HY5PS1G831F-C4 [HYNIX]

1Gb DDR2 SDRAM; 1GB DDR2 SDRAM
HY5PS1G831F-C4
型号: HY5PS1G831F-C4
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

1Gb DDR2 SDRAM
1GB DDR2 SDRAM

存储 内存集成电路 动态存储器 双倍数据速率 时钟
文件: 总33页 (文件大小:524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY5PS1G431(L)F  
HY5PS1G831(L)F  
1Gb DDR2 SDRAM  
HY5PS1G431(L)F  
HY5PS1G831(L)F  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 1.2 / Dec 2006  
1
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Revision History  
Rev.  
History  
Draft Date  
0.1  
0.2  
Feb.2004  
Preliminary  
Corrected typos of Pin description & tRFC spec. ,  
Added IDD spec.  
Apr.2004  
Editorial Clean up, Transfered Functional description, command truth table pages and  
Some contents of Operating conditions to <Device Operation & timing diagram>  
Jul. 2004  
1.0  
Feb. 2005  
July 2006  
Dec 2006  
Updated IDD spec.  
1.1  
1.2  
Corrected typo, and removed improper note in ODT DC spec.  
Corrected Pinout Numbering  
Rev. 1.2 / Dec 2006  
2
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Contents  
1. Description  
1.1 Device Features and Ordering Information  
1.1.1 Key Feaures  
1.1.2 Ordering Information  
1.1.3 Ordering Frequency  
1.2 Pin configuration  
1.3 Pin Description  
2. Maximum DC ratings  
2.1 Absolute Maximum DC Ratings  
2.2 Operating Temperature Condition  
3. AC & DC Operating Conditions  
3.1 DC Operating Conditions  
5.1.1 Recommended DC Operating Conditions(SSTL_1.8)  
5.1.2 ODT DC Electrical Characteristics  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
3.2.2 Input AC Logic Level  
3.2.3 AC Input Test Conditions  
3.2.4 Differential Input AC Logic Level  
3.2.5 Differential AC output parameters  
3.3 Output Buffer Levels  
3.3.1 Output AC Test Conditions  
3.3.2 Output DC Current Drive  
3.3.3 OCD default chracteristics  
3.4 IDD Specifications & Measurement Conditions  
3.5 Input/Output Capacitance  
4. AC Timing Specifications  
5. Package Dimensions  
Rev. 1.2 / Dec 2006  
3
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
1. Description  
1.1 Device Features & Ordering Information  
1.1.1 Key Features  
• VDD=1.8V  
• VDDQ=1.8V +/- 0.1V  
• All inputs and outputs are compatible with SSTL_18 interface  
• Fully differential clock inputs (CK, /CK) operation  
• Double data rate interface  
• Source synchronous-data transaction aligned to bidirectional data strobe (DQS, DQS)  
• Differential Data Strobe (DQS, DQS)  
• Data outputs on DQS, DQS edges when read (edged DQ)  
• Data inputs on DQS centers when write(centered DQ)  
• On chip DLL align DQ, DQS and DQS transition with CK transition  
• DM mask write data-in at the both rising and falling edges of the data strobe  
• All addresses and control inputs except data, data strobes and data masks latched on the rising  
edges of the clock  
• Programmable CAS latency 3, 4, 5 and 6 supported  
• Programmable additive latency 0, 1, 2, 3, 4 and 5 supported  
• Programmable burst length 4/8 with both nibble sequential and interleave mode  
• Internal eight bank operations with single pulsed RAS  
• Auto refresh and self refresh supported  
• tRAS lockout supported  
• 8K refresh cycles /64ms  
• JEDEC standard 68ball FBGA(x4/x8)  
• Full strength driver option controlled by EMRS  
• On Die Termination supported  
• Off Chip Driver Impedance Adjustment supported  
• Read Data Strobe suupported (x8 only)  
• Self-Refresh High Temperature Entry  
Operating Frequency  
Ordering Information  
Grade tCK(ns)  
CL  
3
tRCD  
tRP  
Unit  
Part No.  
Configuration Package  
-E3  
-E4  
-C4  
-C5  
-Y5  
-Y6  
Clk  
5
5
3
4
4
5
5
6
3
4
4
5
5
6
HY5PS1G431(L)F-X*  
256Mx4  
128Mx8  
68Ball  
Clk  
Clk  
Clk  
Clk  
Clk  
4
HY5PS1G831(L)F-X*  
3.75  
3.75  
3
4
5
5
Note: -X* is the speed bin, refer to the Operation  
Frequency table for complete Part No.  
3
6
Rev. 1.2 / Dec 2006  
4
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
1.2 Pin Configuration & Address Table  
256Mx4 DDR2 Pin Configuration  
7
8
3
9
1
2
NC  
NC  
A
B
C
D
NC  
NC  
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
NC  
NC  
E
F
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM  
VDDQ  
DQ3  
VSS  
NC  
VDDQ  
NC  
VSSQ  
DQ1  
VDDQ  
NC  
G
VSSQ  
VREF  
CKE  
H
J
VSSDL  
RAS  
VDD  
ODT  
VDDL  
K
L
CK  
WE  
CAS  
A2  
CS  
A0  
BA1  
A1  
BA2  
VSS  
VDD  
BA0  
A10  
A3  
M
N
P
VDD  
VSS  
A6  
A4  
A5  
A11  
NC  
A8  
A9  
A7  
R
A13  
NC  
A12  
T
U
V
W
NC  
NC  
NC  
NC  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
256Mx4  
# of Bank  
Bank Address  
Auto Precharge Flag  
Row Address  
8
BA0,BA1,BA2  
A10/AP  
A0 - A13  
A0-A9, A11  
1 KB  
Column Address  
Page size  
Rev. 1.2 / Dec 2006  
5
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
128Mx8 DDR2 PIN CONFIGURATION  
7
8
3
9
1
2
NC  
NC  
A
B
C
D
NC  
NC  
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
DQ6  
NU/RDQS  
E
F
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM/RDQS  
VDDQ  
DQ3  
DQ7  
VDDQ  
DQ5  
VSSQ  
DQ1  
VDDQ  
DQ4  
G
VSSQ  
VREF  
CKE  
H
J
VSSDL  
RAS  
VSS  
VDD  
VDDL  
K
L
CK  
WE  
ODT  
CAS  
A2  
CS  
A0  
BA1  
A1  
BA2  
VSS  
VDD  
BA0  
A10  
A3  
M
N
P
VDD  
VSS  
A6  
A4  
A5  
A11  
NC  
A8  
A9  
A7  
R
A13  
NC  
A12  
T
U
V
W
NC  
NC  
NC  
NC  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
128Mx8  
# of Bank  
8
BA0, BA1, BA2  
A10/AP  
Bank Address  
Auto Precharge Flag  
Row Address  
A0 - A13  
A0-A9  
Column Address  
Page size  
1 KB  
Rev. 1.2 / Dec 2006  
6
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
1.3 PIN DESCRIPTION  
PIN  
TYPE  
DESCRIPTION  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on  
the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced  
to the crossings of CK and CK (both directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device  
input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER DOWN and SELF  
REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank). CKE is  
synchronous for POWER DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchronous  
for SELF REFRESH exit. After VREF has become stable during the power on and initialization  
CKE  
Input  
sequence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh  
entry and exit, VREF must be maintained to this input. CKE must be maintained high throughout  
READ and WRITE accesses. Input buffers, excluding CK, CK and CKE are disabled during POWER  
DOWN. Input buffers, excluding CKE are disabled during SELF REFRESH.  
Chip Select : All commands are masked when CS is registered HIGH. CS provides for external bank  
selection on systems with multiple banks. CS is considered part of the command code.  
CS  
Input  
Input  
On Die Termination Control : ODT(registered HIGH) enables on die termination resistance internal  
to the DDR2 SDRAM. When enabled, ODT is only applied to DQ, DQS, DQS, RDQS, RDQS, and DM  
signal for x4,x8 configurations. For x16 configuration ODT is applied to each DQ,  
UDQS/UDQS.LDQS/LDQS, UDM and LDM signal. The ODT pin will be ignored if the Extended Mode  
Register(EMRS(1)) is programmed to disable ODT.  
ODT  
RAS, CAS, WE  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask : DM is an input mask signal for write data. Input Data is masked when DM is  
sampled High coincident with that input data during a WRITE access. DM is sampled on both  
edges of DQS, Although DM pins are input only, the DM loading matches the DQ and DQS loading.  
For x8 device, the function of DM or RDQS/ RDQS is enabled by EMRS command.  
DM  
(LDM, UDM)  
Bank Address Inputs: BA0 - BA2 define to which bank an ACTIVE, Read, Write or PRECHARGE  
command is being applied(For 256Mb and 512Mb, BA2 is not applied). Bank address also deter-  
mines if the mode register or extended mode register is to be accessed during a MRS or EMRS  
cycle.  
BA0 - BA2  
Input  
Input  
Address Inputs: Provide the row address for ACTIVE commands, and the column address and  
AUTO PRECHARGE bit for READ/WRITE commands to select one location out of the memory array  
in the respective bank. A10 is sampled during a precharge command to determine whether the  
PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be  
precharged, the bank is selected by BA0-BA2. The address inputs also provide the op code during  
MODE REGISTER SET commands.  
A0 -A15  
DQ  
Input/Output Data input / output : Bi-directional data bus  
Rev. 1.2 / Dec 2006  
7
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
-Continue-  
PIN  
TYPE  
DESCRIPTION  
Data Strobe : Output with read data, input with write data. Edge aligned with read data, cen-  
tered in write data. For the x16, LDQS correspond to the data on DQ0~DQ7; UDQS corre-  
sponds to the data on DQ8~DQ15. For the x8, an RDQS option using DM pin can be enabled  
via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS, and RDQS may  
be used in single ended mode or paired with optional complementary signals DQS,  
LDQS,UDQS and RDQS to provide differential pair signaling to the system during both reads  
and wirtes. An EMRS(1) control bit enables or disables all complementary data strobe signals.  
DQS, (DQS)  
(UDQS),(UDQS)  
(LDQS),(LDQS)  
(RDQS),(RDQS)  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of  
EMRS(1)  
Input/Output  
x4 DQS/DQS  
x8 DQS/DQS  
x8 DQS/DQS, RDQS/RDQS,  
if EMRS(1)[A11] = 0  
if EMRS(1)[A11] = 1  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of  
EMRS(1)  
x4 DQS  
x8 DQS  
x8 DQS, RDQS,  
if EMRS(1)[A11] = 0  
if EMRS(1)[A11] = 1  
x16 LDQS and UDQS  
NC  
VDDQ  
VSSQ  
VDDL  
VSSDL  
VDD  
No Connect : No internal electrical connection is present.  
DQ Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Power Supply : 1.8V +/- 0.1V  
DLL Power Supply : 1.8V +/- 0.1V  
DLL Ground  
Power Supply : 1.8V +/- 0.1V  
Ground  
VSS  
VREF  
Reference voltage for inputs for SSTL interface.  
Rev. 1.2 / Dec 2006  
8
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
2. Maximum DC Ratings  
2.1 Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
Notes  
VDD  
- 1.0 V ~ 2.3 V  
V
1
VDDQ  
VDDL  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
V
V
1
1
VIN VOUT  
,
V
1
TSTG  
°C  
1, 2  
1. . Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
2. Storage Temperature is the case surface temperature on the denter/top side of the DRAM. For the measurement conditions.  
Please refer to JESD51-2 standard.  
2.2 Operating Temperature Condition  
Symbol  
Parameter  
Operating Temperature  
Rating  
Units  
Notes  
Toper  
0 to 85  
°C  
1,2  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions,  
please refer to JESD51-2 standard.  
2. The operatin temperature range are the temperature where all DRAM specification will be supported. Outside of this temperature  
rang, even it is still within the limit of stress condition, some deviation on portion of operation specification may be required. During  
operation, the DRAM case temperature must be maintained between 0 ~ 85°C under all other specification parameters. However,  
in some applications, it is desirable to operate the DRAM up to 95°C case temperature. Therefore 2 spec options may exist.  
1) Supporting 0 - 85°C with full JEDEC AC & DC specifications. This is the minimum requirements for all oprating temperature  
options.  
2) Supporting 0 - 85°C and being able to extend to 95°C with doubling auto-refresh commands in frequency to a 32 ms  
period(tRFI=3.9us).  
Note; Currently the periodic Self-Refresh interval is hard coded within the DRAM to a specificic value.  
There is a migration plan to support higher temperature Self-Refresh entry via the control of EMRS(2) bit A7. However, since  
Self-Refresh control function is a migrated process. For our DDR2 module user, it is imperative to check SPD Byte 49 Bit 0  
to ensure the DRAM parts support higer than 85°C case temperature Self-Refresh entry.  
1) if SPD Byte 49 Bit 0 is a “0” means DRAM does not support Self-Refresh at higher than 85°C, then system have to ensure  
the DRAM is at or below 85°C case temperature before initiating Self-Refresh operation.  
2) if SPD Byte 49 Bit 0 is a “1” means DRAM supports Self-Refresh at higher than 85°C case temperature, then system can  
use register bit A7 at EMRS(2) control DRAM to operate at proper Self-Refresh rate for higher temperature. Please also  
refer to EMRS(2) register definition section and DDR2 DIMM SPD definition for details.  
Rev. 1.2 / Dec 2006  
9
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
3. AC & DC Operating Conditons  
3.1 DC Operating Conditions  
3.1.1 Recommended DC Operating Conditions (SSTL_1.8)  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
1.7  
1.8  
1.9  
V
V
Supply Voltage  
1.7  
1.8  
1.8  
1.9  
4
4
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1, 2  
3
There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must  
be less than or equal to VDD.  
1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is  
expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.  
2. Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).  
3. VTT of transmitting device must track VREF of receiving device.  
4. VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together  
3.1.2 ODT DC electrical characteristics  
PARAMETER/CONDITION  
SYMBOL  
MIN  
NOM  
MAX UNITS NOTES  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
Rtt1(eff)  
Rtt2(eff)  
Rtt2(eff)  
delta VM  
60  
75  
90  
ohm  
1
1
1
1
120 150  
40  
-6  
180 ohm  
60  
+6  
50  
ohm  
%
Note 1: Test condition for Rtt measurements  
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH  
(ac)) and I( VIL (ac)) respectively. VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18  
VIH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
Measurement Definition for VM : Measurement Voltage at test pin(mid point) with no load.  
2 x Vm  
- 1  
x 100%  
delta VM =  
VDDQ  
Rev. 1.2 / Dec 2006  
10  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
Symbol  
Parameter  
dc input logic high  
dc input logic low  
Min.  
Max.  
Units  
Notes  
VIH(dc)  
VREF + 0.125  
VDDQ + 0.3  
V
VIL(dc)  
- 0.3  
VREF - 0.125  
V
3.2.2 Input AC Logic Level  
Symbol  
Parameter  
ac input logic high  
ac input logic low  
Min.  
Max.  
Units  
Notes  
VIH (ac)  
VREF + 0.250  
-
V
VIL (ac)  
-
VREF - 0.250  
V
3.2.3 AC Input Test Conditions  
Symbol  
VREF  
Condition  
Input reference voltage  
Value  
Units  
Notes  
0.5 * VDDQ  
V
1
1
VSWING(MAX)  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
1.0  
V
V/ns  
2, 3  
Notes:  
1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(ac) min for rising edges and the range  
from VREF to VIL(ac) max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to  
VIL(ac) on the negative transitions.  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
V
SWING(MAX)  
max  
max  
IL(dc)  
IL(ac)  
SS  
delta TF  
delta TR  
Rising Slew =  
V
min - V  
REF  
V
-
V
max  
IL(ac)  
IH(ac)  
REF  
Falling Slew =  
delta TF  
delta TR  
< Figure : AC Input Test Signal Waveform>  
Rev. 1.2 / Dec 2006  
11  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
3.2.4 Differential Input AC logic Level  
Symbol  
Parameter  
ac differential input voltage  
ac differential cross point voltage  
Min.  
Max.  
Units  
Notes  
VID (ac)  
0.5  
VDDQ + 0.6  
V
1
VIX (ac)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS, LDQS, LDQS, UDQS and  
UDQS.  
2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input (such as CK, DQS, LDQS  
or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS) level. The minimum value is equal to VIH(DC) - V  
IL(DC).  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Notes:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS,  
LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH(AC)  
- V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in  
VDDQ . VIX(AC) indicates the voltage at which differential input signals must cross.  
3.2.5 Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VOX (ac)  
0.5 * VDDQ - 0.125  
0.5 * VDDQ + 0.125  
V
1
ac differential cross point voltage  
Notes:  
1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is expected to track variations  
in VDDQ . VOX(AC) indicates the voltage at whitch differential output signals must cross.  
Rev. 1.2 / Dec 2006  
12  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
3.3 Output Buffer Characteristics  
3.3.1 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18 Class II  
Units  
Notes  
VOTR  
Output Timing Measurement Reference Level  
0.5 * VDDQ  
V
1
1. The VDDQ of the device under test is referenced.  
3.3.2 Output DC Current Drive  
Symbol  
IOH(dc)  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTl_18  
- 13.4  
13.4  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
IOL(dc)  
mA  
1.  
2.  
V
DDQ = 1.7 V; VOUT = 1420 mV. (VOUT - VDDQ)/IOH must be less than 21 ohm for values of VOUT between VDDQ and VDDQ - 280  
mV.  
DDQ = 1.7 V; VOUT = 280 mV. VOUT/IOL must be less than 21 ohm for values of VOUT between 0 V and 280 mV.  
V
3. The dc value of VREF applied to the receiving device is set to VTT  
4. The values of IOH(dc) and IOL(dc) are based on the conditions given in Notes 1 and 2. They are used to test device drive current  
capability to ensure VIH min plus a noise margin and VIL max minus a noise margin are delivered to an SSTL_18 receiver. The  
actual current values are derived by shifting the desired driver operating point (see Section 3.3) along a 21 ohm load line to define  
a convenient driver current for measurement.  
3.3.3 OCD defalut characteristics  
Description  
Parameter  
Min  
12.6  
Nom  
Max  
23.4  
Unit  
Notes  
Output impedance  
18  
ohms  
1,2  
Output impedance step size for OCD cali-  
bration  
0
1.5  
ohms  
6
Pull-up and pull-down mismatch  
Output slew rate  
0
4
5
ohms  
V/ns  
1,2,3  
Sout  
1.5  
-
1,4,5,6,7,8  
Note 1: Absolute Specifications (0°C TCASE +tbd°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
Note 2: Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV;  
(VOUT-VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV.  
Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol must be less  
than 23.4 ohms for values of VOUT between 0V and 280mV.  
Note 3: Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
Note 4: Slew rate measured from vil(ac) to vih(ac).  
Rev. 1.2 / Dec 2006  
13  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Note 5: The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as  
measured from AC to AC. This is guaranteed by design and characterization.  
Note 6: This represents the step size when the OCD is near 18 ohms at nominal conditions across all process cor-  
ners/variations and represents only the DRAM uncertainty. A 0 ohm value(no calibration) can only be achieved if the  
OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.  
Output Slew rate load:  
VTT  
25 ohms  
Reference  
point  
Output  
(Vout)  
Note 7: DRAM output slew rate specification applies to 400MT/s & 533MT/s speed bins.  
Note 8: Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in  
tDQSQ and tQHS specification.  
Rev. 1.2 / Dec 2006  
14  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
3.4 IDD Specifications & Test Conditions  
IDD Specifications(max)  
DDR2 400  
Symbol  
DDR2 533  
DDR2 667  
Units  
x4/x8  
x4/x8  
x4/x8  
mA  
IDD0  
IDD1  
100  
110  
6
110  
120  
130  
7
120  
6
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
40  
45  
25  
7
50  
55  
30  
8
60  
65  
35  
9
F
S
IDD3P  
60  
160  
130  
270  
8
70  
190  
170  
270  
8
80  
240  
230  
270  
8
IDD3N  
IDD4W  
IDD4R  
IDD5  
Normal  
IDD6  
IDD7  
Low power  
5
5
5
280  
320  
340  
Rev. 1.2 / Dec 2006  
15  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
IDD Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)  
Symbol  
IDD0  
Conditions  
Units  
t
t
t
t
t
t
Operating one bank active-precharge current; CK = CK(IDD), RC = RC(IDD), RAS = RAS min(IDD) ;  
CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are SWITCHING;Data bus inputs are  
SWITCHING  
mA  
Operating one bank active-read-precharge curren ; IOUT = 0mA;BL = 4, CL = CL(IDD), AL = 0;  
t
t
t
t
t
t
t
t
IDD1  
CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD = RCD(IDD) ; CKE is HIGH, CS is HIGH  
between valid commands ; Address bus inputs are SWITCHING ; Data pattern is same as IDD4W  
mA  
t
t
Precharge power-down current ; All banks idle ; CK = CK(IDD) ; CKE is LOW ; Other control and address  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge quiet standby current;All banks idle; CK = CK(IDD);CKE is HIGH, CS is HIGH; Other control and  
address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge standby current; All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH; Other control and  
address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
mA  
mA  
Active power-down current; All banks open; CK = CK(IDD); CKE is  
LOW; Other control and address bus inputs are STABLE; Data bus inputs  
are FLOATING  
Fast PDN Exit MRS(12) = 0  
Slow PDN Exit MRS(12) = 1  
IDD3P  
IDD3N  
IDD4W  
IDD4R  
t
t
t
t
t
t
Active standby current; All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is  
HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
mA  
mA  
mA  
t
Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; CK =  
t
t
t
t
t
CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL  
t
t
t
t
t
t
= 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between valid com-  
mands; Address bus inputs are SWITCHING;; Data pattern is same as IDD4W  
t
t
t
Burst refresh current; CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is HIGH, CS is  
HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are  
SWITCHING  
IDD5B  
IDD6  
mA  
mA  
Self refresh current; CK and CK at 0V; CKE 0.2V; Other control and address bus inputs are FLOATING; Data  
bus inputs are FLOATING  
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL =  
t
t
t
t
t
t
t
t
t
t
RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD), RCD = 1* CK(IDD); CKE is  
IDD7  
mA  
HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during DESELECTs; Data pat-  
tern is same as IDD4R; - Refer to the following page for detailed timing conditions  
Note:  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met with all combina-  
tions of EMRS bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes.  
Rev. 1.2 / Dec 2006  
16  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
For purposes of IDD testing, the following parameters are to be utilized  
DDR2-667  
DDR2-533  
DDR2-400  
3-3-3  
Parameter  
5-5-5  
5
4-4-4  
4
Units  
CL(IDD)  
3
tCK  
t
15  
15  
15  
RCD(IDD)  
ns  
ns  
t
60  
60  
RC(IDD)  
55  
t
7.5  
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
t
10  
5
RRD(IDD)-x16  
9
3
10  
t
3.75  
CK(IDD)  
RASmin(IDD)  
ns  
ns  
t
45  
70000  
15  
45  
70000  
15  
40  
t
70000  
15  
ns  
ns  
ns  
ns  
ns  
ns  
RASmax(IDD)  
t
RP(IDD)  
t
t
75  
75  
75  
RFC(IDD)-256Mb  
RFC(IDD)-512Mb  
105  
105  
105  
127.5  
197.5  
t
t
127.5  
197.5  
127.5  
197.5  
RFC(IDD)-1Gb  
RFC(IDD)-2Gb  
Detailed IDD7  
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the specification.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
t
t
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) using a burst length of 4. Control and address bus  
inputs are STABLE during DESELECTs. IOUT = 0mA  
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-400 4/4/4: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D  
-DDR2-400 3/3/3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D  
-DDR2-533 5/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
-DDR2-533 4/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
Timing Patterns for 8 bank devices x4/8  
-DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7  
-DDR2-533 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
Timing Patterns for 8 bank devices x16  
-DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
-DDR2-533 all bins: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 D A6 RA6 D A7 RA7 D D D  
Rev. 1.2 / Dec 2006  
17  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
3.5. Input/Output Capacitance  
DDR2 400  
DDR2 533  
DDR2 667  
DDR2 800  
Parameter  
Symbol  
Units  
Min  
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
1.0  
x
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
0.25  
2.0  
0.25  
2.0  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
CDI  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
4. Electrical Characteristics & AC Timing Specification  
( 0 ℃ ≤ T  
≤ 95℃; V  
= 1.8 V +/- 0.1V; V = 1.8V +/- 0.1V)  
CASE  
DDQ DD  
Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb 512Mb 1Gb  
2Gb  
4Gb  
Units  
Refresh to Active/Refresh command  
time  
tRFC  
75  
105  
127.5  
195  
327.5  
ns  
0 TCASE ≤ 95℃  
85℃< TCASE ≤ 95℃  
7.8  
7.8  
7.8  
7.8  
7.8  
ns  
ns  
Average periodic refresh interval  
tREFI  
3.9  
3.9  
3.9  
3.9  
3.9  
DDR2 SDRAM speed bins and tRCD, tRP and tRC for corresponding bin  
Speed  
Bin(CL-tRCD-tRP)  
Parameter  
CAS Latency  
tRCD  
DDR2-667  
DDR2-533  
DDR2-400  
Units  
5-5-5  
min  
5
4-4-4  
min  
4
3-3-3  
min  
3
tCK  
ns  
15  
15  
15  
tRPNote1  
tRAS  
15  
15  
15  
ns  
45  
45  
40  
ns  
tRC  
60  
60  
55  
ns  
Note 1: 8 bank device Precharge All Allowance : tRP for a Precharge All command for and 8 Bank device  
will equal to tRP+1*tCK, where tRP are the values for a single bank prechrarge, which are shown in the  
above table.  
Rev. 1.2 / Dec 2006  
18  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Timing Parameters by Speed Grade  
DDR2-400  
DDR2-533  
Symbol  
Unit  
Note  
Parameter  
min  
-600  
-500  
0.45  
0.45  
max  
+600  
+500  
0.55  
0.55  
-
min  
-500  
-450  
0.45  
0.45  
max  
+500  
+450  
0.55  
0.55  
-
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
ps  
ps  
tDQSCK  
tCH  
tCK  
tCK  
ps  
CK low-level width  
tCL  
tHP  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
11,12  
CK half period  
Clock cycle time, CL=x  
tCK  
5000  
150  
275  
0.6  
8000  
3750  
100  
225  
0.6  
8000  
ps  
ps  
15  
DQ and DM input setup time  
tDS  
-
-
6,7,8,20  
6,7,8,21  
DQ and DM input hold time  
tDH  
-
-
ps  
Control & Address input pulse width for each input  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
tIPW  
tDIPW  
tHZ  
-
-
tCK  
tCK  
ps  
0.35  
-
-
0.35  
-
-
tAC max  
tAC max  
18  
18  
tLZ  
(DQS)  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
tAC min  
tAC max  
tAC max  
tAC min  
tAC max  
tAC max  
ps  
ps  
tLZ  
(DQ)  
2*tAC min  
2*tAC min  
18  
DQS-DQ skew for DQS and associated DQ signals  
DQ hold skew factor  
tDQSQ  
tQHS  
tQH  
-
-
350  
-
-
300  
ps  
ps  
13  
12  
450  
400  
DQ/DQS output hold time from DQS  
Write command to first DQS latching transition  
DQS input high pulse width  
tHP - tQHS  
WL - 0.25  
0.35  
0.35  
0.2  
-
tHP - tQHS  
WL - 0.25  
0.35  
0.35  
0.2  
-
ps  
tDQSS  
tDQSH  
tDQSL  
tDSS  
WL + 0.25  
WL + 0.25  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
-
-
DQS input low pulse width  
-
-
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
-
-
tDSH  
tMRD  
tWPST  
tWPRE  
tIS  
0.2  
-
-
0.2  
-
-
2
2
0.4  
0.6  
-
0.4  
0.6  
-
10  
Write preamble  
0.35  
350  
0.35  
250  
Address and control input setup time  
Address and control input hold time  
Read preamble  
-
-
5,7,9,23  
5,7,9,23  
tIH  
475  
-
375  
-
ps  
tRPRE  
tRPST  
0.9  
1.1  
0.6  
0.9  
1.1  
0.6  
tCK  
tCK  
Read postamble  
0.4  
0.4  
Active to active command period for 1KB page size  
products  
tRRD  
7.5  
-
7.5  
-
ns  
4
4
Active to active command period for 2KB page size  
products  
tRRD  
tFAW  
10  
-
-
10  
-
-
ns  
ns  
Four Active Window for 1KB page size products  
37.5  
37.5  
Rev. 1.2 / Dec 2006  
19  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
-Continued  
DDR2-400  
DDR2-533  
Symbol  
Unit  
Note  
Parameter  
min  
50  
2
max  
min  
max  
Four Active Window for 2KB page size products  
CAS to CAS command delay  
tFAW  
tCCD  
tWR  
-
50  
2
-
tCK  
ns  
Write recovery time  
15  
-
-
-
15  
-
-
-
Auto precharge write recovery + precharge time  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tDAL  
WR+tRP*  
10  
WR+tRP*  
7.5  
tCK  
ns  
14  
24  
3
tWTR  
tRTP  
7.5  
7.5  
ns  
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
-
-
-
-
tCK  
Exit precharge power down to any non-read  
command  
tXP  
2
2
2
2
tCK  
tCK  
tCK  
Exit active power down to read command  
tXARD  
tXARDS  
1
Exit active power down to read command  
(Slow exit, Lower power)  
6 - AL  
6 - AL  
1, 2  
CKE minimum pulse width  
(high and low pulse width)  
t
3
2
3
2
tCK  
tCK  
ns  
CKE  
t
ODT turn-on delay  
ODT turn-on  
2
2
AOND  
tAC(max)+  
1
t
tAC(min)  
tAC(max)+1  
tAC(min)  
16  
AON  
2tCK+tAC(  
max)  
2tCK+tAC(  
max)+1  
t
ODT turn-on(Power-Down mode)  
tAC(min)+2  
tAC(min)+2  
ns  
AONPD  
+1  
t
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
AOFD  
tAC(max)+  
0.6  
tAC(max)+  
0.6  
t
tAC(min)  
tAC(min)  
17  
AOF  
2.5tCK+tAC  
(max)+1  
2.5tCK+tA  
C(max)+1  
t
ODT turn-off (Power-Down mode)  
tAC(min)+2  
tAC(min)+2  
ns  
AOFPD  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
Minimum time clocks remains ON after CKE  
asynchronously drops LOW  
tDelay  
tIS+tCK+tIH  
tIS+tCK+tIH  
ns  
15  
Rev. 1.2 / Dec 2006  
20  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
DDR2-667  
Symbol  
Unit  
Note  
Parameter  
min  
-450  
-400  
0.45  
0.45  
max  
+450  
+400  
0.55  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
ps  
ps  
tDQSCK  
tCH  
tCK  
tCK  
CK low-level width  
tCL  
min(tCL,  
tCH)  
CK half period  
tHP  
-
ps  
11,12  
Clock cycle time, CL=x  
tCK  
3000  
50  
8000  
ps  
ps  
15  
DQ and DM input setup time  
tDS  
-
6,7,8,20  
6,7,8,21  
DQ and DM input hold time  
tDH  
175  
0.6  
0.35  
-
-
ps  
Control & Address input pulse width for each input  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
tIPW  
tDIPW  
tHZ  
-
tCK  
tCK  
ps  
-
tAC max  
18  
18  
tLZ  
(DQS)  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
tAC min  
tAC max  
tAC max  
ps  
ps  
tLZ  
(DQ)  
2*tAC min  
18  
DQS-DQ skew for DQS and associated DQ signals  
DQ hold skew factor  
tDQSQ  
tQHS  
-
-
240  
ps  
ps  
13  
12  
340  
DQ/DQS output hold time from DQS  
Write command to first DQS latching transition  
DQS input high pulse width  
tQH  
tHP - tQHS  
WL - 0.25  
0.35  
-
ps  
tDQSS  
tDQSH  
tDQSL  
tDSS  
WL + 0.25  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
-
DQS input low pulse width  
0.35  
-
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
0.2  
-
tDSH  
0.2  
-
tMRD  
tWPST  
tWPRE  
2
-
0.4  
0.6  
10  
Writepreamble
0.35  
-
Address and control input setup time  
Address and control input hold time  
Read preamble  
tIS  
150  
275  
0.9  
0.4  
45  
-
5,7,9,22  
tIH  
-
ps  
5,7,9,23  
tRPRE  
tRPST  
tRAS  
tRRD  
tRRD  
tFAW  
1.1  
tCK  
tCK  
ns  
19  
19  
3
Read postamble  
0.6  
Activate to precharge command  
70000  
Active to active command period for 1KB page size products  
Active to active command period for 2KB page size products  
Four Active Window for 1KB page size products  
7.5  
10  
-
-
-
ns  
4
ns  
4
37.5  
ns  
Rev. 1.2 / Dec 2006  
21  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
-Continued  
DDR2-667  
Symbol  
Unit  
Note  
Parameter  
min  
max  
Four Active Window for 2KB page size products  
CAS to CAS command delay  
tFAW  
50  
-
ns  
tCK  
ns  
tCCD  
tWR  
2
Write recovery time  
15  
-
-
-
Auto precharge write recovery + precharge time  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tDAL  
WR+tRP  
tCK  
ns  
14  
3
tWTR  
tRTP  
tXSNR  
tXSRD  
tXP  
7.5  
7.5  
ns  
tRFC + 10  
ns  
200  
2
-
-
tCK  
tCK  
tCK  
Exit precharge power down to any non-read command  
Exit active power down to read command  
tXARD  
2
1
Exit active power down to read command  
(Slow exit, Lower power)  
tXARDS  
6 - AL  
3
tCK  
1, 2  
CKE minimum pulse width  
(high and low pulse width)  
t
tCK  
CKE  
t
ODT turn-on delay  
ODT turn-on  
2
2
tCK  
ns  
AOND  
t
tAC(min)  
tAC(max)+0.7  
6,16  
AON  
2tCK+tAC(max)  
+1  
t
ODT turn-on(Power-Down mode)  
tAC(min)+2  
ns  
AONPD  
t
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
tCK  
ns  
AOFD  
t
tAC(min)  
tAC(max)+ 0.6  
17  
AOF  
2.5tCK+tAC(ma  
x)+1  
t
ODT turn-off (Power-Down mode)  
tAC(min)+2  
ns  
AOFPD  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
tCK  
tCK  
ns  
12  
Minimum time clocks remains ON after CKE asynchronously  
drops LOW  
tDelay  
tIS+tCK+tIH  
ns  
15  
Rev. 1.2 / Dec 2006  
22  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for  
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between  
DQS - DQS = -500 mV and DQS - DQS = +500mV. Output slew rate is guaranteed by design, but is not  
necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF - 125 mV to  
VREF + 250 mV for rising edges and from VREF + 125 mV and VREF - 250 mV for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to  
CK - CK = +500 mV  
(250mV to -500 mV for falling egdes).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or  
between DQS and DQS for differential strobe.  
2. DDR2 SDRAM AC timing reference load  
The following figure represents the timing reference load used in defining the relevant timing parameters of  
the part. It is not intended to be either a precise representation of the typical system environment nor a depic-  
tion of the actual load presented by a production tester. System designers will use IBIS or other simulation  
tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their pro-  
duction test conditions (generally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS  
Output  
DUT  
VTT = VDDQ/2  
RDQS  
RDQS  
Timing  
reference  
point  
25Ω  
AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output tim-  
ing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement  
(e.g. DQS) signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown below.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
VTT = VDDQ/2  
RDQS, RDQS  
25Ω  
Test point  
Slew Rate Test Load  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the  
setting of the EMRS “Enable DQS” mode bit; timing advantages of differential mode are realized in system  
design. The method by which the DDR2 SDRAM pin timings are measured is mode dependent. In single  
Rev. 1.2 / Dec 2006  
23  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and  
its complement, DQS. This distinction in timing methods is guaranteed by design and characterization.  
Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must  
be tied externally to VSS through a 20 ohm to 10 K ohm resistor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
V
(dc)  
V
(ac)  
IH  
IH  
DQ  
DM  
D
D
D
t
D
t
V
(ac)  
V
(dc)  
IL  
IL  
t
t
DH  
DH  
DS  
DS  
V
(dc)  
V
(ac)  
IH  
IH  
DMin  
DMin  
DMin  
(ac)  
DMin  
V
IL  
V
(dc)  
IL  
Figure -- Data input (write) timing  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
Figure -- Data output (read) timing  
5. AC timings are for linear signal transitions. See System Derating for other signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They  
may be guaranteed by device design or tester correlation.  
7. All voltages referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal refer-  
ence/supply voltage levels, but the related specifications and device operation are guaranteed for the full  
voltage range specified.  
Rev. 1.2 / Dec 2006  
24  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Specific Notes for dedicated AC parameters  
1. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be  
used for fast active power down exit timing. tXARDS is expected to be used for slow active power down  
exit timing where a lower power value is defined by each vendor data sheet.  
2. AL = Additive Latency  
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and  
tRAS(min) have been satisfied.  
4. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency  
5. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for  
other slew rate values.  
6. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0  
V/ns. See System Derating for other slew rate values.  
7. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS  
signals with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single  
ended mode. See System Derating for other slew rate values.  
8. tDS and tDH derating  
tDS, tDH Derating Values(ALL units in 'ps', Note 1 applies to entire Table)  
DQS, DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD tD  
S
H
S
H
S
H
S
-
H
-
S
-
H
-
S
-
H
-
S
-
H
-
S
-
H
S
-
H
2.0 125 45 125 45 +125 +45  
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
83  
0
-
21  
0
-
83  
0
21 +83 +21 95  
33  
12  
-2  
-
-
-
-
-
-
-
-
-
-
-
0
0
0
12  
1
24  
13  
-1  
24  
10  
-7  
-
-
-
-
-
-
-
DQ  
Slew  
rate  
-11 -14 -11 -14  
25  
11  
-7  
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-25 -31 -13 -19  
23  
5
17  
-6  
-
-
-
-
-
-43 -54 -31 -42 -42 -19  
-8  
17  
-7  
6
-
-
V/ns  
-
-
-67 -83  
-110 -125  
-175 -188  
-
-
-
-
-
-
-43 -59 -31 -47 -19 -35  
-23  
5
-11  
-
-
-
-
-
-
-74 -89 -62 -77 -50 -65 -38 -53  
-127 -140 -115 -128 -103 -116  
-
-
-
-
1) For all input signals the total tDS(setup time) and tDH(hold time) required is calculated by adding the datasheet value to the derating  
value listed in Table x.  
Setup(tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing  
of Vih(ac)min. Setup(tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and  
the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded ‘ VREF(dc) to ac  
region’, use nominal slew rate for derating value(see Fig a.) If the actual signal is later than the nominal slew rate line anywhere  
between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for  
derating value(see Fig b.)  
Hold(tDH) nominal slew rate for a rising signal is defined as the slew rate rate between the last crossing of Vil(dc) max and the first  
crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc)  
min and the first crossing of VREF(dc). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to  
VREF(dc) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value(see  
Fig d.)  
Although for slow slew rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/IL(ac) at the time  
of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rate in between the values listed in table x, the derating valued may obtained by linear interpolation.  
Rev. 1.2 / Dec 2006  
25  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
These values are typically not subject to production test. They are verified by design and characterization.  
Fig. a Illustration of nominal slew rate for tIS,tDS  
CK,DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Vss  
Delta TF  
Delta TR  
Setup Slew Rate  
Falling Signal  
VREF(dc)-VIL(ac)max  
Delta TF  
Setup Slew Rate  
Rising Signal  
VIH(ac)min-VREF(dc)  
Delta TR  
=
=
Rev. 1.2 / Dec 2006  
26  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Fig. -b Illustration of tangent line for tIS,tDS  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
nominal  
line  
VIH(ac)min  
VIH(dc)min  
tangent  
line  
VREF(dc)  
Tangent  
line  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Nomial  
line  
Vss  
Delta TR  
Setup Slew Rate  
Rising Signal  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TR  
=
Delta TF  
Tangent line[VREF(dc)-VIL(ac)max]  
Delta TF  
Setup Slew Rate  
Falling Signal  
=
Rev. 1.2 / Dec 2006  
27  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Fig. -c Illustration of nominal line for tIH, tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Hold Slew Rate  
Delta TF  
VIH(dc)min - VREF(dc)  
Delta TF  
Hold Slew Rate  
Rising Signal  
VREF(dc)-VIL(dc)max  
Delta TR  
=
=
Falling Signal  
Rev. 1.2 / Dec 2006  
28  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
Fig. -d Illustration of tangent line for tIH , tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIS,  
tDS  
tIH,  
tDH  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
nominal  
line  
VIH(dc)min  
tangent  
line  
VREF(dc)  
dc to VREF  
region  
Tangent  
line  
nominal  
line  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Delta TF  
Hold Slew Rate Tangent line[VREF(dc)-VIL(ac)max]  
=
Rising Signal  
Delta TR  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TF  
Hold Slew Rate  
Falling Signal  
=
Rev. 1.2 / Dec 2006  
29  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
9. tIS and tIH (input setup and hold) derating  
tIS, tIH Derating Values  
CK, CK Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
tIS  
1.0 V/ns  
tIS tIH  
tIH  
tIS  
tIH  
Units  
Notes  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
+94  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+89  
+83  
+75  
+45  
+21  
0
+0  
-11  
-14  
Command /  
Address  
Slew  
-25  
-31  
-43  
-54  
rate(V/ns)  
-67  
-83  
-100  
-150  
-223  
-250  
-500  
-750  
-1250  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
1) For all input signals the total tIS(setup time) and tIH(hold) time) required is calculated by adding the  
datasheet value to the derating value listed in above Table.  
Setup(tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
(dc) and the first crossing of V (ac)min. Setup(tIS) nominal slew rate for a falling signal is defined as  
REF  
IH  
the slew rate between the last crossing of VREF(dc) and the first crossing of V (ac)max. If the actual signal  
IL  
is always earlier than the nominal slew rate for line between shaded ‘V  
(dc) to ac region’, use nominal  
REF  
slew rate for derating value(see fig a.) If the actual signal is later than the nominal slew rate line anywhere  
between shaded ‘V  
level to dc level is used for derating value(see Fig b.)  
(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac  
REF  
Hold(tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL(dc)max and the first crossing of V  
(dc). Hold(tIH) nominal slew rate for a falling signal is defined as  
REF  
the slew rate between the last crossing of V  
(dc). If the actual signal signal is always later than the nom-  
REF  
REF  
inal slew rate line between shaded ‘dc to V  
(dc) region’, use nominal slew rate for derating value(see  
Fig.c) If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to  
(dc) region’, the slew rate of a tangent line to the actual signal from the dc level to V (dc) level is  
V
REF  
REF  
used for derating value(see Fig d.)  
Although for slow rates the total setup time might be negative(i.e. a valid input signal will not have reached  
V
(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transi-  
IH/IL  
tion and reach V  
(ac).  
IH/IL  
For slew rates in between the values listed in table, the derating values may obtained by linear interpola-  
tion.  
Rev. 1.2 / Dec 2006  
30  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
These values are typically not subject to production test. They are verified by design and characterization.  
10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value  
for this parameter, but system performance (bus turnaround) will degrade accordingly.  
11. MIN ( t CL, t CH) refers to the smaller of the actual clock low time and the actual clock high time as pro-  
vided to the device (i.e. this value can be greater than the minimum specification limits for t CL and t CH).  
For example, t CL and t CH are = 50% of the period, less the half period jitter ( t JIT(HP)) of the clock  
source, and less the half period jitter due to crosstalk ( t JIT(crosstalk)) into the clock traces.  
12. t QH = t HP – t QHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH,  
tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the  
next transition, both of which are, separately, due to data pin skew and output pattern effects, and  
p-  
channel to n-channel variation of the output drivers.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of  
the output drivers as well as output slew rate mismatch between DQS/ DQS and associated DQ in any  
given cycle.  
14. t DAL = (nWR) + ( tRP/tCK):  
For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the  
application clock period. nWR refers to the t WR parameter stored in the MRS.  
Example: For DDR533 at t CK = 3.75 ns with t WR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns)  
clocks =4 +(4)clocks=8clocks.  
15. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In  
case of clock frequency change during precharge power-down, a specific procedure is required as  
described in section 2.9.  
16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn  
on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
17. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. Thesed parameters are  
referenced to a specific voltage level which specifies when the device output is no longer driving(tHZ), or  
begins driving (tLZ). Below figure shows a method to calculate the point when device is no longer driving  
(tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage mea-  
surement points are not critical as long as the calculation is consistenet.  
19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when  
the device output is no longer driving (tRPST), or begins driving (tRPRE). Below figure shows a method to  
calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE). Below Fig-  
Rev. 1.2 / Dec 2006  
31  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
ure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driv-  
ing (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are  
not critical as long as the calculation is consistent.  
VOH + xmV  
VTT + 2xmV  
VTT + xmV  
VOH + 2xmV  
tHZ  
tHZ  
tRPST end point  
tRPRE begin point  
VOL + 1xmV  
VOL + 2xmV  
VTT -xmV  
VTT - 2xmV  
tHZ , tRPST end point = 2*T1-T2  
tLZ , tRPRE begin point = 2*T1-T2  
20. Input waveform timing with differential data strobe enabled MR[bit10] =0, is referenced from the input  
signal crossing at the V (ac) level to the differential data strobe crosspoint for a rising signal, and from the  
IH  
input signal crossing at the V (ac) level to the differential data strobe crosspoint for a falling signal applied  
IL  
to the device under test.  
21. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input  
signal crossing at the V (dc) level to the differential data strobe crosspoint for a rising signal and V (dc) to  
IH  
IL  
the differential data strobe crosspoint for a falling signal applied to the device under test.  
Differential Input waveform timing  
DQS  
DQS  
tDS tDH  
tDS tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
VIL(dc)max  
VIL(ac)max  
VSS  
22. Input waveform timing is referenced from the input signal crossing at the V (ac) level for a rising signal  
IH  
and V (ac) for a falling signal applied to the device under test.  
IL  
23. Input waveform timing is referenced from the input signal crossing at the V (dc) level for a rising signal  
IL  
and V (dc) for a falling signal applied to the device under test.  
IH  
Rev. 1.2 / Dec 2006  
32  
1HY5PS1G431(L)F  
1HY5PS1G831(L)F  
5. Package Dimensions  
Package Dimension(x4,x8)  
68Ball Fine Pitch Ball Grid Array Outline  
11.9 +/- 0.10  
A1 Ball Mark  
1.20 Max.  
0.34 +/- 0.10  
< Top View>  
A1 Ball Mark  
1
2
3
7 8 9  
0.80  
84 - Φ.50  
0.80 X 8 = 6.40  
Note: All dimensions are in Millimeters.  
< Bottom View>  
Rev. 1.2 / Dec 2006  
33  

相关型号:

HY5PS1G831F-C5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831F-E3

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831F-E4

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831F-Y5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831F-Y6

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF-C4

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF-C5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF-E3

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF-E4

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF-Y5

1Gb DDR2 SDRAM
HYNIX

HY5PS1G831LF-Y6

1Gb DDR2 SDRAM
HYNIX