HY5PS1G1631CLFP-C4 [HYNIX]

1Gb DDR2 SDRAM; 1GB DDR2 SDRAM
HY5PS1G1631CLFP-C4
型号: HY5PS1G1631CLFP-C4
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

1Gb DDR2 SDRAM
1GB DDR2 SDRAM

动态存储器 双倍数据速率
文件: 总37页 (文件大小:529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
1Gb DDR2 SDRAM  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 0.2 / Dec 2006  
1
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Revision Details  
Rev.  
History  
Draft Date  
0.1  
0.2  
Nov. 2006  
Initial data sheet released  
IDD Values added  
Dec. 2006  
Rev. 0.2 /Dec 2006  
2
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Contents  
1. Description  
1.1 Device Features and Ordering Information  
1.1.1 Key Φεατυρεσ  
1.1.2 Ordering Information  
1.1.3 Ordering Frequency  
1.2 Pin configuration  
1.3 Pin Description  
2. Maximum DC ratings  
2.1 Absolute Maximum DC Ratings  
2.2 Operating Temperature Condition  
3. AC & DC Operating Conditions  
3.1 DC Operating Conditions  
5.1.1 Recommended DC Operating Conditions(SSTL_1.8)  
5.1.2 ODT DC Electrical Characteristics  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
3.2.2 Input AC Logic Level  
3.2.3 AC Input Test Conditions  
3.2.4 Differential Input AC Logic Level  
3.2.5 Differential AC output parameters  
3.3 Output Buffer Levels  
3.3.1 Output AC Test Conditions  
3.3.2 Output DC Current Drive  
3.3.3 OCD default χηαραχτεριστιχσ  
3.4 IDD Specifications & Measurement Conditions  
3.5 Input/Output Capacitance  
4. AC Timing Specifications  
5. Package Dimensions  
Rev. 0.2 / Dec 2006  
3
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
1. Description  
1.1 Device Features & Ordering Information  
1.1.1 Key Features  
• VDD = 1.8V +/- 0.1V  
• VDDQ = 1.8V +/- 0.1V  
• All inputs and outputs are compatible with SSTL_18 interface  
• 8 banks  
• Fully differential clock inputs (CK, /CK) operation  
• Double data rate interface  
• Source synchronous-data transaction aligned to bidirectional data strobe (DQS, DQS)  
• Differential Data Strobe (DQS, DQS)  
• Data outputs on DQS, DQS edges when read (edged DQ)  
• Data inputs on DQS centers when write(centered DQ)  
• On chip DLL align DQ, DQS and DQS transition with CK transition  
• DM mask write data-in at the both rising and falling edges of the data strobe  
• All addresses and control inputs except data, data strobes and data masks latched on the rising  
edges of the clock  
• Programmable CAS latency 3, 4, 5 and 6 supported  
• Programmable additive latency 0, 1, 2, 3, 4 and 5 supported  
• Programmable burst length 4/8 with both nibble sequential and interleave mode  
• Internal eight bank operations with single pulsed RAS  
• Auto refresh and self refresh supported  
• tRAS lockout supported  
• 8K refresh cycles /64ms  
• JEDEC standard 60ball FBGA(x4/x8) , 84ball FBGA(x16)  
• Full strength driver option controlled by EMRS  
• On Die Termination supported  
• Off Chip Driver Impedance Adjustment supported  
• Read Data Strobe supported (x8 only)  
• Self-Refresh High Temperature Entry  
Operating Frequency  
Ordering Information  
Grade tCK(ns)  
CL  
3
tRCD  
tRP  
3
Unit  
Part No.  
Configuration Package  
E3  
C4  
Y5  
S5  
Clk  
5
3.75  
3
3
4
5
5
HY5PS1G431C(L)FP-XX*  
256Mx4  
60 Ball  
Clk  
Clk  
Clk  
4
4
HY5PS1G831C(L)FP-XX*  
HY5PS1G1631C(L)FP-XX*  
128Mx8  
5
5
84 Ball  
64Mx16  
2.5  
5
5
Note:  
-XX* is the speed bin, refer to the Operation Frequency table for complete Part No.  
Rev. 0.2 /Dec 2006  
4
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
1.2 Pin Configuration & Address Table  
256Mx4 DDR2 Pin Configuration(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
NC  
NC  
A
B
C
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM  
VDDQ  
DQ3  
VSS  
NC  
VDDQ  
NC  
VSSQ  
DQ1  
VDDQ  
NC  
VSSQ  
VREF  
CKE  
D
E
VSSDL  
RAS  
VDD  
ODT  
VDDL  
F
G
H
J
CK  
WE  
CAS  
A2  
CS  
A0  
BA1  
A1  
BA2  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A4  
A5  
K
A11  
NC  
A8  
A9  
A7  
L
A13  
NC  
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
256Mx4  
# of Bank  
Bank Address  
Auto Precharge Flag  
Row Address  
8
BA0,BA1,BA2  
A10/AP  
A0 - A13  
A0-A9, A11  
1 KB  
Column Address  
Page size  
Rev. 0.2 /Dec 2006  
5
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
128Mx8 DDR2 PIN CONFIGURATION(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
DQ6  
NU/RDQS  
A
B
C
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM/RDQS  
VDDQ  
DQ3  
DQ7  
VDDQ  
DQ5  
VSSQ  
DQ1  
VDDQ  
DQ4  
VSSQ  
VREF  
CKE  
D
E
VSSDL  
RAS  
VSS  
VDD  
VDDL  
F
G
H
J
CK  
WE  
ODT  
CAS  
A2  
CS  
A0  
BA1  
A1  
BA2  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A4  
A5  
K
A11  
NC  
A8  
A9  
A7  
L
A13  
NC  
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
128Mx8  
# of Bank  
Bank Address  
Auto Precharge Flag  
Row Address  
8
BA0, BA1, BA2  
A10/AP  
A0 - A13  
A0-A9  
Column Address  
Page size  
1 KB  
Rev. 0.2 /Dec 2006  
6
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
64Mx16 DDR2 PIN CONFIGURATION(Top view: see balls through package)  
7
8
3
9
1
2
A
B
C
D
E
VSSQ  
UDQS  
VDDQ  
DQ10  
VSSQ  
LDQS  
VDDQ  
DQ2  
UDQS  
VSSQ  
DQ8  
VSS  
UDM  
VDDQ  
DQ11  
VSS  
VDDQ  
DQ15  
VDDQ  
DQ13  
VDDQ  
DQ7  
VDD  
DQ14  
VDDQ  
DQ12  
VDD  
NC  
VSSQ  
DQ9  
VSSQ  
NC  
VSSQ  
LDQS  
VSSQ  
DQ0  
F
LDM  
DQ6  
VSSQ  
DQ1  
VSSQ  
G
VDDQ  
DQ3  
VDDQ  
DQ5  
VDDQ  
DQ4  
H
J
VSSQ  
VSSDL  
RAS  
CK  
CK  
VSS  
WE  
VDD  
ODT  
VDDL  
VREF  
CKE  
K
L
CAS  
A2  
CS  
A0  
BA1  
A1  
NC, BA2  
VSS  
BA0  
A10/AP  
A3  
M
VDD  
VSS  
A6  
A4  
A5  
N
P
A11  
A8  
A9  
A7  
NC, A15  
NC, A13  
NC, A14  
VDD  
A12  
R
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
64Mx16  
# of Bank  
8
BA0, BA1, BA2  
A10/AP  
Bank Address  
Auto Precharge Flag  
Row Address  
A0 - A12  
A0-A9  
Column Address  
Page size  
2 KB  
Rev. 0.2 /Dec 2006  
7
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
IDD Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)  
Symbol  
IDD0  
Conditions  
Units  
t
t
t
t
t
Operating one bank active-precharge current; CK = CK(IDD), RC = RC(IDD), RAS =  
t
mA  
RAS min(IDD) ; CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are  
SWITCHING;Data bus inputs are SWITCHING  
Operating one bank active-read-precharge current ; IOUT = 0mA;BL = 4, CL = CL(IDD), AL  
t
t
t
t
t
t
t
t
= 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD = RCD(IDD) ; CKE is HIGH,  
CS is HIGH between valid commands ; Address bus inputs are SWITCHING ; Data pattern is same  
as IDD4W  
IDD1  
mA  
t
t
Precharge power-down current ; All banks idle ; CK = CK(IDD) ; CKE is LOW ; Other control  
IDD2P  
IDD2Q  
IDD2N  
mA  
mA  
mA  
and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge quiet standby current;All banks idle; CK = CK(IDD);CKE is HIGH, CS is HIGH;  
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge standby current; All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH; Other  
control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
mA  
mA  
Active power-down current; All banks open; CK = CK(IDD);  
CKE is LOW; Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Fast PDN Exit MRS(12) = 0  
Slow PDN Exit MRS(12) = 1  
IDD3P  
IDD3N  
IDD4W  
t
t
t
t
t
Active standby current; All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP  
t
mA  
mA  
= RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus  
inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD),  
AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH  
between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
t
t
t
t
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4,  
t
t
t
t
t
t
CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS  
is HIGH between valid commands; Address bus inputs are SWITCHING;; Data pattern is same as  
IDD4W  
IDD4R  
mA  
t
t
t
Burst refresh current; CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is  
HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCH-  
ING; Data bus inputs are SWITCHING  
IDD5B  
IDD6  
mA  
mA  
Self refresh current; CK and CK at 0V; CKE £ 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL  
t
t
t
t
t
t
t
t
= CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD),  
IDD7  
t
t
mA  
RCD = 1* CK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are  
STABLE during DESELECTs; Data pattern is same as IDD4R; - Refer to the following page for  
detailed timing conditions  
Rev. 0.2 /Dec 2006  
8
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Note:  
1. VDDQ = 1.8 +/- 0.1V ; VDD = 1.8 +/- 0.1V (exclusively VDDQ = 1.9 +/- 0.1V ; VDD = 1.9 +/- 0.1V for C3  
speed grade)  
2. IDD specifications are tested after the device is properly initialized  
3. Input slew rate is specified by AC Parametric Test Condition  
4. IDD parameters are specified with ODT disabled.  
5. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met  
with all combinations of EMRS bits 10 and 11.  
6. Definitions for IDD  
LOW is defined as Vin £ VILAC(max)  
HIGH is defined as Vin Š VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks)  
for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per  
clock)for DQ signals not including masks or strobes.  
Rev. 0.2 /Dec 2006  
9
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
2. Maximum DC Ratings  
2.1 Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
Notes  
VDD  
- 1.0 V ~ 2.3 V  
V
1
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
VDDQ  
VDDL  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
V
V
1
1
V
IN, VOUT  
V
1
TSTG  
°C  
1, 2  
Input leakage current; any input 0V VIN VDD;  
all other balls not under test = 0V)  
II  
-2 uA ~ 2 uA  
-5 uA ~ 5 uA  
uA  
uA  
Output leakage current; 0V VOUT VDDQ; DQ  
and ODT disabled  
IOZ  
Note:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the χεντερ/top side of the DRAM. For the measurement  
conditions. please refer to JESD51-2 standard.  
2.2 Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
Notes  
TOPER  
0 to 95  
°C  
1,2  
Operating Temperature  
Note:  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measure-  
ment conditions, please refer to JESD51-2 standard.  
2. At 85~95° TOPER , Double refresh rate(tREFI: 3.9us) is required, and to enter the self refresh mode at this tem-  
perature range, an EMRS command is required to change ιnternal refresh rate.  
Rev. 0.2 /Dec 2006  
10  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3. AC & DC Operating Conditions  
3.1 DC Operating Conditions  
3.1.1 Recommended DC Operating Conditions (SSTL_1.8)  
Rating  
Symbol  
Parameter  
Supply Voltage  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
1.7  
1.8  
1.9  
V
V
1
1.7  
1.8  
1.8  
1.9  
1,2  
1,2  
3,4  
5
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
Note:  
1. Min. Typ. and Max. values increase by 100mV for C3(DDR2-533 3-3-3) speed option.  
2. VDDQ tracks with VDD,VDDL tracks with VDD. AC parameters are measured with VDD,VDDQ and VDD.  
3. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the  
value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track varia-  
tions in VDDQ  
4. Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).  
5. VTT of transmitting device must track VREF of receiving device.  
3.1.2 ODT DC electrical characteristics  
PARAMETER/CONDITION  
SYMBOL MIN NOM MAX UNITS NOTES  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm  
Rtt1(eff)  
60  
120  
40  
75  
150  
50  
90  
180  
60  
ohm  
ohm  
ohm  
%
1
1
1
1
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm Rtt2(eff)  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
Rtt3(eff)  
delta VM  
-6  
+6  
Note :  
1. Test condition for Rtt measurements  
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac))  
and I(VIL(ac)) respectively. VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18  
VIH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
Measurement Definition for VM : Measurement Voltage at test pin(mid point) with no load.  
2 x Vm  
delta VM =  
- 1 x 100%  
VDDQ  
Rev. 0.2 /Dec 2006  
11  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
Notes  
VIH(dc)  
VREF + 0.125  
VDDQ + 0.3  
V
dc input logic high  
dc input logic low  
VIL(dc)  
- 0.3  
VREF - 0.125  
V
3.2.2 Input AC Logic Level  
DDR2 400,533  
DDR2 667,800  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
V
IH (ac)  
VREF + 0.250  
-
VREF + 0.200  
-
-
V
V
ac input logic high  
ac input logic low  
VIL (ac)  
-
VREF - 0.250  
VREF - 0.200  
3.2.3 AC Input Test Conditions  
Symbol  
Condition  
Input reference voltage  
Value  
Units  
Notes  
VREF  
0.5 * VDDQ  
1.0  
V
V
1
VSWING(MAX)  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1
1.0  
V/ns  
2, 3  
Note:  
1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device  
under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(ac) min for rising  
edges and the range from VREF to VIL(ac) max for falling edges as shown in the figure below.  
3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions  
and VIH(ac) to VIL(ac) on the negative transitions.  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF  
VSWING(MAX)  
V
IL(dc) max  
VIL(ac) max  
VSS  
delta TF  
delta TR  
VREF - VIL(ac) max  
delta TF  
VIH(ac) min - VREF  
Falling Slew =  
Rising Slew =  
delta TR  
< Figure : AC Input Test Signal Waveform>  
Rev. 0.2 /Dec 2006  
12  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3.2.4 Differential Input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
VDDQ + 0.6  
Units Notes  
VID (ac)  
0.5  
V
V
1
2
ac differential input voltage  
ac differential cross point voltage  
VIX (ac)  
0.5 * VDDQ - 0.175 0.5 * VDDQ + 0.175  
Note:  
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS, LDQS,  
LDQS, UDQS and UDQS.  
2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input  
(such as CK, DQS, LDQS or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS)  
level.  
The minimum value is equal to VIH(DC) - V IL(DC).  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Note:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input sig-  
nal  
(such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS).  
The minimum value is equal to V IH(AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is  
expected to track variations in VDDQ. VIX(AC) indicates the voltage at which differential input signals must cross.  
3.2.5 Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
Units Notes  
VOX (ac)  
0.5 * VDDQ - 0.125 0.5 * VDDQ + 0.125  
V
1
ac differential cross point voltage  
Note:  
1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is  
expected to track variations in VDDQ. VOX(AC) indicates the voltage at ωηιχη differential output signals must  
cross.  
Rev. 0.2 /Dec 2006  
13  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3.3 Output Buffer Characteristics  
3.3.1 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18 Class II  
Units  
Notes  
VOTR  
Output Timing Measurement Reference Level  
0.5 * VDDQ  
V
1
Note:  
1. The VDDQ of the device under test is referenced.  
3.3.2 Output DC Current Drive  
Symbol  
IOH(dc)  
IOL(dc)  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTl_18  
- 13.4  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
13.4  
mA  
Note:  
1. VDDQ = 1.7 V; VOUT = 1420 mV. (VOUT - VDDQ)/IOH must be less than 21 ohm for values of VOUT between VDDQ  
and VDDQ - 280 mV.  
2. VDDQ = 1.7 V; VOUT = 280 mV. VOUT/IOL must be less than 21 ohm for values of VOUT between 0 V and 280 mV.  
3. The dc value of VREF applied to the receiving device is set to VTT  
4. The values of IOH(dc) and IOL(dc) are based on the conditions given in Notes 1 and 2. They are used to test  
device drive current capability to ensure VIH min plus a noise margin and VIL max minus a noise margin are  
delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating  
point (see Section 3.3) along a 21 ohm load line to define a convenient driver current for measurement.  
Rev. 0.2 /Dec 2006  
14  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3.3.3 OCD default characteristics  
Description  
Parameter  
Min  
Nom  
Max  
Unit  
ohms  
ohms  
ohms  
V/ns  
Notes  
Output impedance  
-
0
-
-
1.5  
4
1
6
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
1,2,3  
Sout  
1.5  
-
5
1,4,5,6,7,8  
Note :  
1. Absolute Specifications ( Toper; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
2. Impedance measurement condition for output source dc current: VDDQ=1.7V; VOUT=1420mV; (VOUT-  
VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV.  
Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol must be  
less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from vil(ac) to vih(ac).  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as  
measured from AC to AC. This is guaranteed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process  
corners/variations and represents only the DRAM uncertainty. A 0 ohm value(no calibration) can only be achieved  
if the OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.  
Output Slew rate load:  
VTT  
25 ohms  
Reference  
point  
Output  
(Vout)  
7. DRAM output slew rate specification applies to 400, 533 and 667 MT/s speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in  
tDQSQ and tQHS specification.  
Rev. 0.2 /Dec 2006  
15  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3.4 IDD Specifications & Test Conditions  
IDD Specifications(max)  
DDR2 533  
DDR2 667  
DDR2 800  
Units  
DDR2 400  
Symbol  
x4  
x8  
x4  
x8  
x16  
x4  
x8  
x16  
x4  
x8  
x16  
IDD0  
IDD1  
60  
60  
65  
65  
85  
70  
70  
90  
75  
75  
95  
mA  
70  
8
70  
8
75  
8
75  
8
110  
8
80  
8
80  
8
115  
8
85  
8
85  
8
120  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
22  
30  
20  
9
22  
30  
20  
9
27  
35  
20  
9
27  
35  
20  
9
27  
35  
20  
9
30  
40  
25  
9
30  
40  
25  
9
30  
40  
25  
9
32  
45  
25  
9
32  
45  
25  
9
32  
45  
25  
9
F
S
IDD3P  
IDD3N  
IDD4W  
IDD4R  
IDD5  
35  
100  
100  
165  
8
35  
100  
100  
165  
8
45  
125  
125  
165  
8
45  
125  
125  
165  
8
45  
160  
160  
165  
8
50  
150  
150  
175  
8
50  
150  
150  
175  
8
50  
195  
195  
175  
8
55  
170  
170  
175  
8
55  
170  
170  
175  
8
55  
225  
225  
175  
8
Normal  
IDD6  
Low  
power  
5
5
5
5
5
5
5
5
5
5
5
mA  
mA  
IDD7  
165  
165  
175  
175  
260  
180  
180  
265  
185  
185  
270  
Rev. 0.2 /Dec 2006  
16  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
IDD Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)  
Symbol  
IDD0  
Conditions  
Units  
t
t
t
t
t
t
Operating one bank active-precharge current; CK = CK(IDD), RC = RC(IDD), RAS = RAS  
min(IDD) ; CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are SWITCH-  
ING;Data bus inputs are SWITCHING  
mA  
Operating one bank active-read-precharge χυρρεντ ; IOUT = 0mA;BL = 4, CL = CL(IDD), AL  
t
t
t
t
t
t
t
t
= 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD = RCD(IDD) ; CKE is HIGH,  
CS is HIGH between valid commands ; Address bus inputs are SWITCHING ; Data pattern is same  
as IDD4W  
IDD1  
mA  
t
t
Precharge power-down current ; All banks idle ; CK = CK(IDD) ; CKE is LOW ; Other control  
IDD2P  
IDD2Q  
IDD2N  
mA  
mA  
mA  
and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge quiet standby current;All banks idle; CK = CK(IDD);CKE is HIGH, CS is HIGH;  
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge standby current; All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH; Other  
control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
mA  
mA  
Active power-down current; All banks open; CK = CK(IDD);  
CKE is LOW; Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Fast PDN Exit MRS(12) = 0  
Slow PDN Exit MRS(12) = 1  
IDD3P  
IDD3N  
IDD4W  
t
t
t
t
t
Active standby current; All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP  
t
mA  
mA  
= RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus  
inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD),  
AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between  
valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
t
t
t
t
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL  
t
t
t
t
t
t
= CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is  
HIGH between valid commands; Address bus inputs are SWITCHING;; Data pattern is same as  
IDD4W  
IDD4R  
mA  
t
t
t
Burst refresh current; CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is  
HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCH-  
ING; Data bus inputs are SWITCHING  
IDD5B  
IDD6  
mA  
mA  
Self refresh current; CK and CK at 0V; CKE £ 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks)  
for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per  
clock) for DQ signals not including masks or strobes.  
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL  
t
t
t
t
t
t
t
t
= CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD),  
IDD7  
t
t
mA  
RCD = 1* CK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are  
STABLE during DESELECTs; Data pattern is same as IDD4R; - Refer to the following page for  
detailed timing conditions  
Rev. 0.2 /Dec 2006  
17  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Note :  
1. VDDQ = 1.8 +/- 0.1V ; VDD = 1.8 +/- 0.1V (exclusively VDDQ = 1.9 +/- 0.1V ; VDD = 1.9 +/- 0.1V for C3 speed  
grade)  
2. IDD specifications are tested after the device is properly initialized  
3. Input slew rate is specified by AC Parametric Test Condition  
4. IDD parameters are specified with ODT disabled.  
5. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met  
with all combinations of EMRS bits 10 and 11.  
6. Definitions for IDD  
LOW is defined as Vin £ VILAC(max)  
HIGH is defined as Vin Š VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks)  
for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per  
clock) for DQ signals not including masks or strobes.  
Rev. 0.2 /Dec 2006  
18  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
For purposes of IDD testing, the following parameters are to be utilized  
DDR2-800  
DDR2-  
667  
DDR2-  
533  
DDR2-  
400  
Parameter  
5-5-5  
6-6-6  
6
5-5-5  
5
4-4-4  
4
3-3-3  
3
Units  
CL(IDD)  
5
tCK  
t
12.5  
15  
15  
15  
15  
RCD(IDD)  
ns  
ns  
t
57.5  
7.5  
60  
60  
60  
RC(IDD)  
55  
t
7.5  
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
7.5  
t
10  
5
RRD(IDD)-x16  
10  
10  
10  
3
10  
t
2.5  
2.5  
3.75  
CK(IDD)  
RASmin(IDD)  
ns  
ns  
t
45  
70000  
12.5  
75  
45  
70000  
15  
45  
70000  
15  
45  
70000  
15  
40  
t
70000  
15  
ns  
ns  
ns  
ns  
ns  
ns  
RASmax(IDD)  
t
RP(IDD)  
t
t
75  
75  
75  
75  
RFC(IDD)-256Mb  
105  
105  
105  
105  
105  
127.5  
197.5  
RFC(IDD)-512Mb  
t
t
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
RFC(IDD)-1Gb  
RFC(IDD)-2Gb  
Detailed IDD7  
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the  
specification.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
t
t
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) using a burst length of 4. Control and  
address bus inputs are STABLE during DESELECTs. IOUT = 0mA  
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-400 4/4/4: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D  
-DDR2-400 3/3/3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D  
-DDR2-533 5/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
-DDR2-533 4/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
Timing Patterns for 8 bank devices x4/8  
-DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7  
-DDR2-533 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
Timing Patterns for 8 bank devices x16  
-DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
-DDR2-533 all bins: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 D A6 RA6 D A7 RA7 D D D  
Rev. 0.2 /Dec 2006  
19  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
3.5. Input/Output Capacitance  
DDR2 400  
DDR2 533  
DDR2 667  
DDR2 800  
Parameter  
Symbol  
Units  
Min  
1.0  
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Input capacitance, CK and CK  
Input capacitance delta, CK and CK  
CCK  
CDCK  
CI  
pF  
pF  
pF  
pF  
pF  
pF  
x
1.0  
x
0.25  
2.0  
0.25  
2.0  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
CDI  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
4. Electrical Characteristics & AC Timing Specification  
( 0 ϒϒT  
ϒ 95ϒ ; V  
= 1.8 V +/- 0.1V; V = 1.8V +/- 0.1V)  
CASE  
DDQ DD  
Refresh Parameters by Device Density  
Symbol  
Parameter  
256Mb 512Mb 1Gb  
2Gb  
4Gb Units  
Refresh to Active/Refresh command  
time  
tRFC  
75  
105  
127.5  
195  
327.5  
ns  
0 ϒϒ TCASE ϒℜ 95ϒ⊃  
85ϒTCASE ϒℜ 95ϒ⊃  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
ns  
ns  
Average periodic refresh interval  
tREFI  
DDR2 SDRAM speed bins and tRCD, tRP and tRC for corresponding bin  
Speed  
DDR2-800  
DDR2-667  
DDR2-533 DDR2-400 Units  
Bin(CL-tRCD-tRP)  
5-5-5  
6-6-6  
min  
6
4-4-4  
5-5-5  
min  
5
4-4-4  
min  
4
3-3-3  
min  
3
Parameter  
CAS Latency  
tRCD  
min  
5
min  
4
tCK  
ns  
12.5  
12.5  
45  
15  
12  
12  
45  
57  
15  
15  
15  
tRPNote1  
tRAS  
15  
15  
15  
15  
ns  
45  
45  
45  
40  
ns  
tRC  
57.5  
60  
60  
60  
55  
ns  
Note 1: 8 bank device Precharge All Allowance : tRP for a Precharge All command for an 8 Bank device will equal to  
tRP+1*tCK, where tRP are the values for a single bank Πρεχηαργε, which are shown in the table above.  
Rev. 0.2 /Dec 2006  
20  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Timing Parameters by Speed Grade  
DDR2-400  
min  
DDR2-533  
Symbol  
Unit  
Note  
Parameter  
max  
+600  
+500  
0.55  
0.55  
-
min  
-500  
-450  
0.45  
0.45  
max  
+500  
+450  
0.55  
0.55  
-
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-600  
-500  
0.45  
0.45  
ps  
ps  
tDQSCK  
tCH  
tCK  
tCK  
ps  
CK low-level width  
tCL  
tHP  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
11,12  
CK half period  
Clock cycle time, CL=x  
tCK  
5000  
150  
275  
25  
8000  
3750  
100  
225  
-25  
8000  
ps  
ps  
ps  
ps  
ps  
15  
DQ and DM input setup time(differential strobe)  
DQ and DM input hold time(differential strobe)  
DQ and DM input setup time(single ended strobe)  
DQ and DM input hold time(single ended strobe)  
tDS(base)  
tDH(base)  
tDS  
-
-
-
-
-
-
-
-
6,7,8,20  
6,7,8,21  
6,7,8,20  
6,7,8,21  
tDH  
25  
-25  
Control & Address input pulse width for each  
input  
tIPW  
0.6  
-
0.6  
-
tCK  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
tDIPW  
tHZ  
0.35  
-
-
0.35  
-
-
tCK  
ps  
tAC max  
tAC max  
18  
18  
tLZ  
(DQS)  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
tAC min  
2*tAC min  
-
tAC max  
tAC max  
350  
tAC min  
2*tAC min  
-
tAC max  
tAC max  
300  
ps  
ps  
ps  
tLZ  
(DQ)  
18  
DQS-DQ skew for DQS and associated DQ  
signals  
tDQSQ  
13  
12  
DQ hold skew factor  
tQHS  
tQH  
-
tHP - tQHS  
WL - 0.25  
0.35  
0.35  
0.2  
450  
-
tHP - tQHS  
WL - 0.25  
0.35  
0.35  
0.2  
400  
ps  
DQ/DQS output hold time from DQS  
Write command to first DQS latching transition  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
-
-
ps  
tDQSS  
tDQSH  
tDQSL  
tDSS  
tDSH  
tMRD  
tWPST  
tWPRE  
tIS  
WL + 0.25  
WL + 0.25  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
-
-
-
-
-
-
0.2  
-
-
0.2  
-
-
2
2
0.4  
0.6  
-
0.4  
0.6  
-
10  
Write preamble  
0.35  
350  
0.35  
250  
Address and control input setup time  
Address and control input hold time  
Read preamble  
-
-
5,7,9,23  
5,7,9,23  
tIH  
475  
-
375  
-
ps  
tRPRE  
tRPST  
0.9  
1.1  
0.6  
0.9  
1.1  
0.6  
tCK  
tCK  
Read postamble  
0.4  
0.4  
Active to active command period for 1KB  
page size products (x4, x8)  
ns  
ns  
4
4
tRRD  
tRRD  
7.5  
10  
-
-
7.5  
10  
-
-
Active to active command period for 2KB  
page size products (x16)  
Rev. 0.2 /Dec 2006  
21  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
-Continued  
DDR2-400  
DDR2-533  
Uni  
t
Symbol  
Note  
Parameter  
min  
max  
min  
max  
Four Active Window for 1KB page size  
products  
ns  
tFAW  
tFAW  
37.5  
50  
-
37.5  
50  
-
Four Active Window for 2KB page size  
products  
-
-
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
2
tCK  
ns  
15  
-
-
-
15  
-
-
-
Auto precharge write recovery + precharge  
time  
tDAL  
WR+tRP*  
WR+tRP*  
tCK  
14  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tWTR  
tRTP  
10  
7.5  
7.5  
7.5  
ns  
ns  
24  
3
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
-
-
-
-
tCK  
Exit precharge power down to any non-read  
command  
tXP  
2
2
2
2
tCK  
tCK  
tCK  
Exit active power down to read command  
tXARD  
tXARDS  
1
Exit active power down to read command  
(Slow exit, Lower power)  
6 - AL  
6 - AL  
1, 2  
CKE minimum pulse width  
(high and low pulse width)  
tCKE  
tAOND  
tAON  
3
2
3
2
tCK  
tCK  
ns  
ODT turn-on delay  
ODT turn-on  
2
2
tAC(max)  
+1  
tAC(max)  
+1  
tAC(min)  
tAC(min)  
16  
17  
2tCK+tAC  
(max)  
+1  
tAONP  
D
tAC(min)+  
2
tAC(min)+  
2
2tCK+tAC  
(max)+1  
ODT turn-on(Power-Down mode)  
ns  
tAOFD  
tAOF  
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(min)  
tAC(min)  
2.5tCK+t  
AC(max)  
+1  
tAC(min)+  
2
2.5tCK+tA  
C(max)+1  
tAC(min)+  
2
tAOFPD  
ODT turn-off (Power-Down mode)  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
Minimum time clocks remains ON after  
CKE asynchronously drops LOW  
tIS+tCK+tI  
H
tIS+tCK+tI  
H
tDelay  
ns  
15  
Rev. 0.2 /Dec 2006  
22  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
DDR2-667  
min  
DDR2-800  
Symbol  
Unit  
Note  
Parameter  
max  
+450  
+400  
0.55  
min  
-400  
-350  
0.45  
0.45  
max  
+400  
+350  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-450  
-400  
0.45  
0.45  
ps  
ps  
tDQSCK  
tCH  
tCK  
tCK  
CK low-level width  
tCL  
0.55  
0.55  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
CK half period  
tHP  
-
-
ps  
11,12  
Clock cycle time, CL=x  
tCK  
3000  
8000  
2500  
ps  
ps  
15  
DQ and DM input setup time  
DQ and DM input hold time  
tDS(base)  
tDH(base)  
100  
-
50  
-
6,7,8,20  
6,7,8,21  
175  
-
125  
-
ps  
Control & Address input pulse width for each input tIPW  
0.6  
-
-
0.6  
-
-
tCK  
tCK  
ps  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
DQS-DQ skew for DQS and associated DQ signals  
DQ hold skew factor  
tDIPW  
tHZ  
0.35  
0.35  
-
tAC max  
tAC max  
tAC max  
240  
-
tAC max  
tAC max  
tAC max  
200  
18  
18  
18  
13  
12  
tLZ(DQS)  
tLZ(DQ)  
tDQSQ  
tQHS  
tAC min  
tAC min  
ps  
2*tAC min  
2*tAC min  
ps  
-
-
ps  
-
340  
-
300  
ps  
DQ/DQS output hold time from DQS  
tQH  
tHP - tQHS  
-
tHP - tQHS  
-
ps  
First DQS latching transition to associated clock  
edge  
tDQSS  
- 0.25  
+ 0.25  
- 0.25  
+ 0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
-
0.35  
0.35  
0.2  
0.2  
2
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
-
-
-
-
tDSH  
-
-
tMRD  
-
0.6  
-
-
0.6  
-
tWPST  
tWPRE  
tIS(base)  
tIH(base)  
tRPRE  
tRPST  
tRAS  
0.4  
0.35  
200  
275  
0.9  
0.4  
45  
0.4  
0.35  
175  
250  
0.9  
0.4  
45  
10  
Write preamble  
Address and control input setup time  
Address and control input hold time  
Read preamble  
-
-
5,7,9,22  
-
-
ps  
5,7,9,23  
1.1  
0.6  
70000  
1.1  
0.6  
70000  
tCK  
tCK  
ns  
19  
19  
3
Read postamble  
Activate to precharge command  
Active to active command period for 1KB page size  
products (x4, x8)  
tRRD  
tRRD  
7.5  
10  
-
-
7.5  
10  
-
-
ns  
ns  
4
4
Active to active command period for 2KB page size  
products (x16)  
Four Active Window for 1KB page size products  
Four Active Window for 2KB page size products  
CAS to CAS command delay  
tFAW  
tFAW  
tCCD  
tWR  
37.5  
-
-
37.5  
-
-
ns  
ns  
50  
2
50  
2
tCK  
ns  
Write recovery time  
15  
-
-
15  
-
-
Auto precharge write recovery + precharge time  
tDAL  
WR+tRP  
WR+tRP  
tCK  
14  
Rev. 0.2 /Dec 2006  
23  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
-Continue-  
DDR2-667  
DDR2-800  
Symbol  
Unit  
Note  
Parameter  
min  
max  
min  
7.5  
max  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tWTR  
tRTP  
7.5  
7.5  
-
-
ns  
ns  
7.5  
3
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
-
-
-
-
tCK  
Exit precharge power down to any non-read  
command  
tXP  
2
2
2
2
tCK  
tCK  
tCK  
Exit active power down to read command  
tXARD  
tXARDS  
1
Exit active power down to read command  
(Slow exit, Lower power)  
7 - AL  
8 - AL  
1, 2  
CKE minimum pulse width  
(high and low pulse width)  
t
3
2
3
2
tCK  
tCK  
ns  
CKE  
t
ODT turn-on delay  
ODT turn-on  
2
2
AOND  
tAC(max)  
+0.7  
tAC(max)  
+0.7  
t
tAC(min)  
tAC(min)  
6,16  
AON  
2tCK+  
tAC(min)  
+2  
2tCK+  
t
ODT turn-on(Power-Down mode)  
ODT turn-off delay  
tAC(min)+2  
2.5  
ns  
tCK  
ns  
AONPD  
tAC(max)+1  
tAC(max)+1  
t
2.5  
2.5  
2.5  
AOFD  
tAC(max)  
+0.6  
t
ODT turn-off  
tAC(min)  
tAC(max)+ 0.6  
tAC(min)  
17  
AOF  
tAC(min)  
+2  
2.5tCK+  
tAC(max)+1  
tAC(min)  
+2  
2.5tCK+  
tAC(max)+1  
t
ODT turn-off (Power-Down mode)  
ns  
AOFPD  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
Minimum time clocks remains ON after CKE  
asynchronously drops LOW  
tIS+tCK  
+tIH  
tDelay  
tIS+tCK+tIH  
ns  
15  
Rev. 0.2 /Dec 2006  
24  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for  
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between  
DQS - DQS = -500 mV and DQS - DQS = +500mV. Output slew rate is guaranteed by design, but is  
not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF - 125 mV to  
VREF + 250 mV for rising edges and from VREF + 125 mV and VREF - 250 mV for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV  
to CK - CK = +500 mV  
(250mV to -500 mV for falling egdes).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or  
between DQS and DQS for differential strobe.  
2. DDR2 SDRAM AC timing reference load  
The following figure represents the timing reference load used in defining the relevant timing parameters  
of the part. It is not intended to be either a precise representation of the typical system environment nor a  
depiction of the actual load presented by a production tester. System designers will use IBIS or other simula-  
tion tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their  
production test conditions (generally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS  
Output  
DUT  
VTT = VDDQ/2  
RDQS  
RDQS  
Timing  
reference  
point  
25Ω  
AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output tim-  
ing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement  
(e.g. DQS) signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown below.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
VTT = VDDQ/2  
RDQS, RDQS  
25Ω  
Test point  
Slew Rate Test Load  
Rev. 0.2 /Dec 2006  
25  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the  
setting of the EMRS “Enable DQS” mode bit; timing advantages of differential mode are realized in system  
design. The method by which the DDR2 SDRAM pin timings are measured is mode dependent. In single  
VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its  
complement, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that  
when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied  
externally to VSS through a 20 ohm to 10 K ohm resistor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
V
(dc)  
V
(ac)  
IH  
IH  
DQ  
DM  
D
D
D
t
D
t
V
(ac)  
V
(dc)  
IL  
IL  
t
t
DS  
DH  
DH  
DS  
V
(dc)  
V
(ac)  
IH  
IH  
DMin  
DMin  
DMin  
(ac)  
DMin  
(dc)  
V
IL  
V
IL  
Figure -- Data input (write) timing  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
Figure -- Data output (read) timing  
5. AC timings are for linear signal transitions. See System Derating for other signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They  
may be guaranteed by device design or tester correlation.  
7. All voltages referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal refer-  
ence/supply voltage levels, but the related specifications and device operation are guaranteed for the full  
voltage range specified.  
Rev. 0.2 /Dec 2006  
26  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Specific Notes for dedicated AC parameters  
1. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be  
used for fast active power down exit timing. tXARDS is expected to be used for slow active power down exit  
timing where a lower power value is defined by each vendor data sheet.  
2. AL = Additive Latency  
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and  
tRAS(min) have been satisfied.  
4. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency  
5. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for other  
slew rate values.  
6. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0  
V/ns. See System Derating for other slew rate values.  
7. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS sig-  
nals with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single  
ended mode. See System Derating for other slew rate values.  
8. tDS and tDH derating  
tDS, tDH Derating Values(ALL units in 'ps', Note 1 applies to entire Table)  
DQS, DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD  
S
H
S
H
S
H
S
-
H
-
S
-
H
-
S
-
H
-
S
-
H
-
S
-
H
S
-
H
2.0 125 45 125 45 +125 +45  
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
83  
0
-
21  
0
-
83  
0
21 +83 +21 95  
33  
12  
-2  
-
-
-
-
-
-
-
-
-
-
-
0
0
0
12  
1
24  
13  
-1  
24  
10  
-7  
-
-
-
-
-
-
-
DQ  
Slew  
rate  
-11 -14 -11 -14  
25  
11  
-7  
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-25 -31 -13 -19  
23  
5
17  
-6  
-
-
-
-
-
-43 -54 -31 -42 -42 -19  
-8  
17  
-7  
6
-
-
V/ns  
-
-
-67 -83  
-110 -125  
-175 -188  
-
-
-
-
-
-
-43 -59 -31 -47 -19 -35  
-23  
5
-11  
-
-
-
-
-
-
-74 -89 -62 -77 -50 -65 -38 -53  
-127 -140 -115 -128 -103 -116  
-
-
-
-
1) For all input signals the total tDS(setup time) and tDH(hold time) required is calculated by adding the datasheet value to the derating  
value listed in Table x.  
Setup(tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing  
of Vih(ac)min. Setup(tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the  
first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded ‘ VREF(dc) to ac region’,  
use nominal slew rate for derating value(see Fig a.) If the actual signal is later than the nominal slew rate line anywhere between shaded  
‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value(see Fig b.)  
Hold(tDH) nominal slew rate for a rising signal is defined as the slew ρατε between the last crossing of Vil(dc) max and the first crossing  
of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc) min and the  
first crossing of VREF(dc). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’,  
the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value(see Fig d.)  
Although for slow slew rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/IL(ac) at the time  
of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rate in between the values listed in table x, the derating valued may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 0.2 /Dec 2006  
27  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Fig. a Illustration of nominal slew rate for tIS,tDS  
CK,DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Vss  
Delta TF  
Delta TR  
Setup Slew Rate  
Falling Signal  
VREF(dc)-VIL(ac)max  
Delta TF  
Setup Slew Rate  
Rising Signal  
VIH(ac)min-VREF(dc)  
Delta TR  
=
=
Rev. 0.2 /Dec 2006  
28  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Fig. -b Illustration of tangent line for tIS,tDS  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
nominal  
line  
VIH(ac)min  
VIH(dc)min  
tangent  
line  
VREF(dc)  
Tangent  
line  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Nomial  
line  
Vss  
Delta TR  
Setup Slew Rate  
Rising Signal  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TR  
=
Delta TF  
Tangent line[VREF(dc)-VIL(ac)max]  
Delta TF  
Setup Slew Rate  
Falling Signal  
=
Rev. 0.2 /Dec 2006  
29  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Fig. -c Illustration of nominal line for tIH, tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Hold Slew Rate  
Delta TF  
VIH(dc)min - VREF(dc)  
Delta TF  
Hold Slew Rate  
Rising Signal  
VREF(dc)-VIL(dc)max  
Delta TR  
=
=
Falling Signal  
Rev. 0.2 /Dec 2006  
30  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Fig. -d Illustration of tangent line for tIH , tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIS,  
tDS  
tIH,  
tDH  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
nominal  
line  
VIH(dc)min  
tangent  
line  
VREF(dc)  
dc to VREF  
region  
Tangent  
line  
nominal  
line  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Delta TF  
Hold Slew Rate Tangent line[VREF(dc)-VIL(ac)max]  
=
Rising Signal  
Delta TR  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TF  
Hold Slew Rate  
Falling Signal  
=
Rev. 0.2 /Dec 2006  
31  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
9. tIS and tIH (input setup and hold) derating  
tIS, tIH Derating Values  
CK, CK Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
tIS  
1.0 V/ns  
tIS tIH  
tIH  
tIS  
tIH  
Units  
Notes  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
+94  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+89  
+83  
+75  
+45  
+21  
0
+0  
-11  
-14  
Command /  
Address  
Slew  
-25  
-31  
-43  
-54  
rate(V/ns)  
-67  
-83  
-100  
-150  
-223  
-250  
-500  
-750  
-1250  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
1) For all input signals the total tIS(setup time) and tIH(hold) time) required is calculated by adding the  
datasheet value to the derating value listed in above Table.  
Setup(tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
(dc) and the first crossing of V (ac)min. Setup(tIS) nominal slew rate for a falling signal is defined as  
REF  
IH  
the slew rate between the last crossing of VREF(dc) and the first crossing of V (ac)max. If the actual signal is  
IL  
always earlier than the nominal slew rate for line between shaded ‘V (dc) to ac region, use nominal slew  
REF  
rate for derating value(see fig a.) If the actual signal is later than the nominal slew rate line anywhere  
between shaded ‘V (dc) to ac region, the slew rate of a tangent line to the actual signal from the ac level  
REF  
to dc level is used for derating value(see Fig b.)  
Hold(tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL(dc)max and the first crossing of V (dc). Hold(tIH) nominal slew rate for a falling signal is defined as the  
REF  
slew rate between the last crossing of V (dc). If the actual σιγναλ is always later than the nominal slew  
REF  
rate line between shaded ‘dc to V (dc) region, use nominal slew rate for derating value(see Fig.c) If the  
REF  
actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to V (dc) region, the  
REF  
slew rate of a tangent line to the actual signal from the dc level to V (dc) level is used for derating  
REF  
value(see Fig d.)  
Although for slow rates the total setup time might be negative(i.e. a valid input signal will not have reached  
V
(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transi-  
IH/IL  
tion and reach V  
(ac).  
IH/IL  
For slew rates in between the values listed in table, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 0.2 /Dec 2006  
32  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value  
for this parameter, but system performance (bus turnaround) will degrade accordingly.  
11. MIN ( t CL, t CH) refers to the smaller of the actual clock low time and the actual clock high time as  
provided to the device (i.e. this value can be greater than the minimum specification limits for t CL and t CH).  
For example, t CL and t CH are = 50% of the period, less the half period jitter ( t JIT(HP)) of the clock  
source, and less the half period jitter due to crosstalk ( t JIT(crosstalk)) into the clock traces.  
12. t QH = t HP – t QHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the  
next transition, both of which are, separately, due to data pin skew and output pattern effects, and  
p-channel to n-channel variation of the output drivers.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the  
output drivers as well as output slew rate mismatch between DQS/ DQS and associated DQ in any given  
cycle.  
14. t DAL = (nWR) + ( tRP/tCK):  
For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the  
application clock period. nWR refers to the t WR parameter stored in the MRS.  
Example: For DDR533 at t CK = 3.75 ns with t WR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns)  
clocks =4 +(4)clocks=8clocks.  
15. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode.  
In case of clock frequency change during precharge power-down, a specific procedure is required as  
described in section 2.9.  
16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
17. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. Thesed parameters are  
referenced to a specific voltage level which specifies when the device output is no longer driving(tHZ), or  
begins driving (tLZ). Below figure shows a method to calculate the point when device is no longer driving  
(tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measure-  
ment points are not critical as long as the calculation is consistenet.  
Rev. 0.2 /Dec 2006  
33  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the  
device output is no longer driving (tRPST), or begins driving (tRPRE). Below figure shows a method to calcu-  
late these points when the device is no longer driving (tRPST), or begins driving (tRPRE). Below Figure shows  
a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by  
measuring the signal at two different voltages. The actual voltage measurement points are not critical as long  
as the calculation is consistent.  
VOH + xmV  
VTT + 2xmV  
VTT + xmV  
VOH + 2xmV  
tHZ  
tHZ  
tRPST end point  
tRPRE begin point  
VOL + 1xmV  
VOL + 2xmV  
VTT -xmV  
VTT - 2xmV  
tHZ , tRPST end point = 2*T1-T2  
tLZ , tRPRE begin point = 2*T1-T2  
20. Input waveform timing with differential data strobe enabled MR[bit10] =0, is referenced from the input  
signal crossing at the V (ac) level to the differential data strobe crosspoint for a rising signal, and from the  
IH  
input signal crossing at the V (ac) level to the differential data strobe crosspoint for a falling signal applied to  
IL  
the device under test.  
21. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input  
signal crossing at the V (dc) level to the differential data strobe crosspoint for a rising signal and V (dc) to  
IH  
IL  
the differential data strobe crosspoint for a falling signal applied to the device under test.  
Differential Input waveform timing  
DQS  
DQS  
tDS tDH  
tDS tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
VIL(dc)max  
VIL(ac)max  
VSS  
22. Input waveform timing is referenced from the input signal crossing at the V (ac) level for a rising signal  
IH  
and V (ac) for a falling signal applied to the device under test.  
IL  
23. Input waveform timing is referenced from the input signal crossing at the V (dc) level for a rising signal  
IL  
and V (dc) for a falling signal applied to the device under test.  
IH  
Rev. 0.2 /Dec 2006  
34  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Rev. 0.2 /Dec 2006  
35  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
5. Package Dimensions  
Package Dimension(x4,x8)  
60Ball Fine Pitch Ball Grid Array Outline  
8.00 ± 0.10  
A1 BALL MARK  
2-R0.13MAX  
< Top View>  
< SIDE View>  
1.10 ± 0.10  
0.34 ± 0.05  
0.80 X 8 = 6.40  
2.10 ± 0.10  
A1 BALL MARK  
8
9
7
3 2 1  
A
B
C
D
E
F
G
H
J
K
L
60X Φ0.45 ± 0.05  
1.60 1.60  
0.80  
< Bottom View>  
Note: All dimensions are in millimeters.  
Rev. 0.2 /Dec 2006  
36  
HY5PS1G431C(L)FP  
HY5PS1G831C(L)FP  
HY5PS1G1631C(L)FP  
Package Dimension(x16)  
84Ball Fine Pitch Ball Grid Array Outline  
8.00 ± 0.10  
A1 BALL MARK  
2-R0.13MAX  
< Top View>  
< SIDE View>  
1.10 ± 0.10  
0.34 ± 0.05  
0.80 X 8 = 6.40  
2.10 ± 0.10  
A1 BALL MARK  
3 2 1  
9
8 7  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
0.80  
84X Φ0.45 ± 0.05  
1.60 1.60  
< Bottom View>  
Note: All dimensions are in millimeters.  
Rev. 0.2 /Dec 2006  
37  

相关型号:

HY5PS1G1631CLFP-E3

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-E3I

DDR DRAM, 64MX16, 0.6ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP-S5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-S5I

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP-S6I

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G1631CLFP-Y5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G1631CLFP-Y5I

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS1G421LM

1Gb DDR2 SDRAM(DDP)
HYNIX

HY5PS1G421LM-C4

1Gb DDR2 SDRAM(DDP)
HYNIX

HY5PS1G421LM-C5

DDR DRAM, 256MX4, CMOS, PBGA60,
HYNIX

HY5PS1G421LM-E3

1Gb DDR2 SDRAM(DDP)
HYNIX

HY5PS1G421M

1Gb DDR2 SDRAM(DDP)
HYNIX