGUHVV  
5ꢉ%  
%86<  
$XWRꢋ%ORFNꢋ(UDVHꢋ6HWXSꢋ&RPPDQG  
5HDGꢋ6WDWXV ,ꢀ2ꢈ ꢈꢋ6XFFHVVIXOꢋ(UDVH  
&RPPDQG ,ꢀ2ꢈ ꢇꢋ(UURUꢋLQꢋ(UDVH  
(UDVHꢋ&RPPDQG  
Figure 17: Block Erase Operation (Erase One Block)  
CLE  
CE  
WE  
tAR  
ALE  
RE  
tREA  
90h  
00h  
ADh  
ꢁꢂK  
I/O x  
Read ID Command Address 1 cycle  
Maker Code Device Code  
Figure 18: Read ID Operation  
Rev 0.5 / Jul. 2007  
28  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
System Interface Using CE don’t care  
To simplify system interface, CE may be deasserted during data loading or sequential data-reading as shown below.  
So, it is possible to connect NAND Flash to a microporcessor. The only function that was removed from standard NAND  
Flash to make CE don’t care read operation was disabling of the automatic sequential read function. (HY27US(08/16)122B)  
&/(  
&(ꢋGRQ¶WꢐFDUH  
&(  
:(  
$/(  
ꢉꢈK  
6WDUWꢋ$GGꢌꢎꢄ&\FOHꢏ  
'DWDꢋ,QSXW  
'DWDꢋ,QSXW  
ꢇꢈK  
,ꢉ2[  
Figure 19: Program Operation with CE don’t-care.  
&/(  
,IꢋVHTXHQWLDOꢋURZꢋUHDGꢋHQDEOHGꢑ  
&(ꢋPXVWꢋEHꢋKHOGꢋORZꢋGXULQJꢋW5ꢌ  
&(ꢋGRQ¶WꢐFDUH  
&(  
5(  
$/(  
5ꢀ%  
W5  
:(  
,ꢀ2[  
ꢈꢈK  
6WDUWꢋ$GGꢌꢎꢄ&\FOHꢏ  
ꢅꢈK  
'DWDꢋ2XWSXWꢎVHTXHQWLDOꢏ  
Figure 20: Read Operation with CE don’t-care.  
Rev 0.5 / Jul. 2007  
29  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
:(  
$/(  
&/(  
5(  
,2ꢁꢏꢀ  
5ꢉ%  
))K  
W
567  
Figure 21: Reset Operation  
9FF  
97+  
W
:3  
:(  
ꢃꢂXV  
Figure 22: Power On and Data Protection Timing  
VTH = 2.5 Volt for 3.3 Volt Supply devices  
Rev 0.5 / Jul. 2007  
30  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
5S  
LEXV\  
9FF  
5HDG\  
9FF  
5ꢁ%  
92+  
RSHQꢀGUDLQꢀRXWSXW  
92/ꢓꢋ ꢈꢌꢄ9ꢋ92+ꢓꢋꢆꢌꢄ9  
92/  
%XV\  
WI  
WU  
*1'  
'HYLFH  
ꢋꢋ)LJꢌꢋ5SꢋYVꢋWUꢋWIꢋꢒꢋ5SꢋYVꢋLEXV\  
#ꢀ9FFꢀ ꢀꢉꢊꢉ97Dꢀ ꢀꢇꢆƒ&ꢋꢀ&  ꢆꢂS)  
/
ꢅꢌꢅ  
ꢅꢉꢇ  
LEXV\  
ꢆꢊꢈ  
ꢇꢌꢇ  
ꢅꢈꢈQ  
ꢆꢈꢈQ  
ꢇꢈꢈQ  
ꢅP  
ꢇꢌꢂꢃ  
ꢇꢉꢊ  
ꢆP  
ꢇP  
ꢊꢂ  
ꢈꢌꢉꢆꢃ  
ꢄꢌꢆ  
ꢄꢌꢆ  
ꢇN  
ꢄꢌꢆ  
ꢆN  
ꢄꢌꢆ  
WI  
ꢅN  
ꢄN  
5SꢋꢎRKPꢏ  
5SꢋYDOXHꢋJXLGHQFH  
9FFꢋꢎ0D[ꢌꢏꢋꢐꢋ92/ꢋꢎ0D[ꢌꢏ  
ꢅꢌꢆ9  
5SꢋꢎPLQꢏꢋ  
 
,2/ꢋꢍꢋ™,  
/
ꢉP$ꢋꢍꢋ™,  
/
ZKHUHꢋ,/ꢋLVꢋWKHꢋVXPꢋRIꢋWKHꢋLQSXWꢋFXUUQWVꢋRIꢋDOOꢋGHYLFHVꢋWLHGꢋWRꢋWKHꢋ5ꢀ%ꢋSLQꢌ  
5SꢎPD[ꢏꢋLVꢋGHWHUPLQHGꢋE\ꢋPD[LPXPꢋSHUPLVVLEOHꢋOLPLWꢋRIꢋWU  
Figure 23: Ready/Busy Pin electrical specifications  
Rev 0.5 / Jul. 2007  
31  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
[ꢇꢂꢋ'HYLFHV  
[ꢉꢋ'HYLFHV  
$UHDꢋ$  
ꢎꢈꢈKꢏ  
$UHDꢋ&  
ꢎꢃꢈKꢏ  
$UHDꢋ$  
ꢎꢈꢈKꢏ  
$UHDꢋ%  
ꢎꢈꢇKꢏ  
$UHDꢋ&  
ꢎꢃꢈKꢏ  
%\WHVꢋꢈꢐꢆꢃꢃ  
%\WHVꢋꢆꢃꢂꢐꢆꢂꢅ  
%\WHVꢋꢈꢐꢆꢃꢃ  
%\WHVꢋꢆꢃꢂꢐꢃꢇꢇ  
%\WHVꢋꢃꢇꢆꢐꢃꢆꢁ  
3DJHꢋ%XIIHU  
3DJHꢋ%XIIHU  
$
&
$
%
&
3RLQWHU  
3RLQWHU  
ꢎꢈꢈKꢑꢃꢈKꢏ  
ꢎꢈꢈKꢑꢈꢇKꢑꢃꢈKꢏ  
Figure 24: Pointer operations  
$5($ꢋ$  
$GGUHVV  
,QSXWV  
$GGUHVV  
,QSXWV  
,ꢀ2  
,ꢀ2  
ꢈꢈK  
ꢉꢈK  
'DWDꢋ,QSXW  
ꢇꢈK  
ꢈꢈK  
ꢉꢈK  
'DWDꢋ,QSXW  
ꢇꢈK  
$UHDVꢋ$ꢑꢋ%ꢑꢋ&ꢋFDQꢋEHꢋSURJUDPPHGꢋGHSHQGLQJꢋRQꢋKRZꢋPXFKꢋGDWDꢋLVꢋLQSXWꢌꢋ6XEVHTXHQWꢋꢈꢈKꢋFRPPDQGVꢋFDQꢋEHꢋRPLWWHGꢌ  
$5($ꢋ%  
$GGUHVV  
,QSXWV  
$GGUHVV  
,QSXWV  
ꢈꢇK  
ꢉꢈK  
'DWDꢋ,QSXW  
ꢇꢈK  
ꢈꢇK  
ꢉꢈK  
'DWDꢋ,QSXW  
ꢇꢈK  
$UHDVꢋ%ꢑꢋ&ꢋFDQꢋEHꢋSURJUDPPHGꢋGHSHQGLQJꢋRQꢋKRZꢋPXFKꢋGDWDꢋLVꢋLQSXWꢌꢋ7KHꢋꢈꢇKꢋFRPPDQGꢋPXVWꢋEHꢋUHꢐLVVXHGꢋEHIRUHꢋHDFKꢋSURJUDPꢌ  
$5($ꢋ&  
$GGUHVV  
,QSXWV  
$GGUHVV  
,QSXWV  
,ꢀ2  
ꢃꢈK  
ꢉꢈK  
'DWDꢋ,QSXW  
ꢇꢈK  
ꢃꢈK  
ꢉꢈK  
'DWDꢋ,QSXW  
ꢇꢈK  
2QO\ꢋ$UHDVꢋ&ꢋFDQꢋEHꢋSURJUDPPHGꢌꢋ6XEVHTXHQWꢋꢃꢈKꢋFRPPDQGꢋFDQꢋEHꢋRPLWWHGꢌ  
Figure 25: Pointer Operations for porgramming  
Rev 0.5 / Jul. 2007  
32  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Bad Block Management  
Devices with Bad Blocks have the same quality level and the same AC and DC characteristics as devices where all the  
blocks are valid. A Bad Block does not affect the performance of valid blocks because it is isolated from the bit line and  
common source line by a select transistor. The devices are supplied with all the locations inside valid blocks  
erased(FFh).  
The Bad Block Information is written prior to shipping. Any block where the 6th Byte/ 3rd Word in the spare area of  
the 1st or 2nd page (if the 1st page is Bad) does not contain FFh is a Bad Block. The Bad Block Information must be  
read before any erase is attempted as the Bad Block Information may be erased. For the system to be able to recog-  
nize the Bad Blocks based on the original information it is recommended to create a Bad Block table following the flow-  
chart shown in Figure 26. The 1st block, which is placed on 00h block address is guaranteed to be a valid block.  
Block Replacement  
Over the lifetime of the device additional Bad Blocks may develop. In this case the block has to be replaced by copying  
the data to a valid block. These additional Bad Blocks can be identified as attempts to program or erase them will give  
errors in the Status Register.  
As the failure of a page program operation does not affect the data in other pages in the same block, the block can be  
replaced by re-programming the current data and copying the rest of the replaced block to an available valid block.  
The Copy Back Program command can be used to copy the data to a valid block.  
See the “Copy Back Program” section for more details.  
Refer to Table 18 for the recommended procedure to follow if an error occurs during an operation.  
Operation  
Erase  
Recommended Procedure  
Block Replacement  
Program  
Read  
Block Replacement  
ECC (with 1bit/528byte)  
Table 18: Block Failure  
67$57  
%ORFNꢋ$GGUHVV  
%ORFNꢋꢈ  
,QFUHPHQW  
%ORFNꢋ$GGUHVV  
8SGDWH  
%DGꢋ%ORFNꢋWDEOH  
'DWD  
 ))K"  
1R  
1R  
<HV  
/DVW  
EORFN"  
<HV  
(1'  
Figure 26: Bad Block Management Flowchart  
Rev 0.5 / Jul. 2007  
33  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
Write Protect Operation  
The Erase and Program Operations are automatically reset when WP goes Low (tWW = 100ns, min). The operations  
are enabled and disabled as follows (Figure 27~30)  
:(  
W
::  
ꢄꢂK  
,ꢁ2[  
ꢃꢂK  
5ꢁ%  
Figure 27: Enable Programming  
:(  
W
::  
ꢄꢂK  
ꢃꢂK  
,ꢁ2[  
5ꢁ%  
Figure 28: Disable Programming  
Rev 0.5 / Jul. 2007  
34  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
:(  
W
::  
ꢈꢂK  
'ꢂK  
,ꢁ2[  
5ꢁ%  
Figure 29: Enable Erasing  
:(  
W
::  
ꢈꢂK  
,ꢁ2[  
'ꢂK  
5ꢁ%  
Figure 30: Disable Erasing  
Rev 0.5 / Jul. 2007  
35  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
ꢌꢄ  
H
$ꢇ  
$
'
%
/
Į
$ꢃ  
ꢇꢌ  
ꢇꢆ  
',(  
(ꢃ  
(
&
&3  
Figure 31: 48pin-TSOP1, 12 x 20mm, Package Outline  
millimeters  
Symbol  
Min  
Typ  
Max  
1.200  
0.150  
1.030  
0.250  
0.200  
0.100  
12.120  
20.100  
18.500  
A
A1  
A2  
B
0.050  
0.980  
0.170  
0.100  
C
CP  
D
11.910  
19.900  
18.300  
12.000  
20.000  
18.400  
0.500  
E
E1  
e
L
0.500  
0
0.680  
5
alpha  
Table 19: 48pin-TSOP1, 12 x 20mm, Package Mechanical Data  
Rev 0.5 / Jul. 2007  
36  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
$
$ꢊ  
(
$ꢃ  
'
Į
&3  
&ꢃ  
Figure 32. 48pin-USOP1, 12 x 17mm, Package Outline  
millimeters  
Symbol  
Min  
Typ  
Max  
0.650  
0.080  
0.570  
0.230  
0.175  
0.750  
0.100  
17.100  
12.120  
15.500  
A
A1  
A2  
B
0
0.050  
0.520  
0.160  
0.100  
0.650  
0.470  
0.130  
0.065  
0.450  
C
C1  
CP  
D
16.900  
11.910  
15.300  
17.000  
12.000  
15.400  
0.500  
D1  
E
e
alpha  
0
8
Table 20: 48pin-USOP1, 12 x 17mm, Package Mechanical Data  
Rev 0.5 / Jul. 2007  
37  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
'
'ꢇ  
'ꢃ  
6'  
)'ꢃ  
)'  
H
H
6(  
(
(ꢇ (ꢃ  
)(  
)(ꢃ  
%$//ꢀ³FS  
$
´
H
E
$ꢇ  
$ꢃ  
Figure 33. 63-ball FBGA - 9 x 11 ball array 0.8mm pitch, Pakage Outline  
NOTE: Drawing is not to scale.  
Millimeters  
Typ  
Symbol  
Min  
0.80  
0.25  
0.55  
0.40  
8.90  
Max  
1.00  
0.35  
0.65  
0.50  
9.10  
A
A1  
A2  
b
0.90  
0.30  
0.60  
0.45  
D
9.00  
D1  
D2  
E
E1  
E2  
e
4.00  
7.20  
11.00  
5.60  
8.80  
10.90  
11.10  
0.80  
FD  
FD1  
FE  
FE1  
SD  
SE  
2.50  
0.90  
2.70  
1.10  
0.40  
0.40  
Rev 0.5 / Jul. 2007  
38  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
MARKING INFORMATION - TSOP1/USOP  
Packag  
Marking Exam ple  
K
2
O
x
R
B
TSOP1  
/
H
x
Y
x
2
x
7
x
U
S
x
x
1
USOP  
Y
W
W
x
x
- hynix  
- KOR  
: Hynix Symbol  
: Origin Country  
- HY27USxx12xB xxxx  
HY: Hynix  
: Part Number  
27: NAND Flash  
U: Power Supply  
S: Classification  
xx: Bit Organization  
12: Density  
: U(2.7V~3.6V)  
: Single Level Cell+Single Die+Small Block  
: 08(x8), 16(x16)  
: 512Mbit  
: 1nCE & 1R/nB; Sequential Row Read Enable  
: 1nCE & 1R/nB; Sequential Row Read Disable  
: 3rd Generation  
x: Mode  
B: Version  
x: Package Type  
x: Package Material  
: T(48-TSOP1), S(48-USOP)  
: Blank(Normal), P(Lead Free)  
: C(0~70), I(-40~85)  
: B(Included Bad Block), S(1~5 Bad Block),  
P(All Good Block)  
x: Operating Temperature  
x: Bad Block  
- Y: Year (ex: 5=year 2005, 06= year 2006)  
- ww: Work Week (ex: 12= work week 12)  
- xx: Process Code  
Note  
: Fixed Item  
- Capital Letter  
: Non-fixed Item  
- Sm all Letter  
Rev 0.5 / Jul. 2007  
39  
HY27US(08/16)12(1/2)B Series  
512Mbit (64Mx8bit / 32Mx16bit) NAND Flash  
MARKING INFORMATION - FBGA  
Packag  
Marking Exam ple  
K
2
O
x
R
B
H
x
Y
x
2
x
7
x
U
S
0
8
1
FBGA  
Y
W
W
x
x
- hynix  
- KOR  
: Hynix Symbol  
: Origin Country  
- HY27U0812xB xxxx  
HY: Hynix  
: Part Number  
27: NAND Flash  
U: Power Supply  
S: Classification  
08: Bit Organization  
12: Density  
: U(2.7V~3.6V)  
: Single Level Cell+Single Die+Small Block  
: 08(x8)  
: 512Mbit  
: 1nCE & 1R/nB; Sequential Row Read Enable  
: 1nCE & 1R/nB; Sequential Row Read Disable  
: 3rd Generation  
x: Mode  
B: Version  
x: Package Type  
x: Package Material  
: F(63FBGA)  
: Blank(Normal), P(Lead Free)  
: C(0~70), I(-40~85)  
: B(Included Bad Block), S(1~5 Bad Block),  
P(All Good Block)  
x: Operating Temperature  
x: Bad Block  
- Y: Year (ex: 5=year 2005, 06= year 2006)  
- ww: Work Week (ex: 12= work week 12)  
- xx: Process Code  
Note  
: Fixed Item  
- Capital Letter  
: Non-fixed Item  
- Sm all Letter  
Rev 0.5 / Jul. 2007  
40  

相关型号:

HY27US16122B-TPCP

Flash, 32MX16, 18ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16122B-TPIP

Flash, 32MX16, 18ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US161G1M

1Gbit (128Mx8bit / 64Mx16bit) NAND Flash
HYNIX

HY27US161G1MSCS

Flash, 64MX16, 45ns, PDSO48, 12 X 17 MM, 0.65 MM PITCH, USOP1-48
HYNIX

HY27US161G1MSIS

Flash, 64MX16, 45ns, PDSO48, 12 X 17 MM, 0.65 MM PITCH, USOP1-48
HYNIX

HY27US161G1MSPCP

Flash, 64MX16, 45ns, PDSO48, 12 X 17 MM, 0.65 MM PITCH, LEAD FREE, USOP1-48
HYNIX

HY27US161G1MSPES

Flash, 64MX16, 45ns, PDSO48, 12 X 17 MM, 0.65 MM PITCH, LEAD FREE, USOP1-48
HYNIX

HY27US161G1MSPMB

暂无描述
HYNIX

HY27US161G1MSPMS

Flash, 64MX16, 45ns, PDSO48, 12 X 17 MM, 0.65 MM PITCH, LEAD FREE, USOP1-48
HYNIX

HY27US161G1MTCB

Flash, 64MX16, 45ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48
HYNIX

HY27US161G1MTCP

Flash, 64MX16, 45ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48
HYNIX

HY27US161G1MTES

Flash, 64MX16, 45ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48
HYNIX