HY27US16561A-TEP [HYNIX]

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48;
HY27US16561A-TEP
型号: HY27US16561A-TEP
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48

光电二极管
文件: 总47页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Document Title  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash Memory  
Revision History  
Revision  
History  
No.  
Draft Date  
Remark  
0.0  
Apr. 04. 2005  
Preliminary  
Initial Draft.  
1) Change AC Parameter  
tCRY(1.8V)  
Before  
After  
50+tr(R/B#)  
60+tr(R/B#)  
0.1  
Jul. 07. 2005  
Preliminary  
2) Change 256Mb Package Type.  
- WSOP package is changed to USOP package.  
- Figure & dimension are changed.  
1) Correct the test Conditions (DC Characteristics table)  
Test Conditions (ICC1)  
Test Conditions (ILI, ILO)  
tRC=50ns,  
CE#=VIL,  
IOUT=0mA  
Before  
After  
VIN=VOUT=0 to 3.6V  
tRC(1.8V=60ns,  
3.3V=50ns)  
CE#=VIL,  
VIN=VOUT=0 to Vcc (max)  
IOUT=0mA  
2) Change AC Conditions table  
0.2  
Aug. 08. 2005 Preliminary  
3) Add tWW parameter ( tWW = 100ns, min)  
- Texts & Figures are added.  
- tWW is added in AC timing characteristics table.  
4) Edit Copy Back Program operation step  
5) Edit System Interface Using CE don’t care Figures.  
6) Correct Address Cycle Map.  
7) Change NOP (table 11)  
Main Array  
Spare Array  
Before  
After  
1
2
2
3
Rev 0.5 / Jun. 2006  
1
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Revision History  
- Continued -  
Revision  
No.  
History  
Draft Date Remark  
8) Correct PKG dimension (TSOP, USOP PKG)  
CP  
Before  
After  
0.050  
0.100  
9) Change VIL parameter (max.)  
1.8V  
3.3V  
0.2xVcc  
0.8  
Before  
After  
0.2xVcc  
0.4  
0.2  
Aug. 08. 2005 Preliminary  
10) Change AC Parameter  
tOH  
tRP  
30  
tREA  
35  
Before  
After  
15  
10  
25  
30  
tR (1.8V)  
tCRY (1.8V)  
50+tr(R/B#)(4)  
80+tr(R/B#)(4)  
tCRY (3.3V)  
50+tr(R/B#)(4)  
60+tr(R/B#)(4)  
Before  
After  
12  
15  
0.3  
0.4  
1) Correct USOP figure.  
1) Correct Figure 32.  
Nov. 07. 2005 Preliminary  
Feb. 06. 2006 Preliminary  
1) Add ECC algorithm. (1bit/512bytes)  
2) Delet Preliminary.  
3) Change AC Parameter  
tWHR  
0.5  
Jun. 20. 2006  
Before  
After  
60 ns  
50 ns  
4) Correct Read ID naming  
Rev 0.5 / Jun. 2006  
2
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
FEATURES SUMMARY  
HIGH DENSITY NAND FLASH MEMORIES  
FAST BLOCK ERASE  
- Block erase time: 2ms (Typ.)  
- Cost effective solutions for mass storage applications  
STATUS REGISTER  
NAND INTERFACE  
- x8 or x16 bus width.  
- Multiplexed Address/ Data  
ELECTRONIC SIGNATURE  
- 1st cycle : Manufacturer Code  
- 2nd cycle: Device Code  
- Pinout compatibility for all densities  
SUPPLY VOLTAGE  
- 3.3V device: VCC = 2.7 to 3.6V  
CHIP ENABLE DON'T CARE  
- Simple interface with microcontroller  
: HY27USXX561A  
- 1.8V device: VCC = 1.7 to 1.95V : HY27SSXX561A  
AUTOMATIC PAGE 0 READ AT POWER-UP OPTION  
- Boot from NAND support  
- Automatic Memory Download  
Memory Cell Array  
= (512+16) Bytes x 32 Pages x 2,048 Blocks  
= (256+8) Words x 32 pages x 2,048 Blocks  
SERIAL NUMBER OPTION  
HARDWARE DATA PROTECTION  
PAGE SIZE  
- Program/Erase locked during Power transitions  
- x8 device : (512 + 16 spare) Bytes  
: HY27(U/S)S08561A  
DATA INTEGRITY  
- x16 device: (256 + 8 spare) Words  
: HY27(U/S)S16561A  
- 100,000 Program/Erase cycles  
(with 1bit/512byte ECC)  
- 10 years Data Retention  
BLOCK SIZE  
PACKAGE  
- x8 device: (16K + 512 spare) Bytes  
- x16 device: (8K + 256 spare) Words  
- HY27(U/S)S(08/16)561A-T(P)  
: 48-Pin TSOP1 (12 x 20 x 1.2 mm)  
- HY27(U/S)S(08/16)561A-T (Lead)  
- HY27(U/S)S(08/16)561A-TP (Lead Free)  
PAGE READ / PROGRAM  
- Random access: 3.3V: 12us (max.)  
1.8V: 15us (max.)  
- HY27(U/S)S(08/16)561A-S(P)  
: 48-Pin USOP1 (12 x 17 x 0.65 mm)  
- HY27(U/S)S(08/16)561A-S (Lead)  
- HY27(U/S)S(08/16)561A-SP (Lead Free)  
- Sequential access: 3.3V: 50ns (min.)  
1.8V: 60ns (min.)  
- Page program time: 200us (typ.)  
- HY27(U/S)S(08/16)561A-F(P)  
COPY BACK PROGRAM MODE  
- Fast page copy without external buffering  
: 63-Ball FBGA (9 x 11 x 1.0 mm)  
- HY27(U/S)S(08/16)561A-F (Lead)  
- HY27(U/S)S(08/16)561A-FP (Lead Free)  
Rev 0.5 / Jun. 2006  
3
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
1. SUMMARY DESCRIPTION  
The HYNIX HY27(U/S)S(08/16)561A series is a 32Mx8bit with spare 8Mx16 bit capacity. The device is offered in 1.8V  
Vcc Power Supply and in 3.3V Vcc Power Supply.  
Its NAND cell provides the most cost-effective solution for the solid state mass storage market.  
The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old  
data is erased.  
The device contains 2048 blocks, composed by 32 pages consisting in two NAND structures of 16 series connected  
Flash cells.  
A program operation allows to write the 512-byte page in typical 200us and an erase operation can be performed in  
typical 2ms on a 16K-byte(X8 device) block.  
Data in the page mode can be read out at 50ns cycle time per byte. The I/O pins serve as the ports for address and  
data input/output as well as command input. This interface allows a reduced pin count and easy migration towards dif-  
ferent densities, without any rearrangement of footprint.  
Commands, Data and Addresses are synchronously introduced using CE, WE, ALE and CLE input pin.  
The on-chip Program/Erase Controller automates all program and erase functions including pulse repetition, where  
required, and internal verification and margining of data.  
The modifying can be locked using the WP input pin.  
The output pin R/B (open drain buffer) signals the status of the device during each operation. In a system with multi-  
ple memories the R/B pins can be connected all together to provide a global status signal.  
Even the write-intensive systems can take advantage of the HY27(U/S)S(08/16)561A extended reliability of 100K pro-  
gram/erase cycles by providing ECC (Error Correcting Code) with real time mapping-out algorithm.  
The chip could be offered with the CE don’t care function. This function allows the direct download of the code from  
the NAND Flash memory device by a microcontroller, since the CE transitions do not stop the read operation.  
The copy back function allows the optimization of defective blocks management: when a page program operation fails  
the data can be directly programmed in another page inside the same array section without the time consuming serial  
data insertion phase.  
This device includes also extra features like OTP/Unique ID area, Block Lock mechanism, Automatic Read at Power Up,  
Read ID2 extension.  
The Hynix HY27(U/S)S(08/16)561A series is available in 48 - TSOP1 12 x 20 mm , 48 - USOP1 12 x 17 mm,  
FBGA 9 x 11 mm.  
1.1 Product List  
PART NUMBER  
HY27SS08561A  
HY27SS16561A  
HY27US08561A  
HY27US16561A  
ORIZATION  
VCC RANGE  
PACKAGE  
x8  
x16  
x8  
1.70 - 1.95 Volt  
63FBGA / 48TSOP1 / 48USOP1  
2.7V - 3.6 Volt  
x16  
Rev 0.5 / Jun. 2006  
4
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
9&&  
&(  
,2ꢀa,2ꢁ  
,2ꢂa,2ꢃꢄꢅ[ꢃꢆꢇ2QO\ꢈ  
:(  
5ꢉ%  
5(  
$/(  
&/(  
:3  
35(  
966  
Figure1: Logic Diagram  
IO15 - IO8  
IO7 - IO0  
CLE  
Data Input / Outputs (x16 Only)  
Data Input / Outputs  
Command latch enable  
Address latch enable  
Chip Enable  
ALE  
CE  
RE  
Read Enable  
WE  
Write Enable  
WP  
Write Protect  
R/B  
Ready / Busy  
Vcc  
Power Supply  
Vss  
Ground  
NC  
No Connection  
PRE  
Power-On Read Enable, Lock Unlock  
Table 1: Signal Names  
Rev 0.5 / Jun. 2006  
5
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
ꢄꢊ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
1&  
1&  
1&  
1&  
,ꢀ2ꢃ  
,ꢀ2ꢅ  
,ꢀ2ꢂ  
,ꢀ2ꢄ  
1&  
ꢄꢊ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
9VV  
,ꢀ2ꢁꢂ  
,ꢀ2ꢃ  
,ꢀ2ꢁꢄ  
,ꢀ2ꢅ  
,ꢀ2ꢁꢆ  
,ꢀ2ꢂ  
,ꢀ2ꢁꢇ  
,ꢀ2ꢄ  
1&  
35(  
9FF  
1&  
1&  
&(  
&(  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
35(  
9FF  
9VV  
1&  
1&  
1&  
,ꢀ2ꢆ  
,ꢀ2ꢇ  
,ꢀ2ꢁ  
,ꢀ2ꢈ  
1&  
1$1'ꢇ)ODVK  
7623ꢃ  
1$1'ꢇ)ODVK  
7623ꢃ  
ꢁꢇ  
ꢁꢆ  
ꢆꢃ  
ꢆꢅ  
ꢁꢇ  
ꢁꢆ  
ꢆꢃ  
ꢆꢅ  
1&  
ꢅ[ꢂꢈ  
ꢅ[ꢃꢆꢈ  
,ꢀ2ꢁꢁ  
,ꢀ2ꢆ  
,ꢀ2ꢁꢈ  
,ꢀ2ꢇ  
,ꢀ2ꢉ  
,ꢀ2ꢁ  
,ꢀ2ꢊ  
,ꢀ2ꢈ  
9VV  
1&  
1&  
1&  
ꢇꢄ  
ꢇꢂ  
ꢇꢄ  
ꢇꢂ  
Figure 2. 48TSOP1 Contactions, x8 and x16 Device  
ꢄꢊ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
9VV  
ꢄꢊ  
1&  
1&  
1&  
1&  
1&  
1&  
5ꢀ%  
5(  
1&  
1&  
1&  
1&  
,ꢀ2ꢃ  
,ꢀ2ꢅ  
,ꢀ2ꢂ  
,ꢀ2ꢄ  
1&  
,ꢀ2ꢁꢂ  
,ꢀ2ꢃ  
,ꢀ2ꢁꢄ  
,ꢀ2ꢅ  
,ꢀ2ꢁꢆ  
,ꢀ2ꢂ  
,ꢀ2ꢁꢇ  
,ꢀ2ꢄ  
1&  
35(  
9FF  
1&  
1&  
&(  
&(  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
9FF  
9VV  
1&  
1&  
&/(  
$/(  
:(  
:3  
1&  
1&  
1&  
1&  
1&  
35(  
9FF  
9VV  
1&  
1&  
1&  
,ꢀ2ꢆ  
,ꢀ2ꢇ  
,ꢀ2ꢁ  
,ꢀ2ꢈ  
1&  
1$1'ꢇ)ODVK  
8623ꢃ  
1$1'ꢇ)ODVK  
8623ꢃ  
ꢁꢇ  
ꢁꢆ  
ꢆꢃ  
ꢆꢅ  
ꢁꢇ  
ꢁꢆ  
ꢆꢃ  
ꢆꢅ  
1&  
ꢅ[ꢂꢈ  
ꢅ[ꢃꢆꢈ  
,ꢀ2ꢁꢁ  
,ꢀ2ꢆ  
,ꢀ2ꢁꢈ  
,ꢀ2ꢇ  
,ꢀ2ꢉ  
,ꢀ2ꢁ  
,ꢀ2ꢊ  
,ꢀ2ꢈ  
9VV  
1&  
1&  
1&  
ꢇꢄ  
ꢇꢂ  
ꢇꢄ  
ꢇꢂ  
Figure 3. 48USOP1 Contactions, x8 and x16 Device  
Rev 0.5 / Jun. 2006  
6
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
ꢃꢇꢇꢇꢇꢇꢇꢇꢇꢊꢇꢇꢇꢇꢇꢇꢇꢋꢇꢇꢇꢇꢇꢇꢇꢌꢇꢇꢇꢇꢇꢇꢇꢄꢇꢇꢇꢇꢇꢇꢆꢇꢇꢇꢇꢇꢇꢇꢇꢁꢇꢇꢇꢇꢇꢇꢇꢂꢇꢇꢇꢇꢇꢇꢇꢍꢇꢇꢇꢇꢇꢇꢃꢀ  
$
%
1&  
1&  
1&  
1&  
1&  
1&  
1&  
&
$/( 9VV  
:3  
1&  
1&  
&(  
1&  
:(  
1&  
5%  
1&  
'
&/(  
5(  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
9FF  
1&  
1&  
1&  
1&  
1&  
1&  
(
)
1&  
1&  
1&  
1&  
9VV  
1&  
35(  
9FF  
*
+
-
,ꢀ2ꢈ  
,ꢀ2ꢁ  
,ꢀ2ꢇ  
,ꢀ2ꢂ ,ꢀ2ꢃ  
9VV  
,ꢀ2ꢆ ,ꢀ2ꢄ  
,ꢀ2ꢅ  
.
/
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
0
Figure 4. 63FBGA Contactions, x8 Device (Top view through package)  
ꢃꢇꢇꢇꢇꢇꢇꢇꢇꢊꢇꢇꢇꢇꢇꢇꢇꢋꢇꢇꢇꢇꢇꢇꢇꢌꢇꢇꢇꢇꢇꢇꢇꢄꢇꢇꢇꢇꢇꢇꢆꢇꢇꢇꢇꢇꢇꢇꢇꢁꢇꢇꢇꢇꢇꢇꢇꢂꢇꢇꢇꢇꢇꢇꢇꢍꢇꢇꢇꢇꢇꢇꢃꢀ  
$
%
1&  
1&  
1&  
1&  
1&  
1&  
1&  
&
$/( 9VV  
:3  
1&  
1&  
&(  
1&  
:(  
1&  
5%  
1&  
'
&/(  
5(  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
(
)
1&  
1&  
1&  
,ꢀ2ꢂ  
,ꢀ2ꢁꢇ  
9FF  
,ꢀ2ꢃ 35(  
*
+
-
,ꢀ2ꢊ  
9FF  
,ꢀ2ꢁꢈ  
,ꢀ2ꢁꢄ  
,ꢀ2ꢅ  
,ꢀ2ꢁꢆ  
,ꢀ2ꢁ  
,ꢀ2ꢉ  
,ꢀ2ꢇ  
,ꢀ2ꢆ  
,ꢀ2ꢁꢁ  
,ꢀ2ꢁꢂ  
,ꢀ2ꢈ  
9VV  
9VV  
,ꢀ2ꢄ  
.
/
1&  
1&  
1&  
1&  
1&  
1&  
1&  
1&  
0
Figure 5. 63FBGA Contactions, x16 Device (Top view through package)  
Rev 0.5 / Jun. 2006  
7
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
1.2 PIN DESCRIPTION  
Pin Name  
Description  
DATA INPUTS/OUTPUTS  
The IO pins allow to input command, address and data and to output data during read / program  
IO0-IO7  
IO8-IO15(1) operations. The inputs are latched on the rising edge of Write Enable (WE). The I/O buffer float to  
High-Z when the device is deselected or the outputs are disabled.  
COMMAND LATCH ENABLE  
CLE  
ALE  
CE  
This input activates the latching of the IO inputs inside the Command Register on the Rising edge of  
Write Enable (WE).  
ADDRESS LATCH ENABLE  
This input activates the latching of the IO inputs inside the Address Register on the Rising edge of  
Write Enable (WE).  
CHIP ENABLE  
This input controls the selection of the device. When the device is busy CE low does not deselect the  
memory.  
WRITE ENABLE  
WE  
This input acts as clock to latch Command, Address and Data. The IO inputs are latched on the rise  
edge of WE.  
READ ENABLE  
The RE input is the serial data-out control, and when active drives the data onto the I/O bus. Data is  
valid tREA after the falling edge of RE which also increments the internal column address counter by  
one.  
RE  
WRITE PROTECT  
WP  
The WP pin, when Low, provides an Hardware protection against undesired modify (program / erase)  
operations.  
READY BUSY  
R/B  
The Ready/Busy output is an Open Drain pin that signals the state of the memory.  
SUPPLY VOLTAGE  
The VCC supplies the power for all the operations (Read, Write, Erase).  
VCC  
VSS  
NC  
GROUND  
NO CONNECTION  
To Enable and disable the Lock mechanism and Power On Auto Read. When PRE is a logic high,  
Block Lock mode and Power-On Auto-Read mode are enabled, and when PRE is a logic low, Block  
Lock mode and Power-On Auto-Read mode are disabled. Power-On Auto-Read mode is available only  
on 3.3V device.  
PRE  
Not using LOCK MECHANISM & POWER-ON AUTO-READ, connect it Vss or leave it NC.  
Table 2: Pin Description  
NOTE:  
1. For x16 version only  
2. A 0.1uF capacitor should be connected between the Vcc Supply Voltage pin and the Vss Ground pin to decouple  
the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required  
during program and erase operations.  
Rev 0.5 / Jun. 2006  
8
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
IO0  
IO1  
A1  
IO2  
A2  
IO3  
A3  
IO4  
A4  
IO5  
A5  
IO6  
A6  
IO7  
A7  
1st Cycle  
2nd Cycle  
3rd Cycle  
A0  
A9  
A10  
A18  
A11  
A19  
A12  
A20  
A13  
A21  
A14  
A22  
A15  
A23  
A16  
A24  
A17  
Table 3: Address Cycle Map(x8)  
NOTE:  
1. A8 is set to LOW or High by the 00h or 01h Command.  
IO0  
A0  
IO1  
A1  
IO2  
A2  
IO3  
A3  
IO4  
A4  
IO5  
A5  
IO6  
IO7  
A7  
IO8-IO15  
L(1)  
1st Cycle  
2nd Cycle  
3rd Cycle  
A6  
L(1)  
A9  
A10  
A18  
A11  
A19  
A12  
A20  
A13  
A21  
A14  
A22  
A15  
A23  
A16  
A24  
L(1)  
A17  
Table 4: Address Cycle Map(x16)  
NOTE:  
1. L must be set to Low.  
Acceptable command  
during busy  
FUNCTION  
1st CYCLE  
2nd CYCLE 3rd CYCLE 4th CYCLE  
-
-
READ 1  
00h/01h  
50h  
READ 2  
-
-
-
READ ID  
90h  
-
RESET  
FFh  
-
-
Yes  
Yes  
PAGE PROGRAM  
COPY BACK PGM  
BLOCK ERASE  
READ STATUS REGISTER  
LOCK BLOCK  
80h  
10h  
8Ah  
D0h  
-
-
00h  
(10h)  
60h  
-
-
70h  
2Ah  
2Ch  
23h  
LOCK TIGHT  
UNLOCK (start area)  
UNLOCK (end area)  
READ LOCK STATUS  
24h  
7Ah  
Table 5: Command Set  
Rev 0.5 / Jun. 2006  
9
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
CLE  
H
L
ALE  
L
CE  
L
WE  
Rising  
Rising  
Rising  
Rising  
Rising  
H
RE  
WP  
MODE  
H
X
Command Input  
Address Input(3 cycles)  
Command Input  
Address Input(3 cycles)  
Read Mode  
H
L
L
H
X
H
L
L
H
H
Write Mode  
Data Input  
H
L
L
H
H
L
L
H
H
L(1)  
L
L
L
Falling  
X
Sequential Read and Data Output  
During Read (Busy)  
During Program (Busy)  
During Erase (Busy)  
Write Protect  
L
L
H
H
X
X
X
X
X
X
X
X
X
H
X
X
X
X
H
L
X
X
X
X
X
X
H
X
0V/Vcc  
Stand By  
Table 6: Mode Selection  
NOTE:  
1. With the CE high during latency time does not stop the read operation  
Rev 0.5 / Jun. 2006  
10  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
2. BUS OPERATION  
There are six standard bus operations that control the device. These are Command Input, Address Input, Data Input,  
Data Output, Write Protect, and Standby.  
Typically glitches less than 5 ns on Chip Enable, Write Enable and Read Enable are ignored by the memory and do not  
affect bus operations.  
2.1 Command Input.  
Command Input bus operation is used to give a command to the memory device. Command are accepted with Chip  
Enable low, Command Latch Enable High, Address Latch Enable low and Read Enable High and latched on the rising  
edge of Write Enable. Moreover for commands that starts a modifying operation (write/erase) the Write Protect pin  
must be high. See figure 7 and table 12 for details of the timings requirements. Command codes are always applied on  
IO7:0, disregarding the bus configuration (X8/X16).  
2.2 Address Input.  
Address Input bus operation allows the insertion of the memory address. Three bus cycles are required to input the  
addresses for the 256Mbit devices. Addresses are accepted with Chip Enable low, Address Latch Enable High, Com-  
mand Latch Enable low and Read Enable high and latched on the rising edge of Write Enable. Moreover for commands  
that starts a modify operation (write/erase) the Write Protect pin must be high. See figure 8 and table 12 for details of  
the timings requirements. Addresses are always applied on IO7:0, disregarding the bus configuration (X8/X16).  
2.3 Data Input.  
Data Input bus operation allows to feed to the device the data to be programmed. The data insertion is serially and  
timed by the Write Enable cycles. Data are accepted only with Chip Enable low, Address Latch Enable low, Command  
Latch Enable low, Read Enable High, and Write Protect High and latched on the rising edge of Write Enable. See figure  
9 and table 12 for details of the timings requirements.  
2.4 Data Output.  
Data Output bus operation allows to read data from the memory array and to check the status register content, the  
lock status and the ID data. Data can be serially shifted out toggling the Read Enable pin with Chip Enable low, Write  
Enable High, Address Latch Enable low, and Command Latch Enable low. See figures 10 to 14 and table 12 for details  
of the timings requirements.  
2.5 Write Protect.  
Hardware Write Protection is activated when the Write Protect pin is low. In this condition modify operation do not  
start and the content of the memory is not altered. Write Protect pin is not latched by Write Enable to ensure the pro-  
tection even during the power up.  
2.6 Standby.  
In Standby mode the device is deselected, outputs are disabled and Power Consumption is reduced.  
Rev 0.5 / Jun. 2006  
11  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
3. DEVICE OPERATION  
3.1 Page Read.  
Upon initial device power up, the device defaults to Read1 mode. This operation is also initiated by writing 00h to the  
command register along with followed by the three address input cycles. Once the command is latched, it does not  
need to be written for the following page read operation.  
Three types of operations are available: random read, serial page read and sequential row read.  
The random read mode is enabled when the page address is changed. The 528 bytes (x8 device) or 264 word (x16  
device) of data within the selected page are transferred to the data registers in less than access random read time tR  
(12us). The system controller can detect the completion of this data transfer tR (12us) by analyzing the output of R/B  
pin. Once the data in a page is loaded into the registers, they may be read out in 50ns cycle time by sequentially puls-  
ing RE. High to low transitions of the RE clock output the data stating from the selected column address up to the last  
column address.  
After the data of last column address is clocked out, the next page is automatically selected for sequential row read.  
Waiting tR again allows reading the selected page. The sequential row read operation is terminated by bringing CE  
high.  
The way the Read1 and Read2 commands work is like a pointer set to either the main area or the spare area. Writing  
the Read2 command user may selectively access the spare area of bytes 512 to 527. Addresses A0 to A3 set the start-  
ing address of the spare area while addresses A4 to A7 are ignored. Unless the operation is aborted, the page address  
is automatically incremented for sequential row  
Read as in Read1 operation and spare sixteen bytes of each page may be sequentially read. The Read1 command  
(00h/01h) is needed to move the pointer back to the main area. Figure_12 to 15 show typical sequence and timings  
for each read operation.  
Devices with automatic read of page0 at power up can be provided on request.  
3.2 Page Program.  
The device is programmed basically on a page basis, but it does allow multiple partial page programming of a byte or  
consecutive bytes up to 528 (x8 device), in a single page program cycle. The number of consecutive partial page pro-  
gramming operations within the same page without an intervening erase operation must not exceed 2 for main array  
and 3 for spare array. The addressing may be done in any random order in a block. A page program cycle consists of a  
serial data loading period in which up to 528 bytes (x8 device) or 264 word (x16 device) of data may be loaded into  
the page register, followed by a non-volatile programming period where the loaded data is programmed into the  
appropriate cell. Serial data loading can be started from 2nd half array by moving pointer. About the pointer operation,  
please refer to Figure_29, 30.  
The data-loading sequence begins by inputting the Serial Data Input command (80h), followed by the three address  
input cycles and then serial data loading. The Page Program confirm command (10h) starts the programming process.  
Writing 10h alone without previously entering the serial data will not initiate the programming process. The internal  
Program Erase Controller automatically executes the algorithms and timings necessary for program and verify, thereby  
freeing the system controller for other tasks. Once the program process starts, the Read Status Register command  
may be entered, with RE and CE low, to read the status register. The system controller can detect the completion of a  
program cycle by monitoring the R/B output, or the Status bit (I/O 6) of the Status Register. Only the Read Status  
command and Reset command are valid while programming is in progress. When the Page Program is complete, the  
Write Status Bit (I/O 0) may be checked Figure_16.  
The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command reg-  
ister remains in Read Status command mode until another valid command is written to the command register.  
Rev 0.5 / Jun. 2006  
12  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
3.3 Block Erase.  
The Erase operation is done on a block (16K Byte) basis. It consists of an Erase Setup command (60h), a Block  
address loading and an Erase Confirm Command (D0h). The Erase Confirm command (D0h) following the block  
address loading initiates the internal erasing process. This two-step sequence of setup followed by execution com-  
mand ensures that memory contents are not accidentally erased due to external noise conditions.  
The block address loading is accomplished in two to three cycles depending on the device density. Only block  
addresses (A14 to A24) are needed while A9 to A13 is ignored.  
At the rising edge of WE after the erase confirm command input, the internal Program Erase Controller handles erase  
and erase-verify. When the erase operation is completed, the Write Status Bit (I/O 0) may be checked. Figure_18  
details the sequence.  
3.4 Copy-Back Program.  
The copy-back program is provided to quickly and efficiently rewrite data stored in one page within the plane to  
another page within the same plane without using an external memory. Since the time-consuming sequential-reading  
and its reloading cycles are removed, the system performance is improved. The benefit is especially obvious when a  
portion of a block is updated and the rest of the block also need to be copied to the newly assigned free block. The  
operation for performing a copy-back program is a sequential execution of page-read without burst-reading cycle and  
copying-program with the address of destination page. A normal read operation with "00h" command and the address  
of the source page moves the whole 528byte data into the internal buffer. As soon as the device returns to Ready  
state, Page-Copy Data-input command (8Ah) with the address cycles of destination page followed may be written. The  
Program Confirm command (10h) is not needed to actually begin the programming operation. For backward-compati-  
bility, issuing Program Confirm command during copy-back does not affect correct device operation.  
Copy-Back Program operation is allowed only within the same memory plane. Once the Copy-Back Program is finished,  
any additional partial page programming into the copied pages is prohibited before erase. Plane address must be the  
same between source and target page  
"When there is a program-failure at Copy-Back operation, error is reported by pass/fail status. But, if  
Copy-Back operations are accumulated over time, bit error due to charge loss is not checked by external  
error detection/correction scheme. For this reason, two bit error correction is recommended for the use  
of Copy-Back operation."  
Figure 17 shows the command sequence for the copy-back operation  
.The Copy Back Program operation requires three steps:  
- 1. The source page must be read using the Read A command (one bus write cycle to setup the command and then 3  
bus cycles to input the source page address.) This operation copies all 264 Words/ 528 Bytes from the page into  
the page Buffer.  
- 2. When the device returns to the ready state (Ready/Busy High), the second bus write cycle of the command is  
given with the 3cycles to input the target page address. A24 must be the same for the Source and Target Pages.  
- 3. Then the confirm command is issued to start the P/E/R Controller.  
Rev 0.5 / Jun. 2006  
13  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
3.5 Read Status Register.  
The device contains a Status Register which may be read to find out whether read, program or erase operation is com-  
pleted, and whether the program or erase operation is completed successfully. After writing 70h command to the com-  
mand register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of CE or RE,  
whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory  
connections even when R/B pins are common-wired. RE or CE does not need to be toggled for updated status. Refer  
to table 13 for specific Status Register definitions. The command register remains in Status Read mode until further  
commands are issued to it. Therefore, if the status register is read during a random read cycle, a read command (00h  
or 50h) should be given before sequential page read cycle.  
3.6 Read ID.  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an  
address input of 00h. Two read cycles sequentially output the manufacturer code (ADh), the device code. The com-  
mand register remains in Read ID mode until further commands are issued to it. Figure 19 shows the operation  
sequence, while tables 13, 14 explain the byte meaning.  
3.7 Reset.  
The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state  
during random read, program or erase mode, the reset operation will abort these operations. The contents of memory  
cells being altered are no longer valid, as the data will be partially programmed or erased. The command register is  
cleared to wait for the next command, and the Status Register is cleared to value E0h when WP is high. Refer to table  
12 for device status after reset operation. If the device is already in reset state a new reset command will not be  
accepted by the command register. The R/B pin transitions to low for tRST after the Reset command is written. Refer  
to figure 25.  
Rev 0.5 / Jun. 2006  
14  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
4. OTHER FEATURES  
4.1 Data Protection & Power On/Off Sequence  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal  
voltage detector disables all functions whenever Vcc is below about 1.1V(1.8V device), 2V(3.3V device). WP pin pro-  
vides hardware protection and is recommended to be kept at VIL during power-up and power-down. A recovery time  
of minimum 10us is required before internal circuit gets ready for any command sequences as shown in Figure 26. The  
two-step command sequence for program/erase provides additional software protection.  
If the power is dropped during the ready read/write/erase operation, Power protection function may not guaranteed  
the data. Power protection function is only available during the power on/off sequence.  
4.2 Ready/Busy.  
The device has a Ready/Busy output that provides method of indicating the completion of a page program, erase,  
copy-back, cache program and random read completion. The R/B pin is normally high and goes to low when the device  
is busy (after a reset, read, program, erase operation). It returns to high when the internal controller has finished the  
operation. The pin is an open-drain driver thereby allowing two or more R/B outputs to be Or-tied. Because pull-up  
resistor value is related to tr(R/B) and current drain during busy (Ibusy), an appropriate value can be obtained with  
the following reference chart (Fig 27). Its value can be determined by the following guidance.  
4.3 Lock Block Feature  
In high state of PRE pin, Block lock mode and Power on Auto read are enabled, otherwise it is regarded  
as NAND Flash without PRE pin.  
Block Lock mode is enabled while PRE pin state is high, which is to offer protection features for NAND Flash data. The  
Block Lock mode is divided into Unlock, Lock, Lock-tight operation. Consecutive blocks protects data allows those  
blocks to be locked or lock-tighten with no latency. This block lock scheme offers two levels of protection. The first  
allows software control (command input method) of block locking that is useful for frequently changed data blocks,  
while the second requires hardware control (WP low pulse input method) before locking can be changed that is useful  
for protecting infrequently changed code blocks. The followings summarized the locking functionality.  
- All blocks are in a locked state on power-up. Unlock sequence can unlock the locked blocks.  
- The Lock-tight command locks blocks and prevents from being unlocked. Lock-tight state can be returned to lock  
state only by Hardware control(WP low pulse input).  
1. Block lock operation  
1) Lock  
- Command Sequence: Lock block Command (2Ah). See Fig. 20.  
- All blocks default to locked by power-up and Hardware control (WP low pulse input)  
- Partial block lock is not available; Lock block operation is based on all block unit  
- Unlocked blocks can be locked by using the Lock block command, and a lock block’s status can be changed to  
unlock or lock-tight using the appropriate commands  
- On the program or erase operation in Locked or Lock-tighten block, Busy state holds 1~10us(tLBSY)  
Rev 0.5 / Jun. 2006  
15  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
2) Unlock  
- Command Sequence: Unlock block Command (23h) + Start block address + Command (24h) + End block address.  
See Fig. 21.  
- Unlocked blocks can be programmed or erased.  
- An unlocked block’s status can be changed to the locked or lock-tighten state using the appropriate sequence of  
commands.  
- Only one consecutive area can be released to unlock state from lock state; Unlocking multi area is not available.  
- Start block address must be nearer to the logical LSB (Least Significant Bit) than End block address.  
- One block is selected for unlocking block when Start block address is same as End block address.  
3) Lock-tight  
- Command Sequence: Lock-tight block Command (2Ch). See Fig. 22.  
- Lock-tighten blocks offer the user an additional level of write protection beyond that of a regular lock block. A block  
that is lock-tighten can’t have its state changed by software control, only by hardware control (WP low pulse  
input); Unlocking multi area is not available  
- Only locked blocks can be lock-tighten by lock-tight command.  
- On the program or erase operation in Locked or Lock-tighten block, Busy state holds 1~10us(tLBSY)  
4) Lock Block Boundaries after Unlock Command issuing  
- If Start Block address = 0000h and End Block Address = FFFFh , the device is all unlocked  
- If Start Block address = End Block Address = FFFFh , the device is all locked except for the last Block  
- If Start Block address = End Block Address = 0000h , the device is all locked except for the first Block  
2. Block lock Status Read  
Block Lock Status can be read on a block basis to find out whether designated block is available to be programmed or  
erased. After writing 7Ah command to the command register and block address to be checked, a read cycle outputs  
the content of the Block Lock Status Register to the I/O pins on the falling edge of CE or RE, whichever occurs last. RE  
or CE does not need to be toggled for updated status. Block Lock Status Read is prohibited while the device is busy  
state.  
Refer to table 16 for specific Status Register definitions. The command register remains in Block Lock Status Read  
mode until further commands are issued to it.  
In high state of PRE pin, write protection status can be checked by Block Lock Status Read (7Ah) while  
in low state by Status Read (70h).  
4.4 Power-On Auto-Read  
The device is designed to offer automatic reading of the first page without command and address input sequence dur-  
ing power-on.  
An internal voltage detector enables auto-page read functions when Vcc reaches about 1.8V. PRE pin controls activa-  
tion of auto-page read function. Auto-page read function is enabled only when PRE pin is logic high state. Serial access  
may be done after power-on without latency. Power-On Auto Read mode is available only on 3.3V device.  
Rev 0.5 / Jun. 2006  
16  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Valid Block Number  
NVB  
2008  
2048  
Blocks  
Table 6: Valid Blocks Number  
NOTE:  
1. The 1st block is guaranteed to be a valid block up to 1K cycles without ECC. (1bit/512bytes)  
Value  
Symbol  
Parameter  
Unit  
1.8V  
3.3V  
Ambient Operating Temperature (Commercial Temperature Range)  
Ambient Operating Temperature (Extended Temperature Range)  
Ambient Operating Temperature (Industrial Temperature Range)  
Temperature Under Bias  
0 to 70  
0 to 70  
-25 to 85  
-40 to 85  
V
TA  
-25 to 85  
-40 to 85  
TBIAS  
TSTG  
-50 to 125 -50 to 125  
-65 to 150 -65 to 150  
-0.6 to 2.7 -0.6 to 4.6  
-0.6 to 2.7 -0.6 to 4.6  
Storage Temperature  
(2)  
Input or Output Voltage  
VIO  
Vcc  
Supply Voltage  
V
Table 7: Absolute maximum ratings  
NOTE:  
1. Except for the rating “Operating Temperature Range, stresses above those listed in the Table “Absolute  
Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and operation of  
the device at these or any other conditions above those indicated in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
2. Minimum Voltage may undershoot to -2V during transition and for less than 20ns during transitions.  
Rev 0.5 / Jun. 2006  
17  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
$ꢇꢄꢋaꢋ$ꢈ  
$''5(66  
5(*,67(5ꢀ  
&2817(5  
352*5$0  
(5$6(  
;
&21752//(5  
+9ꢋ*(1(5$7,21  
ꢊꢄꢆ0ELWꢇꢎꢇꢋꢊ0ELW  
1$1'ꢇ)ODVK  
0(025<ꢇ$55$<  
'
(
&
2
'
(
5
35(  
$/(  
&/(  
:(  
&(  
:3  
&200$1'  
,17(5)$&(  
/2*,&  
5(  
3$*(ꢋ%8))(5  
<ꢋ'(&2'(5  
&200$1'  
5(*,67(5  
'$7$  
5(*,67(5  
%8))(56  
,2  
Figure 6: Block Diagram  
Rev 0.5 / Jun. 2006  
18  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
1.8Volt  
Typ  
3.3Volt  
Min Typ  
Parameter  
Symbol  
Test Conditions  
Unit  
Min  
Max  
Max  
tRC(1.8V=60ns,  
3.3V=50ns)  
CE=VIL, IOUT=0mA  
Sequential  
Read  
ICC1  
-
8
15  
-
10  
20  
mA  
Operating  
Current  
Program  
Erase  
ICC2  
ICC3  
-
-
-
-
8
8
15  
15  
-
-
10  
10  
20  
20  
mA  
mA  
CE=VIH,  
PRE=WP=0V/Vcc  
Stand-by Current (TTL)  
Stand-by Current (CMOS)  
ICC4  
ICC5  
-
-
-
1
-
-
1
mA  
uA  
CE=Vcc-0.2,  
PRE=WP=0V/Vcc  
10  
50  
10  
50  
Input Leakage Current  
Output Leakage Current  
ILI  
VIN=0 to Vcc (max)  
-
-
-
-
-
-
-
-
uA  
uA  
± 10  
± 10  
± 10  
± 10  
ILO  
VOUT =0 to Vcc (max)  
Vcc+0.  
3
Vcc+0.  
3
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
-
Vcc-0.4  
-
2
-
V
-
-0.3  
-
-
0.4  
-0.3  
-
-
0.8  
V
V
IOH=-100uA  
IOH=-400uA  
IOL=100uA  
IOL=2.1mA  
VOL=0.2V  
VOL=0.4V  
Vcc-0.1  
-
-
-
2.4  
-
-
-
Output High Voltage  
Level  
VOH  
VOL  
-
-
-
-
V
-
0.1  
-
-
-
V
Output Low Voltage Level  
-
-
-
-
0.4  
-
V
3
-
4
-
-
-
-
mA  
mA  
Output Low Current (R/  
B)  
IOL  
(R/B)  
-
8
10  
-
Table 8: DC and Operating Characteristics  
Value  
Parameter  
1.8Volt  
0V to Vcc  
5ns  
3.3Volt  
0.4V to 2.4V  
5ns  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Vcc / 2  
1.5V  
Output Load (1.7V - 1.95Volt & 2.7V - 3.3V)  
Output Load (3.0V - 3.6V)  
1 TTL GATE and CL=30pF  
1 TTL GATE and CL=50pF  
1 TTL GATE and CL=100pF  
Table 9: AC Conditions  
Rev 0.5 / Jun. 2006  
19  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Item  
Input / Output Capacitance  
Input Capacitance  
Symbol  
CI/O  
Test Condition  
VIL=0V  
Min  
Max  
10  
Unit  
pF  
-
-
CIN  
VIN=0V  
10  
pF  
Table 10: Pin Capacitance (TA=25C, F=1.0MHz)  
Parameter  
Symbol  
tPROG  
tLBSY  
Min  
Typ  
Max  
500  
10  
2
Unit  
Program Time  
-
-
-
-
-
200  
us  
us  
Dummy Busy Time for the Lock or Lock-tight Block  
Number of partial Program Cycles in the same page  
Block Erase Time  
5
-
Main Array  
Spare Array  
NOP  
Cycles  
Cycles  
ms  
NOP  
-
3
tBERS  
2
3
Table 11: Program / Erase Characteristics  
Rev 0.5 / Jun. 2006  
20  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
1.8Volt  
3.3Volt  
Parameter  
Unit  
Symbol  
Min  
0
Max  
Min  
0
Max  
CLE Setup time  
CLE Hold time  
CE setup time  
CE hold time  
tCLS  
tCLH  
tCS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
0
10  
0
tCH  
10  
40  
0
10  
25(1)  
0
WE pulse width  
ALE setup time  
ALE hold time  
Data setup time  
Data hold time  
Write Cycle time  
WE High hold time  
tWP  
tALS  
tALH  
tDS  
10  
20  
10  
60  
20  
10  
20  
10  
50  
15  
tDH  
tWC  
tWH  
tR  
Data Transfer from Cell to register  
ALE to RE Delay (ID Read)  
CLE to RE Delay  
15  
12  
tAR  
10  
10  
20  
40  
10  
10  
20  
25  
tCLR  
tRR  
Ready to RE Low  
RE Pulse Width  
tRP  
WE High to Busy  
tWB  
tRC  
100  
100  
Read Cycle Time  
60  
50  
RE Access Time  
tREA  
tRHZ  
tCHZ  
35  
30  
20  
30  
30  
20  
RE High to Output High Z  
CE High to Output High Z  
RE or CE high to Output hold  
tOH  
10  
10  
ns  
RE High Hold Time  
tREH  
tIR  
20  
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
Output High Z to RE low  
CE Access Time  
tCEA  
tWHR  
tRB  
45  
45  
WE High to RE low  
50  
50  
100  
100  
Last RE High to busy (at sequential read)  
CE High to Ready (in case of interception by CE at read)  
(4)  
(4)  
tCRY  
tCEH  
tRST  
80+tr(R/B#)  
60+tr(R/B#)  
CE High Hold Time (at the last serial read)(3)  
Device Resetting Time (Read / Program / Erase)  
Write Protection time  
100  
100  
100  
100  
(2)  
(2)  
5/10/500  
5/10/500  
(5)  
ns  
tWW  
Table 12: AC Timing Characteristics  
NOTE:  
1. If tCS is less than 10ns tWP must be minimum 35ns, otherwise, tWP may be minimum 25ns.  
2. If Reset Command (FFh) is written at Ready state, the device goes into Busy for maximum 5us  
3. To break the sequential read cycle, CE must be held for longer time than tCEH.  
4. The time to Ready depends on the value of the pull-up resistor tied R/B pin.ting time.  
5. Program / Erase Enable Operation : WP high to WE High.  
Program / Erase Disable Operation : WP Low to WE High  
Rev 0.5 / Jun. 2006  
21  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Page  
Program  
Block  
Erase  
IO  
Read  
CODING  
0
Pass / Fail  
Pass / Fail  
NA  
Pass: ‘0’ Fail: ‘1’  
Pass: ‘0’ Fail: ‘1’  
(Only for Cache Program, else Don’t  
care)  
1
NA  
NA  
NA  
2
3
4
5
6
NA  
NA  
NA  
NA  
NA  
NA  
-
-
NA  
NA  
NA  
-
Ready/Busy  
Ready/Busy  
Ready/Busy  
Ready/Busy  
Ready/Busy  
Ready/Busy  
Active: ‘0’ Idle: ‘1’  
Busy: ‘0’ Ready’: ‘1’  
Protected: ‘0’  
Not Protected: ‘1’  
7
Write Protect  
Write Protect  
Write Protect  
Table 13: Status Register Coding  
DEVICE IDENTIFIER CYCLE  
DESCRIPTION  
1st  
Manufacturer Code  
Device Identifier  
2nd  
Table 14: Device Identifier Coding  
1st cycle  
(Manufacture Code)  
2nd cycle  
(Device Code)  
Part Number  
Voltage  
Bus Width  
HY27US08561A  
HY27US16561A  
HY27SS08561A  
HY27SS16561A  
3.3V  
3.3V  
1.8V  
1.8V  
x8  
x16  
x8  
ADh  
ADh  
ADh  
ADh  
75h  
55h  
35h  
45h  
x16  
Table 15: Read ID Data Table  
Rev 0.5 / Jun. 2006  
22  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Table 16: Lock Status Code  
W&/+  
W&+  
W&/  
6
&/(  
W&6  
&(  
W:3  
:(  
W$/6  
W$/+  
$/(  
W'6  
W'+  
,ꢀ2ꢋꢈaꢃ  
&RPPDQG  
Figure 7: Command Latch Cycle  
Rev 0.5 / Jun. 2006  
23  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
W&/6  
&/(  
&(  
W&6  
W:&  
W:&  
W:3  
W:3  
W:3  
W:+  
W$/+  
W:+  
W$/+ W$/6  
:(  
W$/6  
W$/+  
W'+  
W$/6  
$/(  
W'+  
W'+  
W'6  
W'6  
W'6  
ꢁVWꢋ$GGꢌ  
ꢇQGꢋ$GGꢌ  
ꢆUGꢋ$GGꢌ  
,ꢉ2ꢀaꢁ  
Figure 8: Address Latch Cycle  
Rev 0.5 / Jun. 2006  
24  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
W&/+  
W&+  
&/(  
&(  
W$/6  
W:&  
$/(  
W:3  
W:3  
W:3  
:(  
W:+  
W'+  
W:+  
W'+  
W'+  
W'6  
',1ꢀꢂ  
W'6  
',1ꢀILQDO  
W'6  
',1ꢀꢁ  
,ꢀ2[  
Figure 9. Input Data Latch Cycle  
t
CEA  
CE  
t
CHZ*  
t
REH  
t
REA  
t
REA  
tREA  
t
OH  
t
RP  
RE  
t
RHZ*  
t
RHZ*  
OH  
t
I/Ox  
Dout  
Dout  
Dout  
t
RR  
tRC  
R/B  
NOTES : Transition is measured ±±22mꢀ from steady state voltage with load.  
This parameter is sampled and not 122% tested.  
Figure 10: Sequential Out Cycle after Read (CLE=L, WE=H, ALE=L)  
Rev 0.5 / Jun. 2006  
25  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
tCLR  
CLE  
CE  
tCLS  
tCS  
tCLH  
tCH  
tWP  
WE  
tCEA  
tCHZ  
tWHR  
RE  
tDH  
tREA  
tDS  
72h  
tIR  
tRHZ  
I/O0-7  
Status Output  
Figure 11: Status Read Cycle  
CLE  
CE  
tCEH  
tCHZ  
tWC  
WE  
ALE  
RE  
tWB  
tAR  
tCRY  
tRHZ  
tR  
tRC  
tRP  
Dout N  
Dout N+1  
Dout N+2  
Dout 527  
00h or 01h  
Col. add 1  
Row add 1  
Row add 2  
I/O0~7  
Column  
Address  
tRB  
Page(Row) Address  
Busy  
R/B  
Figure 12: Read1 Operation (Read One Page)  
Rev 0.5 / Jun. 2006  
26  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
CLE  
CE  
WE  
tCHZ  
tWB  
tAR  
ALE  
tR  
tRC  
RE  
tRP  
00h or 01h  
Col. add 1  
Column  
Address  
Row add 1  
Row add 2  
Dout N  
Dout N+1  
Dout N+2  
I/O0~7  
R/B  
Row Address  
Busy  
Figure 13: Read1 Operation intercepted by CE  
CLE  
CE  
WE  
ALE  
tR  
tWB  
tAR  
tRR  
RE  
Dout  
511+M  
50h  
Col. add 1 Row add 1 Row add 2  
Dout 527  
I/O0~7  
R/B  
Selected  
Row  
M Address  
A0-A3: Valid Address  
A4-A7: Dont’ care  
16  
512  
Start  
Address M  
Figure 14: Read2 Operation (Read One Page)  
Rev 0.5 / Jun. 2006  
27  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
CLE  
CE  
WE  
ALE  
RE  
Dout  
N
Dout  
527  
Dout  
1
Dout  
N+1  
Dout  
527  
Dout  
0
00h  
Col. add1  
Row add2  
Row add1  
I/O0~7  
R/B  
Ready  
Busy  
Busy  
M
M+1  
N
Output  
Output  
Figure 15: Sequential Row Read Operation Within a Block  
Rev 0.5 / Jun. 2006  
28  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
CLE  
CE  
tWC  
tWC  
tWC  
WE  
tWB  
tPROG  
ALE  
RE  
Din  
N
Din  
M
I/Ox  
Col. Add1  
12h  
Program  
Command  
72h  
I/Oo  
82h  
Serial Data  
Input Command  
Row Add1 Row Add±  
Read Status  
Command  
Row  
Address  
Column  
Address  
1 up to 512 Byte  
Serial Input  
R/B  
I/Oo=0 Successful Program  
I/Oo=1 Error in Program  
Figure 16: Page Program Operation  
Rev 0.5 / Jun. 2006  
29  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Figure 17 : Copy Back Program  
Rev 0.5 / Jun. 2006  
30  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
&/(  
&(  
W:&  
:(  
W:%  
W%(56  
$/(  
5(  
,ꢉ2ꢀaꢁ  
5ꢉ%  
ꢅꢈK  
5RZꢋDGGꢁ 5RZꢋDGGꢇ  
'ꢈK  
ꢃꢈK  
,ꢀ2ꢈ  
3DJHꢍ5RZꢎꢋ$GGUHVV  
%86<  
$XWRꢋ%ORFNꢋ(UDVHꢋ6HWXSꢋ&RPPDQG  
5HDGꢋ6WDWXV ,ꢀ2ꢈ ꢈꢋ6XFFHVVIXOꢋ(UDVH  
&RPPDQG ,ꢀ2ꢈ ꢁꢋ(UURUꢋLQꢋ(UDVH  
(UDVHꢋ&RPPDQG  
Figure 18: Block Erase Operation (Erase One Block)  
&/(  
&(  
:(  
W$5ꢋꢋ  
$/(  
5(  
W5($ꢋꢋ  
ꢉꢈK  
ꢈꢈK  
$'K  
ꢃꢂK  
,ꢀ2ꢋꢈaꢃ  
5HDGꢋ,'ꢋ&RPPDQG $GGUHVVꢋꢁꢋF\FOH  
0DNHUꢋ&RGH 'HYLFHꢋ&RGH  
Figure 19: Read ID Operation  
Rev 0.5 / Jun. 2006  
31  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
:3  
&/(  
&(  
:(  
,ꢉ2[  
ꢇ$K  
/RFNꢋ&RPPDQG  
Figure 20: Lock Command  
:3  
&/(  
&(  
:(  
$/(  
ꢇꢆK  
$GGꢌꢋꢁ $GGꢌꢋꢇ  
ꢇꢄK  
$GGꢌꢋꢁ $GGꢌꢋꢇ  
,ꢉ2[  
8QRFNꢋ&RPPDQG  
6WDUWꢋ%ORFNꢋ$GGUHVVꢋꢇF\FOHV  
8QORFNꢋ&RPPDQG  
(QGꢋ%ORFNꢋ$GGUHVVꢋꢇF\FOHV  
Figure 21: Unlock Command Sequence  
Rev 0.5 / Jun. 2006  
32  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
:3  
&/(  
&(  
:(  
,ꢉ2[  
ꢇ&K  
/RFNꢏWLJKWꢋ&RPPDQG  
Figure 22: Lock Tight Command  
:3  
&/(  
&(  
:(  
$/(  
W:+5  
5(  
ꢃ$K  
$GGꢀꢂ  
$GGꢀꢄ  
'RXW  
,ꢉ2[  
%ORFNꢀ$GGUHVVꢀꢄF\FOH  
5HDGꢀ%ORFNꢀ/RFN  
VWDWXVꢀ&RPPDQG  
%ORFNꢀ/RFNꢀ6WDWXV  
Figure 23: Lock Status Read Timing  
Rev 0.5 / Jun. 2006  
33  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
ꢁꢌꢊ9  
9FF  
:(  
&(  
$/(  
&/(  
W5  
5ꢀ%  
35(  
5(  
/DVW  
'DWDꢁ 'DWDꢇ 'DWDꢆ  
'DWD  
,ꢀ2[  
'DWDꢋ2XWSXW  
Figure 24: Automatic Power at Power On  
WE  
ALE  
CLE  
RE  
IO7:0  
R/B  
FFh  
t
RST  
Figure 25: Reset Operation  
Rev 0.5 / Jun. 2006  
34  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
9FF  
97+  
W
:3  
:(  
ꢀꢁXV  
Figure 26: Power On / Off Timing  
VTH = 1.5 Volt for 1.8 Volt Supply devices; 2.5 Volt for 3.3 Volt Supply devices  
Rev 0.5 / Jun. 2006  
35  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
5S  
LEXV\  
9FF  
5HDG\  
9FF  
5ꢈ%  
ꢇꢌꢈ9  
RSHQꢂGUDLQꢂRXWSXW  
ꢈꢌꢊ9  
%XV\  
WI  
WU  
*1'  
'HYLFH  
ꢋꢋ)LJꢌꢋ5SꢋYVꢋWUꢋWIꢋꢑꢋ5SꢋYVꢋLEXV\  
#ꢂ9FFꢂ ꢂꢃꢄꢃ97Dꢂ ꢂꢆꢇƒ&ꢅꢂ&  ꢀꢁꢁS)  
/
ꢆꢌꢆ  
ꢆꢊꢁ  
LEXV\  
ꢇꢉꢈ  
ꢁꢌꢁ  
ꢆꢈꢈQ  
ꢇꢈꢈQ  
ꢁꢈꢈQ  
ꢆP  
ꢁꢌꢅꢂ  
ꢁꢊꢉ  
ꢇP  
ꢁP  
ꢉꢅ  
ꢈꢌꢊꢇꢂ  
ꢄꢌꢇ  
ꢄꢌꢇ  
ꢁN  
ꢄꢌꢇ  
ꢇN  
ꢄꢌꢇ  
WI  
ꢆN  
ꢄN  
5SꢋꢍRKPꢎ  
5SꢋYDOXHꢋJXLGHQFH  
9FFꢋꢍ0D[ꢌꢎꢋꢏꢋ92/ꢋꢍ0D[ꢌꢎ  
ꢆꢌꢇ9  
5SꢋꢍPLQꢎꢋ  
 
,2/ꢋꢒꢋ™,  
/
ꢊP$ꢋꢒꢋ™,  
/
ZKHUHꢋ,/ꢋLVꢋWKHꢋVXPꢋRIꢋWKHꢋLQSXWꢋFXUUQWVꢋRIꢋDOOꢋGHYLFHVꢋWLHGꢋWRꢋWKHꢋ5ꢀ%ꢋSLQꢌ  
5SꢍPD[ꢎꢋLVꢋGHWHUPLQHGꢋE\ꢋPD[LPXPꢋSHUPLVVLEOHꢋOLPLWꢋRIꢋWU  
Figure 27: Ready/Busy Pin electrical specifications  
Rev 0.5 / Jun. 2006  
36  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Figure 28: Lock/Unlock FSM Flow Cart  
[ꢁꢅꢋ'HYLFHV  
$UHDꢋ$  
ꢍꢈꢈKꢎ  
[ꢊꢋ'HYLFHV  
$UHDꢋ&  
ꢍꢂꢈKꢎ  
$UHDꢋ$  
ꢍꢈꢈKꢎ  
$UHDꢋ%  
ꢍꢈꢁKꢎ  
$UHDꢋ&  
ꢍꢂꢈKꢎ  
%\WHVꢋꢈꢏꢇꢂꢂ  
%\WHVꢋꢇꢂꢅꢏꢇꢅꢆ  
%\WHVꢋꢈꢏꢇꢂꢂ  
%\WHVꢋꢇꢂꢅꢏꢂꢁꢁ  
%\WHVꢋꢂꢁꢇꢏꢂꢇꢃ  
3DJHꢋ%XIIHU  
3DJHꢋ%XIIHU  
$
&
$
%
&
3RLQWHU  
ꢍꢈꢈKꢐꢂꢈKꢎ  
3RLQWHU  
ꢍꢈꢈKꢐꢈꢁKꢐꢂꢈKꢎ  
Figure 29: Pointer operations  
Rev 0.5 / Jun. 2006  
37  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
$5($ꢋ$  
$GGUHVV  
,QSXWV  
$GGUHVV  
,ꢀ2  
,ꢀ2  
ꢈꢈK  
ꢊꢈK  
'DWDꢋ,QSXW  
ꢁꢈK  
ꢈꢈK  
ꢊꢈK  
'DWDꢋ,QSXW  
ꢁꢈK  
,QSXWV  
$UHDVꢋ$ꢐꢋ%ꢐꢋ&ꢋFDQꢋEHꢋSURJUDPPHGꢋGHSHQGLQJꢋRQꢋKRZꢋPXFKꢋGDWDꢋLVꢋLQSXWꢌꢋ6XEVHTXHQWꢋꢈꢈKꢋFRPPDQGVꢋFDQꢋEHꢋRPLWWHGꢌ  
$5($ꢋ%  
$GGUHVV  
,QSXWV  
$GGUHVV  
,QSXWV  
ꢈꢁK  
ꢊꢈK  
'DWDꢋ,QSXW  
ꢁꢈK  
ꢈꢁK  
ꢊꢈK  
'DWDꢋ,QSXW  
ꢁꢈK  
$UHDVꢋ%ꢐꢋ&ꢋFDQꢋEHꢋSURJUDPPHGꢋGHSHQGLQJꢋRQꢋKRZꢋPXFKꢋGDWDꢋLVꢋLQSXWꢌꢋ7KHꢋꢈꢁKꢋFRPPDQGꢋPXVWꢋEHꢋUHꢏLVVXHGꢋEHIRUHꢋHDFKꢋSURJUDPꢌ  
$5($ꢋ&  
$GGUHVV  
,QSXWV  
$GGUHVV  
,QSXWV  
,ꢀ2  
ꢂꢈK  
ꢊꢈK  
'DWDꢋ,QSXW  
ꢁꢈK  
ꢂꢈK  
ꢊꢈK  
'DWDꢋ,QSXW  
ꢁꢈK  
2QO\ꢋ$UHDVꢋ&ꢋFDQꢋEHꢋSURJUDPPHGꢌꢋ6XEVHTXHQWꢋꢂꢈKꢋFRPPDQGꢋFDQꢋEHꢋRPLWWHGꢌ  
Figure 30: Pointer Operations for porgramming  
Rev 0.5 / Jun. 2006  
38  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
System Interface Using CE don’t care  
To simplify system interface, CE may be inactive during data loading or sequential data-reading as shown below.  
So, it is possible to connect NAND Flash to a microprocessor. The only function that was removed from standard NAND  
Flash to make CE don’t care read operation was disabling of the automatic sequential read function.  
jsl  
jlG‹–•N›TŠˆ™Œ  
jl  
~l  
hsl  
pVvŸ  
_W  
z›ˆ™›Gh‹‹UOZj Š“ŒP  
kˆ›ˆGp•—œ›  
kˆ›ˆGp•—œ›  
XW  
Figure 31: Program Operation with CE don’t-care.  
&/(  
&(  
,IꢋVHTXHQWLDOꢋURZꢋUHDGꢋHQDEOHGꢐ  
&(ꢋGRQ¶WꢏFDUH  
&(ꢋPXVWꢋEHꢋKHOGꢋORZꢋGXULQJꢋW5ꢌ  
5(  
$/(  
5ꢀ%  
W5  
:(  
,ꢀ2[  
ꢈꢈK  
6WDUWꢋ$GGꢌꢍꢆ&\FOHꢎ  
'DWDꢋ2XWSXWꢍVHTXHQWLDOꢎ  
Figure 32: Read Operation with CE don’t-care.  
Rev 0.5 / Jun. 2006  
39  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Bad Block Management  
Devices with Bad Blocks have the same quality level and the same AC and DC characteristics as devices where all the  
blocks are valid. A Bad Block does not affect the performance of valid blocks because it is isolated from the bit line and  
common source line by a select transistor. The devices are supplied with all the locations inside valid blocks  
erased(FFh).The Bad Block Information is written prior to shipping. Any block where the 6th Byte/ 1st Word in the  
spare area of the 1st or 2nd page (if the 1st page is Bad) does not contain FFh is a Bad Block. The Bad Block Informa-  
tion must be read before any erase is attempted as the Bad Block Information may be erased. For the system to be  
able to recognize the Bad Blocks based on the original information it is recommended to create a Bad Block table fol-  
lowing the flowchart shown in Figure 33. The 1st block, which is placed on 00h block address is guaranteed to be a  
valid block.  
Block Replacement  
Over the lifetime of the device additional Bad Blocks may develop. In this case the block has to be replaced by copying  
the data to a valid block. These additional Bad Blocks can be identified as attempts to program or erase them will give  
errors in the Status Register.  
As the failure of a page program operation does not affect the data in other pages in the same block, the block can be  
replaced by re-programming the current data and copying the rest of the replaced block to an available valid block.The  
Copy Back Program command can be used to copy the data to a valid block.  
See the “Copy Back Program” section for more details.  
Refer to Table 17 for the recommended procedure to follow if an error occurs during an operation.  
Operation  
Erase  
Recommended Procedure  
Block Replacement  
Program  
Read  
Block Replacement or ECC (with 1bit/512byte)  
ECC (with 1bit/512byte)  
Table 17: Block Failure  
67$57  
%ORFNꢋ$GGUHVV  
%ORFNꢋꢈ  
,QFUHPHQW  
%ORFNꢋ$GGUHVV  
8SGDWH  
%DGꢋ%ORFNꢋWDEOH  
'DWD  
 ))K"  
1R  
1R  
<HV  
/DVW  
EORFN"  
<HV  
(1'  
Figure 33: Bad Block Management Flowchart  
Rev 0.5 / Jun. 2006  
40  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
Write Protect Operation  
The Erase and Program Operations are automatically reset when WP goes Low (tWW = 100ns, min). The operations  
are enabled and disabled as follows (Figure 34~37)  
:(  
W
::  
ꢉꢁK  
,ꢈ2[  
ꢀꢁK  
5ꢈ%  
Figure 34: Enable Programming  
:(  
W
::  
ꢉꢁK  
ꢀꢁK  
,ꢈ2[  
5ꢈ%  
Figure 35: Disable Programming  
Rev 0.5 / Jun. 2006  
41  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
:(  
W
::  
ꢊꢁK  
'ꢁK  
,ꢈ2[  
5ꢈ%  
Figure 36: Enable Erasing  
:(  
W
::  
ꢊꢁK  
,ꢈ2[  
'ꢁK  
5ꢈ%  
Figure 37: Disable Erasing  
Rev 0.5 / Jun. 2006  
42  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
ꢋꢉ  
H
$ꢆ  
$
'
%
/
Į
$ꢀ  
ꢆꢋ  
ꢆꢇ  
',(  
(ꢀ  
(
&
&3  
Figure 38: 48pin-TSOP1, 12 x 20mm, Package Outline  
millimeters  
Symbol  
Min  
Typ  
Max  
1.200  
0.150  
1.030  
0.250  
0.200  
0.100  
12.120  
20.100  
18.500  
A
A1  
A2  
B
0.050  
0.980  
0.170  
0.100  
C
CP  
D
11.910  
19.900  
18.300  
12.000  
20.000  
18.400  
0.500  
E
E1  
e
L
0.500  
0
0.680  
5
alpha  
Table 18: 48pin-TSOP1, 12 x 20mm, Package Mechanical Data  
Rev 0.5 / Jun. 2006  
43  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
$
$ꢊ  
(
$ꢃ  
'
Į
&3  
&ꢃ  
Figure 39. 48pin-USOP1, 12 x 17mm, Package Outline  
millimeters  
Symbol  
Min  
Typ  
Max  
A
A1  
A2  
B
0.650  
0.080  
0.570  
0.230  
0.175  
0.750  
0.100  
17.100  
12.120  
15.500  
0
0.050  
0.520  
0.160  
0.100  
0.650  
0.470  
0.130  
0.065  
0.450  
C
C1  
CP  
D
16.900  
11.910  
15.300  
17.000  
12.000  
15.400  
0.500  
D1  
E
e
alpha  
0
8
Table 19: 48pin-USOP1, 12 x 17mm, Package Mechanical Data  
Rev 0.5 / Jun. 2006  
44  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
'
'ꢆ  
'ꢀ  
6'  
)'ꢀ  
)'  
H
H
6(  
(
(ꢆ (ꢀ  
)(  
)(ꢀ  
GGG  
%$//ꢂ³$ꢀ´  
$
E
H
$ꢆ  
$ꢀ  
Figure 40. 63ball-FBGA, Pakage Outline  
Millimeters  
NOTE: Drawing is not to scale.  
Symbol  
Min  
0.80  
0.25  
0.55  
0.40  
8.90  
Typ  
0.90  
0.30  
0.60  
0.45  
9.00  
4.00  
7.20  
11.00  
5.60  
8.80  
0.80  
2.50  
0.90  
2.70  
1.10  
0.40  
0.40  
Max  
1.00  
0.35  
0.65  
0.50  
9.10  
A
A1  
A2  
b
D
D1  
D2  
E
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
10.90  
11.10  
Table 20: 63ball-FBGA, Pakage Mechanical Data  
Rev 0.5 / Jun. 2006  
45  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
MARKING INFORMATION - TSOP1/USOP  
P acka g  
M ark in g E x am p le  
K
6
O
x
R
A
T S O P 1  
/
H
x
Y
x
2
x
7
x
x
S
x
x
5
U S O P  
Y
W
W
x
x
- h yn ix  
- K O R  
: H ynix Sym bol  
: O rigin Country  
: Part N um ber  
- H Y 2 7 x S x x5 6 x A x xx x  
H Y : H YN IX  
2 7 : N AN D Flash  
x: Pow er Supply  
S : Classification  
x x: Bit O rganization  
5 6 : D ensity  
: U (2.7V~ 3.6V), L(2.7V), S(1.8V)  
: Single Level Cell+ Single D ie+ Sm all Block  
: 08(x8), 16(x16)  
: 256M bit  
: 1(1nCE & 1R/nB; Sequential Row Read enable)  
2(1nCE & 1R/nB; Sequential Row Read D isable)  
: 2nd G eneration  
x : M ode  
A : Version  
x: Package Type  
x: Package M aterial  
: T(48-TSO P1), S(48-U SO P)  
: Blank(N orm al), P(Lead Free)  
: C(0~ 70), E(-25~ 85)  
M (-30~ 85), I(-40~ 85)  
: B(Included Bad Block), S(1~ 5 Bad Block),  
P(All G ood Block)  
x: O perating Tem perature  
x: Bad Block  
- Y : Year (ex: 5= year 2005, 06= year 2006)  
- w w : W ork W eek (ex: 12= w ork w eek 12)  
- xx : Process Code  
N o te  
- C ap ita l Le tte r  
: Fixed Item  
- S m all Letter  
: N on-fixed Item  
Rev 0.5 / Jun. 2006  
46  
HY27US(08/16)561A Series  
HY27SS(08/16)561A Series  
256Mbit (32Mx8bit / 16Mx16bit) NAND Flash  
MARKING INFORMATION - FBGA  
Packag  
M arking Exam ple  
K
6
O
x
R
A
H
x
Y
x
2
x
7
x
x
S
x
x
5
FBGA  
Y
W
W
x
x
- hynix  
- KOR  
: Hynix Symbol  
: Origin Country  
: Part Number  
- HY27xSxx56xA xxxx  
HY: HYNIX  
27: NAND Flash  
x: Power Supply  
S: Classification  
xx: Bit Organization  
56: Density  
: U(2.7V~3.6V), L(2.7V), S(1.8V)  
: Single Level Cell+Single Die+Small Block  
: 08(x8), 16(x16)  
: 256Mbit  
x: Mode  
: 1(1nCE & 1R/nB; Sequential Row Read Enable)  
2(1nCE & 1R/nB; Sequential Row Read Disable)  
A: Version  
: 2nd Generation  
: F(63FBGA)  
x: Package Type  
: Blank(Normal), P(Lead Free)  
: C(0~70), E(-25~85)  
M(-30~85), I(-40~85)  
: B(Included Bad Block), S(1~5 Bad Block),  
P(All Good Block)  
x: Package Material  
x: Operating Temperature  
x: Bad Block  
- Y: Year (ex: 5=year 2005, 06= year 2006)  
- ww: Work Week (ex: 12= work week 12)  
- xx: Process Code  
Note  
- Capital Letter  
- Sm all Letter  
: Fixed Item  
: Non-fixed Item  
Rev 0.5 / Jun. 2006  
47  

相关型号:

HY27US16561A-TIS

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48
HYNIX

HY27US16561A-TMP

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48
HYNIX

HY27US16561A-TMS

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, TSOP1-48
HYNIX

HY27US16561A-TPCS

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561A-TPEB

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561A-TPEP

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561A-TPES

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561A-TPIS

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561A-TPMP

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561A-TPMS

Flash, 16MX16, 30ns, PDSO48, 12 X 20 MM, 1.20 MM HEIGHT, LEAD FREE, TSOP1-48
HYNIX

HY27US16561M

256Mbit (32Mx8bit / 16Mx16bit) NAND Flash
HYNIX

HY27US16561M-FCP

Flash, 16MX16, 10000ns, PBGA63, 11 X 9 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, FBGA-63
HYNIX