IBM0316809CT3D-10 [IBM]

Synchronous DRAM, 2MX8, 8ns, CMOS, PDSO44, 0.400 INCH, PLASTIC, TSOP2-44;
IBM0316809CT3D-10
型号: IBM0316809CT3D-10
厂家: IBM    IBM
描述:

Synchronous DRAM, 2MX8, 8ns, CMOS, PDSO44, 0.400 INCH, PLASTIC, TSOP2-44

时钟 动态存储器 光电二极管 内存集成电路
文件: 总120页 (文件大小:1896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Discontinued (12/98 - last order; 9/99 last ship)  
.
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Features  
• Multiple Burst Read with Single Write Option  
• Automatic and Controlled Precharge Command  
• Data Mask for Read/Write control (x4, x8)  
• Dual Data Mask for byte control (x16)  
• Auto Refresh (CBR), Self Refresh (SR)  
• Suspend Mode and Power Down Mode  
• 4096 refresh cycles/64ms  
• High Performance:  
-80  
CL=3  
-360  
CL=3  
-10  
CL=3  
Units  
fCK  
tCK  
tAC  
Clock Frequency  
Clock Cycle  
125  
8
100  
10  
100 MHz  
10  
8
ns  
ns  
Clock Access Time  
6
5.5  
• Single Pulsed RAS Interface  
• Fully Synchronous to Positive Clock Edge  
• Random Column Address every CLK (1-N Rule)  
• Single 3.3V ± 0.3V Power Supply  
• Dual Banks controlled by A11 (Bank Select)  
• Programmable CAS Latency: 1,2,3  
• Supports LVTTL I/O interface  
• Programmable Burst Length: 1,2,4,8,full-page  
• Package: 44 pin 400 mil TSOP-Type II (x4,x8)  
50 pin 400 mil TSOP-Type II (x16)  
2-High Stack TSOJ  
• Programmable Wrap Sequence: Sequential or  
Interleave  
Description  
IBM’s 0316409C, 0316809C, and 0316169C  
are dual bank Synchronous DRAMs organized as  
2Mbit x 4 I/O x 2 Bank, 1Mbit x 8 I/O x 2 Bank, and  
512Kbit x 16 I/O x 2 Bank, respectively. These  
address A9 is dropped on the x8 device and column  
addresses A8 and A9 are dropped on the x16  
device. Access to the lower or upper DRAM in a  
stacked device is controlled by CS0 and CS1.  
devices support LVTTL I/O interface levels.  
stacked version of the x 4 component is also  
offered. These synchronous devices achieve high  
speed data transfer rates of up to 125 MHz. The  
chip is fabricated with IBM’s advanced 16Mbit  
CMOS DRAM process technology.  
A
Prior to any access operation, the CAS latency,  
burst length, and burst sequence must be pro-  
grammed into the device by address inputs A0-A11  
during a mode register set cycle. In addition, it is  
possible to program a multiple burst sequence with  
single write cycle for write through cache operation.  
Operating the two memory banks in an inter-  
leave fashion allows random access operation to  
occur at a higher rate than is possible with standard  
DRAMs. A sequential and gapless data rate of up to  
125 MHz is possible depending on burst length,  
CAS latency, and speed grade of the device.  
The device is designed to comply with all  
JEDEC standards set for synchronous DRAM prod-  
ucts, both electrically and mechanically. All of the  
control, address and data input/output circuits are  
synchronized with the positive edge of an externally  
supplied clock (CLK).  
Internal chip operating modes are defined by  
combinations of RAS, CAS, WE, and CS and a com-  
mand decoder initiates the necessary timings for  
each operation. A twelve bit address bus accepts  
address data in the conventional RAS/CAS multi-  
plexing style. Eleven row addresses (A0-A10) and a  
bank select address (A11) are strobed with RAS.  
Ten column addresses (A0-A9) plus A10 and a bank  
select address (A11) are strobed with CAS. Column  
Auto Refresh (CBR) and Self Refresh (SR)  
operation are supported. Refreshing both decks of a  
stacked device simultaneously is allowed during  
Self Refresh but all other stacked device operations  
must be performed on a single deck at a time.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Pin Assignments for Planar Components (Top View)  
VDD  
1
44  
V
VDD  
1
44  
V
VDD  
1
50  
V
SS  
SS  
SS  
NC  
VSSQ  
DQ0  
2
43  
42  
41  
40  
39  
38  
37  
36  
35  
NC  
DQ0  
VSSQ  
DQ1  
2
43  
42  
41  
40  
39  
38  
37  
36  
35  
DQ7  
DQ0  
DQ1  
2
49  
48  
47  
46  
45  
44  
43  
42  
41  
DQ15  
DQ14  
VSSQ  
DQ13  
DQ12  
VDDQ  
DQ11  
DQ10  
VSSQ  
3
VSSQ  
DQ3  
VDDQ  
NC  
3
VSSQ  
DQ6  
3
4
4
VSSQ  
DQ2  
4
VDDQ  
NC  
5
VDDQ  
DQ2  
5
VDDQ  
DQ5  
5
6
6
DQ3  
6
VSSQ  
DQ1  
7
VSSQ  
DQ2  
VDDQ  
NC  
VSSQ  
DQ3  
7
VSSQ  
DQ4  
VDDQ  
DQ4  
7
8
8
8
VDDQ  
NC  
9
VDDQ  
NC  
9
VDDQ  
NC  
DQ5  
9
10  
10  
VSSQ  
10  
NC  
WE  
11  
12  
34  
33  
NC  
NC  
WE  
11  
12  
34  
33  
NC  
DQ6  
DQ7  
11  
12  
40  
39  
DQ9  
DQ8  
DQM  
DQM  
CAS  
RAS  
13  
14  
15  
16  
17  
18  
19  
20  
32  
31  
30  
29  
28  
27  
26  
25  
CLK  
CKE  
NC  
A9  
CAS  
RAS  
13  
14  
15  
16  
17  
18  
19  
20  
32  
31  
30  
29  
28  
27  
26  
25  
CLK  
CKE  
NC  
A9  
VDDQ  
LDQM  
13  
14  
15  
16  
17  
18  
19  
20  
38  
37  
36  
35  
34  
33  
32  
31  
VDDQ  
NC  
UDQM  
CLK  
CKE  
NC  
CS  
A11(BS)  
CS  
A11(BS)  
WE  
CAS  
A10  
A0  
A8  
A10  
A0  
A8  
RAS  
CS  
A7  
A7  
A1  
A6  
A1  
A6  
A11(BS)  
A10  
A9  
A2  
A5  
A2  
A5  
A8  
A3  
VDD  
21  
22  
24  
23  
A4  
A3  
VDD  
21  
22  
24  
23  
A4  
V
SS  
A0  
A1  
21  
22  
23  
30  
29  
28  
A7  
A6  
V
SS  
A2  
A5  
A3  
VDD  
24  
25  
27  
26  
A4  
V
SS  
44-pin Plastic TSOP(II) 400 mil  
2Mbit x 4 I/O x 2 Bank  
IBM0316409CT3  
44-pin Plastic TSOP(II) 400 mil  
1Mbit x 8 I/O x 2 Bank  
IBM0316809CT3  
50-pin Plastic TSOP(II) 400 mil  
512Kbit x 16 I/O x 2 Bank  
IBM0316169CT3  
Pin Description  
CLK  
CKE  
CS  
Clock Input  
DQ0-DQ15  
Data Input/Output  
Data Mask  
Clock Enable  
Chip Select  
DQM, LDQM, UDQM  
VDD  
VSS  
VDDQ  
VSSQ  
NC  
Power (+3.3V)  
Ground  
RAS  
CAS  
Row Address Strobe  
Column Address Strobe  
Write Enable  
Power for DQs (+3.3V)  
Ground for DQs  
No Connection  
WE  
A11 (BS)  
A0 - A10  
Bank Select  
Address Inputs  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Pin Assignments for 2-High Stack Package (Dual CS Pins) (Top View)  
VDD  
1
44  
V
SS  
NC  
VSSQ  
DQ0  
2
43  
42  
41  
40  
39  
38  
37  
36  
35  
NC  
3
VSSQ  
DQ3  
4
VDDQ  
NC  
5
VDDQ  
NC  
6
VSSQ  
DQ1  
7
VSSQ  
DQ2  
8
VDDQ  
NC  
9
VDDQ  
NC  
10  
NC  
WE  
11  
12  
34  
33  
NC  
DQM  
CAS  
RAS  
13  
14  
15  
16  
17  
18  
19  
20  
32  
31  
30  
29  
28  
27  
26  
25  
CLK  
CKE  
NC/CS1 *  
A9  
* CS0/NC  
A11 (BS)  
A10  
A0  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
VDD  
21  
22  
24  
23  
A4  
V
SS  
44-pin Plastic TSOJ(II) 400 mil  
(2Mbit x 4 I/O x 2 Bank) x 2 High  
IBM03164B9CT3  
* CS0 selects the lower DRAM in the stack.  
* CS1 selects the upper DRAM in the stack.  
Pin Description  
CLK  
CKE  
Clock Input  
DQ0-DQ3  
DQM  
VDD  
Data Input/Output  
Data Mask  
Clock Enable  
Chip Select  
CS0, CS1  
RAS  
Power (+3.3V)  
Ground  
Row Address Strobe  
Column Address Strobe  
Write Enable  
VSS  
CAS  
VDDQ  
VSSQ  
NC  
Power for DQs (+3.3V)  
Ground for DQs  
No Connection  
WE  
A11 (BS)  
A0 - A10  
Bank Select  
Address Inputs  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Input/Output Functional Description  
Symbol  
Type Signal  
Polarity  
Function  
Positive The system clock input. All of the SDRAM inputs are sampled on the rising edge of the  
CLK  
Input  
Input  
Pulse  
Level  
Edge  
clock.  
Activates the CLK signal when high and deactivates the CLK signal when low. By deacti-  
vating the clock, CKE low initiates the Power Down mode, Suspend mode, or the Self  
Refresh mode.  
Active  
High  
CKE  
CS (CS0, CS1 for stacked devices) enables the command decoder when low and disables  
Pulse Active Low the command decoder when high. When the command decoder is disabled, new com-  
mands are ignored but previous operations continue.  
CS,  
CS0, CS1  
Input  
RAS, CAS  
WE  
When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the  
operation to be executed by the SDRAM.  
Input  
Input  
Pulse Active Low  
A11 (BS)  
A0 - A10  
Level  
Selects which bank is to be active. A11 low selects bank A and A11 high selects bank B.  
During a Bank Activate command cycle, A0-A10 defines the row address (RA0-RA10)  
when sampled at the rising clock edge.  
During a Read or Write command cycle, A0-A9 defines the column address (CA0-CA9)  
when sampled at the rising clock edge.  
A10 is used to invoke Auto-Precharge operation. If A10 is high, Auto-Precharge is  
selected and A11 defines the bank to be precharged (low=bank A, high=bank B). If A10 is  
low, Auto-Precharge is disabled.  
Input  
Level  
During a Precharge command cycle, A10 is used in conjunction with A11 to control which  
bank(s) to precharge. If A10 is high, both bank A and bank B will be precharged regardless  
of the state of A11. If A10 is low, then A11 is used to define which bank to precharge.  
Input  
Output  
DQ0 - DQ15  
Level  
Data Input/Output pins operate in the same manner as on conventional DRAMs.  
The DQ mask (DQM) places the DQ buffers in a high impedance state when sampled  
high. In Read mode, DQM has a latency of two clock cycles and controls the output buffers  
Pulse Active Low consistent with an output enable. In Write mode, DQM has a latency of zero and operates  
as a word mask by allowing input data to be written if it is low but blocks the write opera-  
tion if DQM is high.  
DQM  
LDQM  
UDQM  
Input  
VDD, V  
SS  
Supply  
Power and ground for the input buffers and the core logic.  
Isolated power supply and ground for the output buffers to provide improved noise immu-  
nity.  
VDDQ, VSSQ Supply  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Ordering Information - Planar Devices (Single CS Pin)  
CAS  
Latencies  
I/O  
Width  
I/O  
Type  
Power  
Supply  
Clock  
Cycle  
Part Number  
Package  
IBM0316409CT3D-80  
IBM0316409CT3D-10  
IBM0316809CT3D-80  
IBM0316809CT3D-360  
IBM0316809CT3D-10  
IBM0316169CT3D-80  
IBM0316169CT3D-10  
2,3  
1,2,3  
2,3  
x4  
x4  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
400mil Type II TSOP-44  
400mil Type II TSOP-44  
400mil Type II TSOP-44  
400mil Type II TSOP-44  
400mil Type II TSOP-44  
400mil Type II TSOP-50  
400mil Type II TSOP-50  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
8ns  
10ns  
8ns  
x8  
2,3  
x8  
10ns  
10ns  
8ns  
1,2,3  
2,3  
x8  
x16  
x16  
1,2,3  
10ns  
Ordering Information - 2 High Stacked Devices (Dual CS Pins)  
CAS  
Latencies  
I/O  
Width  
I/O  
Type  
Power  
Supply  
Clock  
Cycle  
Part Number  
Package  
IBM03164B9CT3D-10  
1,2,3  
x4  
LVTTL  
400mil Type II TSOJ-44 2-High  
3.3V  
10ns  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Block Diagram (2Mbit x 4 I/O x 2 Bank)  
2048 x 1024  
2048  
Memory Bank A  
CKE Buffer  
CKE  
Self  
Refresh Clock  
Row  
Address  
Counter  
Sense Amplifiers  
Bank A  
Row/Column  
Select  
Column Decoder and DQ Gate  
CLK Buffer  
CLK  
4
8
Predecode A  
11  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
Sequential  
Control  
Bank A  
Data Latches  
3
12  
2  
DQ0  
DQ1  
DQ2  
DQ3  
8
8
Mode Register  
11  
A10  
A11 (BS)  
Sequential  
Control  
Bank B  
CS Buffer  
RAS Buffer  
CAS Buffer  
3
CS  
RAS  
CAS  
Data Latches  
8
11  
Predecode B  
Bank B  
Row/Column  
Select  
Column Decoder and DQ Gate  
Sense Amplifiers  
WE Buffer  
WE  
Memory Bank B  
2048 x 1024  
2048  
DQM Buffer  
DQM  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Block Diagram (1Mbit x 8 I/O x 2 Bank)  
2048 x 512  
2048  
Memory Bank A  
CKE Buffer  
CKE  
Self  
Refresh Clock  
Row  
Address  
Counter  
8
Sense Amplifiers  
Bank A  
Row/Column  
Select  
Column Decoder and DQ Gate  
8
CLK Buffer  
CLK  
8
8
Predecode A  
11  
DQ0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
Data Latches  
Sequential  
Control  
Bank A  
DQ1  
3
12  
12  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
8
8
8
Mode Register  
11  
A10  
A11 (BS)  
Sequential  
Control  
Bank B  
8
CS Buffer  
RAS Buffer  
CAS Buffer  
3
CS  
RAS  
CAS  
Data Latches  
8
11  
Predecode B  
8
Bank B  
Row/Column  
Select  
Column Decoder and DQ Gate  
Sense Amplifiers  
8
WE Buffer  
WE  
Memory Bank B  
2048  
2048 x 512  
DQM Buffer  
DQM  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Block Diagram (512Kbit x 16 I/O x 2 Bank)  
2048 x 256  
Memory Bank A  
CKE Buffer  
CKE  
2048  
Self  
Refresh Clock  
16  
Row  
Address  
Counter  
DQ0  
DQ1  
16  
SenseAmplifiers  
Column Decoder and DQ Gate  
DQ2  
Bank A  
Row/Column  
Select  
DQ3  
DQ4  
CLK Buffer  
CLK  
DQ5  
16  
DQ6  
8
Predecode A  
DQ7  
11  
Data Latches  
DQ8  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
Sequential  
Control  
Bank A  
DQ9  
3
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
12  
12  
16  
8
Mode Register  
11  
8
A10  
A11 (BS)  
Sequential  
Control  
Bank B  
16  
CS Buffer  
RAS Buffer  
CAS Buffer  
3
CS  
RAS  
CAS  
WE  
Data Latches  
8
11  
Predecode B  
16  
Bank B  
Row/Column  
Column Decoder and DQ Gate  
Select  
Sense Amplifiers  
16  
WE Buffer  
DQM Buffer  
DQM Buffer  
2048  
Memory Bank B  
2048 x 256  
UDQM  
LDQM  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Block Diagram (2Mbit x 4 I/O x 2 Bank) x 2-High  
CS0  
CS1  
CKE  
CLK  
DQ0  
DQ1  
DQ2  
DQ3  
A10-A0  
A11(BS)  
2Mb x 4 I/O x 2 Bank  
RAS  
CAS  
WE  
DQM  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Power On and Initialization  
The default power on state of the mode register is supplier specific and may be undefined. The following  
power on and initialization sequence guarantees the device is preconditioned to each user’s specific needs.  
Like a conventional DRAM, the Synchronous DRAM must be powered up and initialized in a predefined man-  
ner. During power on, all VDD and VDDQ pins must be built up simultaneously to the specified voltage no  
later than any of the input signal voltages. The power on voltage must not exceed VDD+0.3V on any of the  
input pins or VDD supplies. After power on, an initial pause of 100µs is required followed by a precharge of  
both banks using the precharge command. To reduce the possibility of data contention on the DQ bus during  
power on, it is recommended that the DQM pin(s) be held high during the initial pause period. Once both  
banks have been precharged, a minimum of two Auto Refresh cycles (CBR) must occur before the Mode  
Register can be programmed. Failure to follow these steps may lead to unpredictable start-up modes.  
Programming the Mode Register  
For application flexibility, CAS latency, burst length, burst sequence, and operation type are user defined vari-  
ables and must be programmed into the SDRAM Mode Register with a single Mode Register Set Command.  
Contents of the Mode Register can be altered by re-executing the Mode Register Set Command. If the user  
chooses to modify only a subset of the Mode Register variables, all variables must be redefined when the  
Mode Register Set Command is issued.  
After initial power up, the Mode Register Set Command must be issued before read or write cycles may  
begin. Both banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low signals of  
RAS, CAS, CS and WE at the positive edge of the clock. The address input data during this cycle defines the  
parameters to be set as shown in the Mode Register Operation table. A new command may be issued on the  
second clock following the mode register set command.  
CAS Latency  
CAS latency is a parameter that is used to define the delay from when a Read Command is registered on a  
rising clock edge to when the data from that Read Command becomes available at the outputs. CAS latency  
is expressed in terms of clock cycles and can be programmed to a value of 1, 2, or 3 cycles. The value of  
CAS latency is determined by the speed grade of the device and the clock frequency that is used in the appli-  
cation. A table showing the relationship between the CAS latency, speed grade, and clock frequency appears  
in the Electrical Characteristics section of this document. Once the appropriate CAS latency has been  
selected it must be programmed into the mode register after power up. For an explanation of this procedure,  
see Programming the Mode Register in the previous section.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Mode Register Operation (Address Input For Mode Set)  
BS  
A10  
A9  
Address Bus (Ax)  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Mode Register (Mx)  
Operation Mode  
CAS Latency  
BT  
Burst Length  
Operation Mode  
Burst Type  
M11 M10 M9 M8 M7  
Mode  
M3  
0
Type  
0
0
0
1
0
0
0
0
Normal  
Sequential  
Interleave  
Multiple Burst with  
Single Write  
1
X
X
CAS Latency  
Burst Length  
M6 M5 M4  
Latency  
Reserved  
1
Length  
M2 M1 M0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Sequential Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
2
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Full Page Reserved  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Mode Operation  
Burst mode operation is used to provide a constant flow of data to memory locations (write cycle), or from  
memory locations (read cycle). There are three parameters that define how the burst mode will operate.  
These parameters include burst sequence, burst length, and operation mode. The burst sequence and burst  
length are programmable, and are determined by address bits A0 - A3 during the Mode Register Set com-  
mand. Operation mode is also programmable and is set by address bits A7 - A10 and BS.  
The burst type is used to define the order in which the burst data will be delivered or stored to the SDRAM.  
Two types of burst sequences are supported, sequential and interleaved. See Table.  
The burst length controls the number of bits that will be output after a Read Command, or the number of bits  
to be input after a Write Command. The burst length can be programmed to have values of 1, 2, 4, 8 or full  
page (actual page length is dependent on organization: x4, x8, or x16). Full page burst operation is only pos-  
sible using the sequential burst type.  
Burst operation mode can be normal operation or multiple burst with single write operation. Normal operation  
implies that the device will perform burst operations on both read and write cycles until the desired burst  
length is satisfied. Multiple burst with single write operation was added to support Write Through Cache oper-  
ation. Here, the programmed burst length only applies to read cycles. All write cycles are single write opera-  
tions when this mode is selected.  
Burst Length and Sequence  
Burst Length  
Starting Address (A2 A1 A0)  
Sequential Addressing (decimal)  
0, 1  
Interleave Addressing (decimal)  
0, 1  
x x 0  
x x 1  
x 0 0  
x 0 1  
x 1 0  
x 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
n n n  
2
1, 0  
1, 0  
0, 1, 2, 3  
0, 1, 2, 3  
1, 2, 3, 0  
1, 0, 3, 2  
4
2, 3, 0, 1  
2, 3, 0, 1  
3, 0, 1, 2  
3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
Cn, Cn+1, Cn+2, ......  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Not Supported  
8
Full Page (Note)  
Note: Page length is a function of I/O organization and column addressing.  
x4 organization (CA0-CA9); Page Length = 1024 bits  
x8 organization (CA0-CA8); Page Length = 512 bits  
x16 organization (CA0-CA7); Page Length = 256 bits  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Bank Activate Command  
In relation to the operation of a fast page mode DRAM, the Bank Activate command corresponds to a falling  
RAS signal. The Bank Activate command is issued by holding CAS and WE high with CS and RAS low at the  
rising edge of the clock. The bank select address, A11 (sometimes referred to as BS), is used to select the  
desired bank. If BS is low then bank A is activated, if BS is high then bank B is activated. The row address A0  
- A10 is used to determine which row to activate in the selected bank. Only banks A and B within a single  
deck of a 2-High stacked device can be accessed. Simultaneous operation of both decks in a stacked device  
is not allowed, except during Self Refresh.  
The Bank Activate command must be applied before any Read or Write operation can be executed. The  
delay from when the Bank Activate command is applied to when the first read or write operation can begin  
must meet or exceed the RAS to CAS delay time (tRCD). Once a bank has been activated it must be pre-  
charged before another Bank Activate command can be applied to the same bank. The minimum time inter-  
val between successive Bank Activate commands to the same bank is determined by the RAS cycle time of  
the device (tRC). The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B  
and vice versa) is the Bank to Bank delay time (tRRD).  
Bank Activate Command Cycle (CAS Latency = 3, t  
= 3)  
RCD  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
Tn+3  
CLK  
. . . . . . . . . .  
Bank A  
Col. Addr.  
Bank A  
Row Addr.  
Bank B  
Row Addr.  
Bank A  
Row Addr.  
. . . . . . . . . .  
ADDRESS  
RAS-CAS delay (tRCD  
)
RAS - RAS delay time (tRRD  
)
Write A  
with Auto-  
Precharge  
Bank B  
NOP  
Bank A  
Activate  
Bank A  
Activate  
. . . . . . . . . .  
NOP  
NOP  
NOP  
COMMAND  
Activate  
RAS Cycle time (tRC  
)
: “H” or “L”  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be executed. This is accomplished by setting RAS  
high and CAS low at the clock’s rising edge after the necessary RAS to CAS delay (tRCD). WE must also be  
defined at this time to determine whether the access cycle is a read operation (WE high), or a write operation  
(WE low).  
The SDRAM provides a wide variety of fast access modes. A single Read or Write Command will initiate a  
serial read or write operation on successive clock cycles at data rates of up to 125 MHz. The number of serial  
data bits for each access is equal to the burst length, which is programmed into the Mode Register. Although  
the burst length is user programmable, the boundary of the burst cycle is restricted to specific segments of  
the page length.  
For example, the 2Mbit x 4 I/O x 2 Bank device has a page length of 1024 bits (defined by CA0-CA9). If a  
burst length of 4 is programmed into the Mode Register, then the page length is divided into 256 uniquely  
addressable boundary segments (4-bits each). A 4-bit burst operation will occur entirely from one of the 256  
groups beginning with the column address supplied to the device during the Read or Write Command (CA0-  
CA9). The second, third, and fourth access will also occur within this group segment, however, the burst  
order is a function of the starting address, the burst sequence, and burst boundary.  
The above discussion does not apply when full page burst is programmed into the Mode Register. Full page  
burst operation is only allowed for the sequential burst sequence and has no address boundaries. The  
SDRAM device will continue bursting data even after all locations of the page have been accessed. The burst  
sequence will start at the column address defined during the read or write cycle and will increment sequen-  
tially until the highest order column address has been reached. At this point, the burst counter will reset to  
address 0 and continue to perform burst read or burst write operations sequentially until either a Burst Stop  
Command is issued, a Precharge Command is issued to the bursting bank, or until a new Read or Write  
Command is issued.  
Similar to Page Mode of conventional DRAMs, a read or write cycle can not begin until the sense amplifiers  
latch the selected row address information. The refresh period (tREF) is what limits the number of random col-  
umn accesses to an activated bank. A new burst access can be done even before the previous burst ends.  
The ability to interrupt a burst operation at every clock cycle is supported, this is referred to as the 1-N rule.  
When the previous burst is interrupted by another Read or Write Command, the remaining addresses are  
overridden by the new address once the CAS Latency has been satisfied.  
Precharging an active bank after each read or write operation is not necessary providing the same row is to  
be accessed again. To perform a read or write cycle to a different row within an activated bank, the bank must  
be precharged and a new Bank Activate command must be issued. When both Bank A and Bank B are acti-  
vated, interleaved (ping pong) bank Read or Write operations are possible. By using the programmed burst  
length and alternating the access and precharge operations between the two banks, fast and seamless data  
access operation among many different pages can be realized. When the two banks are activated, column to  
column interleave operation can be done between two different pages. Finally, Read or Write Commands can  
be issued to the same bank or between active banks on every clock cycle.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Read Command  
The Burst Read command is initiated by having CS and CAS low while holding RAS and WE high at the rising  
edge of the clock. The address inputs determine the starting column address for the burst, the Mode Register  
sets type of burst (sequential or interleave) and the burst length (1, 2, 4, 8, full page). The delay from the start  
of the command to when the data from the first cell appears on the outputs is equal to the value of the CAS  
latency that is set in the Mode Register.  
Burst Read Operation (Burst Length = 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 1  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
0
1
2
3
t
CK1, DQs  
CAS latency = 2  
DOUT A  
3
0
1
2
t
CK2, DQs  
CAS latency = 3  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
t
CK3, DQs  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Read Interrupted by a Read  
A Burst Read may be interrupted before completion of the burst by another Read Command, with the only  
restriction being that the interval that separates the commands must be at least one clock cycle. When a  
burst read operation is interrupted, the remaining addresses of the current burst cycle are overridden starting  
with the new column address applied with the interrupting Read Command. The data from the first Read  
Command continues to appear on the DQs until the CAS latency of the interrupting Read Command is satis-  
fied. At this point, the data from the interrupting Read Command will appear on the DQs and continue for the  
full burst length.  
Read Interrupted by a Read (Burst Length = 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
READ B  
DOUT A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 1  
DOUT B  
DOUT A  
DOUT B  
DOUT B  
DOUT B  
3
0
0
1
2
t
CK1, DQs  
CAS latency = 2  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
0
0
1
2
3
t
CK2, DQs  
CAS latency = 3  
DOUT A  
DOUT B  
DOUT B  
3
0
0
1
2
t
CK3, DQs  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM must be used to avoid data contention on the data bus  
by placing the chip output drivers in a high impedance state at least one clock cycle before the Write Com-  
mand is initiated. To insure the chip output drivers are tri-stated one cycle before the write operation begins,  
DQM must be activated at least 3 clock cycles before the Write Command and be deactivated in the same  
clock cycle as the Write Command.  
Read Interrupted by a Write (Burst Length = 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
: “H” or “L”  
DQM  
READ A  
NOP  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Must be Hi-Z before  
the Write Command  
CAS latency = 1  
DOUT A  
DOUT A  
DOUT A  
DIN A  
0
DIN A  
DIN A  
DIN A  
3
0
1
2
1
2
tCK1, DQs  
CAS latency = 2  
DOUT A  
DOUT A  
DIN A  
DIN A  
DIN A  
DIN A  
3
0
1
0
1
2
t
CK2, DQs  
CAS latency = 3  
DOUT A  
DIN A  
DIN A  
DIN A  
DIN A  
3
0
0
1
2
tCK3, DQs  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Write Command  
The Burst Write command is initiated by having CS, CAS and WE low while holding RAS high at the rising  
edge of the clock. The address inputs determine the starting column address. There is no CAS latency  
required for burst write cycles. Data for the first burst write cycle must be applied on the DQ pins on the same  
clock cycle that the Write Command is issued. The remaining data inputs must be supplied on each subse-  
quent rising clock edge until the burst length is completed. When the burst has finished, any additional data  
supplied to the DQ pins will be ignored.  
Burst Write Operation (Burst Length = 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DQs  
DIN A  
0
don’t care  
DIN A  
DIN A  
DIN A  
3
1
2
The first data element and the Write  
are registered on the same clock edge.  
Extra data is masked.  
Write Interrupted by a Write  
A burst write operation may be interrupted before completion of the burst. When a burst write cycle is inter-  
rupted by a new Write Command, the remaining addresses of the initial write cycle are overridden starting  
with the new column address applied with the interrupting Write Command. Data will be written into the  
device until the programmed burst length of the last write command is satisfied.  
Write Interrupted by a Write (Burst Length = 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
WRITE B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DQs  
1 Clk Interval  
DIN A  
DIN B  
0
DIN B  
DIN B  
DIN B  
3
0
1
2
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read Command is  
registered. The DQs must be in the high impedance state at least one cycle before the interrupting read data  
appears on the outputs to avoid data contention. When the Read Command is registered, any residual data  
from the burst write cycle will be ignored. Data that is presented on the DQ pins before the Read Command is  
initiated will actually be written to the memory.  
Write Interrupted by a Read (Burst Length = 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 1  
DIN A  
0
DOUT B  
0
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
1
2
3
t
CK1, DQs  
CAS latency = 2  
don’t care  
don’t care  
DIN A  
0
DOUT B  
DOUT B  
0
1
2
3
t
CK2, DQs  
CAS latency = 3  
don’t care  
DIN A  
0
DOUT B  
DOUT B  
DOUT B  
3
0
1
2
t
CK3, DQs  
Input data must be removed from the DQs at least one clock  
cycle before the Read data appears on the outputs to avoid  
data contention.  
Input data for the Write is masked.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Stop Command  
Once a burst read or write operation has been initiated, there exist several methods in which to terminate the  
burst operation prematurely. These methods include using another Read or Write Command to interrupt an  
existing burst operation, using a Precharge Command to interrupt a burst cycle and close the active bank, or  
using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future  
Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read  
or Write Command care must be taken to avoid DQ contention. The Burst Stop Command, however, has the  
fewest restrictions making it the easiest method to use when terminating a burst operation before it has been  
completed.  
The Burst Stop Command is defined by having RAS and CAS high with CS and WE low at the rising edge of  
the clock. When using the Burst Stop Command during a burst read cycle, the data DQs go to a high imped-  
ance state after a delay which is equal to the CAS Latency set in the Mode Register.  
Termination of a Burst Read Operation (Burst Length > 4, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
The burst ends after a delay equal to the CAS latency.  
The bank remains activated.  
CAS latency = 1  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
0
1
0
2
3
2
1
t
CK1, DQs  
CAS latency = 2  
DOUT A  
DOUT A  
DOUT A  
3
1
0
t
CK2, DQs  
CAS latency = 3  
DOUT A  
DOUT A  
3
2
t
CK3, DQs  
When a Burst Stop Command is issued during a burst write operation, only data presented prior to the Burst  
Stop command will be written into the device. Any data presented to the device coincident with the Burst Stop  
command or later will be ignored.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Termination of a Burst Write Operation (Burst Length =X, CAS Latency = 1, 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 1,2,3  
don’t care  
DIN A  
0
DIN A  
DIN A  
2
1
DQs  
Input data for the Write is masked.  
Auto-Precharge Operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either the Pre-  
charge Command or the auto-precharge function. When a Read or a Write Command is given to the SDRAM,  
the CAS timing accepts one extra address, column address A10, to allow the active bank to automatically  
begin precharge at the earliest possible moment during the burst read or write cycle. If A10 is low when the  
Read or Write Command is issued, then normal Read or Write burst operation is executed and the bank  
remains active at the completion of the burst sequence. If A10 is high when the Read or Write Command is  
issued, then the auto-precharge function is engaged. During auto-precharge, a Read Command will execute  
as normal with the exception that the active bank will begin to precharge immediately and may finish before  
all burst read cycles have been completed. This feature allows the precharge operation to be partially or com-  
pletely hidden during the burst read cycles (dependent upon burst length) thus improving system perfor-  
mance for random data access. Auto-precharge can also be implemented during Write commands.  
A Read or Write Command without auto-precharge can be terminated in the midst of a burst operation. How-  
ever, a Read or Write Command with auto-precharge can not be interrupted by a command to the same  
bank. Therefore use of a Read, Write, Precharge, or Burst Stop Command to the same bank is prohibited  
during a read or write cycle with auto-precharge until the entire burst operation is completed.  
If A10 is high when a Read Command is issued, the Read with auto-precharge function is initiated. Once the  
precharge operation has started the bank cannot be reactivated until an asynchronous delay time equal to tRP  
+ tDPL, expressed in nanoseconds rather than clocks, has been satisfied. It should be noted that the device will  
not respond to the Auto-Precharge Command if the device is programmed for full page burst read or write  
cycles.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Read with Auto-Precharge (Burst Length = 4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Auto-Precharge  
tRP + tDPL  
DOUT A  
*
tCK2  
DQs  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
tRP*+ tDPL  
tCK3  
DQs  
*
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
Bank can be reactivated after completion of tRP + tDPL  
For Auto-Precharge, this is an asynchronous delay  
which may complete prior to a clock edge,depending  
.
*
Begin Auto-precharge.  
on tRP tDPL  
tCK. The bank cannot be reactivated  
,
and  
until the rising clock edge following the completion of  
*
tRP, tRCD= 2 clocks for -360  
the delay.  
Although a Read Command with auto-precharge can not be interrupted by a command to the same bank, it  
can be interrupted by a Read or Write Command to the other bank. The auto-precharge function will begin  
normally with the issuing command.  
Burst Read w/ Auto-precharge Interrupted by Read (Burst Length = 4, CAS Latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ B  
COMMAND  
Auto-Precharge  
tRP + tDPL  
*
CAS latency = 2  
t
CK2, DQs  
DOUT A  
DOUT A  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
0
1
0
0
1
1
2
3
tRP*+ tDPL  
*
CAS latency = 3  
t
CK3, DQs  
DOUT A  
DOUT A  
DOUT B  
DOUT B  
DOUT B  
3
0
1
2
Begin Auto-precharge A  
Bank can be reactivated at completion of t  
t
RP + DPL  
*
*
tRP, tRCD= 2 clocks for-360  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
If interrupting a Read Command with auto-precharge with a Write Command, DQM must be used to avoid DQ  
contention.  
Burst Read with Auto-precharge Interrupted by Write (Burst Length = 8, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE B  
DOUT B  
COMMAND  
Auto-Precharge  
tRP+tDPL  
*
CAS latency = 2  
t
CK2, DQs  
DOUT A  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
4
0
0
1
2
3
DQM  
Begin Auto-precharge A  
Bank A can be reactivated at completion of t  
t
RP + DPL  
*
If A10 is high when a Write Command is issued, the Write with auto-precharge function is initiated. The bank  
undergoing auto-precharge can not be reactivated until tDPL and tRP are satisfied. This is referred to as tDAL,  
Data-in to Active delay (tDAL= tDPL + tRP), and is an asynchronous delay time during auto-precharge.  
Burst Write with Auto-Precharge (Burst Length = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Auto-Precharge  
tDAL  
tCK2  
DQs  
DIN A  
DIN A  
DIN A  
DIN A  
0
1
*
tDAL  
tCK3  
DQs  
0
1
*
*
Bank can be reactivated after completion of tDAL  
.
For Auto-Precharge, tDAL is an asynchronous delay  
which may complete prior to a clock edge, depending  
on tRP tDPL  
until the rising clock edge following the delay.  
tCK. The bank cannot be reactivated  
Begin Auto-precharge.  
,
and  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Similar to the Read Command, a Write Command with auto-precharge can not be interrupted by a command  
to the same bank. It can be interrupted by a Read or Write Command to the other bank, however. The auto-  
precharge function is unaffected by the interrupting command and will begin as normally scheduled according  
to burst length.  
Burst Write with Auto-Precharge Interrupted by Write (Burst Length = 4, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
NOP  
WRITE B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Auto-Precharge  
tDAL  
*
CAS latency = 3  
t
CK3, DQs  
DIN A  
DIN A  
DIN B  
DIN B  
DIN B  
DIN B  
3
0
1
0
1
2
Begin Auto-precharge  
*
tRP, tDPL = 2 clocks for-360  
Bank A can be reactivated at completion of tDAL  
*
Burst Write with Auto-Precharge Interrupted by Read (Burst Length = 4, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
WRITE A  
NOP  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Auto-Precharge  
tDAL  
*
CAS latency = 3  
t
CK3, DQs  
DIN A  
0
DIN A  
DIN A  
2
DOUT B  
DOUT B  
DOUT B  
2
1
0
1
Begin Auto-precharge  
*
tRP, tDPL = 2 clocks for-360  
Bank A can be reactivated at completion of tDAL  
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The Precharge Com-  
mand is triggered when CS, RAS and WE are low and CAS is high at the rising edge of the clock. The Pre-  
charge Command can be used to precharge each bank separately or both banks simultaneously. Two  
address bits A10 and A11 (BS) are used to define which bank(s) is to be precharged when the command is  
issued.  
Bank Selection for Precharge by Address Bits  
A10  
LOW  
LOW  
HIGH  
BS(A11)  
LOW  
Precharged Bank(s)  
Bank A only  
HIGH  
Bank B only  
DON’T CARE  
Both Banks A and B  
For read cycles, the Precharge Command may be applied consistent with the CAS Latency set in the Mode  
Register. The data DQs go to a high impedance state after a delay which is equal to the latency, similar to a  
Burst Stop Command. Refer to the following figures.  
For write cycles, however, a delay must be satisfied from the start of the last burst write cycle until the Pre-  
charge Command can be issued. This delay is known as tDPL, Data-in to Precharge delay.  
After the Precharge Command is issued, the precharged bank must be reactivated before a new read or write  
access can be executed. The delay between the Precharge Command and the Activate Command must be  
greater than or equal to the Precharge time (tRP).  
Burst Read followed by Precharge Command (Burst Length = 4, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge A  
COMMAND  
0
tRP  
*
CAS latency = 2  
DOUT Ax  
DOUT Ax  
DOUT Ax  
DOUT Ax  
3
0
1
2
t
CK2, DQs  
Bank can be reactivated at completion of t  
.
RP  
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Read followed by Precharge Command (Burst Length = 4, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
0
tRP  
*
CAS latency = 3  
DOUT Ax  
DOUT Ax  
1
DOUT Ax  
DOUT Ax  
3
0
2
t
CK3, DQs  
(-80,-10)  
Bank can be reactivated at completion of t  
.
RP  
*
Burst Read followed by Precharge Command (Burst Length = 4, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
0
tRP  
*
CAS latency = 3  
DOUT Ax  
DOUT Ax  
1
DOUT Ax  
DOUT Ax  
0
2
3
t
CK3, DQs  
(-360)  
Bank can be reactivated at completion of t  
.
RP  
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Write followed by Precharge Command (Burst Length = 2, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Activate  
Bank Ax  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
WRITE Ax  
COMMAND  
0
tDPL  
tRP  
tDAL  
*
CAS latency = 2  
t
CK2, DQs  
DIN Ax  
DIN Ax  
1
0
Bank can be reactivated at completion of tDAL (tDPL + tRP).  
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Write followed by Precharge Command (Burst Length = 2, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CLK  
Activate  
Bank Ax  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
WRITE Ax  
0
tDPL  
tRP  
tDAL  
CAS latency=3  
tCK3, DQs  
(-80, -10)  
*
DIN Ax  
DIN Ax  
1
0
Activate  
Bank Ax  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
WRITE Ax  
COMMAND  
0
tDPL  
tDAL  
tRP  
*
CAS latency=3  
tCK3, DQs  
(-360)  
DIN Ax  
DIN Ax  
0
1
Bank can be reactivated at completion of tDAL (tDPL + tRP).  
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Precharge Termination  
The Precharge Command may be used to terminate either a burst read or burst write operation. When the  
Precharge command is issued, the burst operation is terminated and bank precharge begins. For burst read  
operations, valid data will continue to appear on the data bus as a function of CAS Latency.  
Burst Read Interrupted by Precharge (Burst Length = 8, CAS latency = 1)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
READ Ax  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge A  
tRP  
NOP  
COMMAND  
0
*
CAS latency = 1  
DOUT Ax  
DOUT Ax  
0
1
t
CK1, DQs  
Bank can be reactivated at completion of t  
RP  
.
Burst is terminated one clock after the Precharge command,  
consistent with CAS Latency.  
*
Burst Read Interrupted by Precharge (Burst Length = 8, CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge A  
DOUT Ax  
NOP  
COMMAND  
0
tRP  
*
CAS latency = 2  
DOUT Ax  
DOUT Ax  
0
1
2
t
CK2, DQs  
Bank can be reactivated at completion of t  
.
Burst is terminated two clocks after the Precharge command,  
consistent with CAS Latency.  
RP  
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst Read Interrupted by Precharge (Burst Length = 8, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge A  
DOUT Ax  
COMMAND  
0
tRP  
*
CAS latency = 3  
t
CK3, DQs  
DOUT Ax  
DOUT Ax  
DOUT Ax  
3
0
1
2
(-80, -10)  
Bank can be reactivated at completion of tRP  
.
Burst is terminated three clocks after the Precharge command,  
consistent with CAS Latency.  
*
Burst Read Interrupted by Precharge (Burst Length = 8, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ Ax  
NOP  
NOP  
NOP  
tRP  
NOP  
NOP  
NOP  
NOP  
Precharge A  
COMMAND  
0
*
DQM  
CAS latency = 3  
t
CK3, DQs  
DOUT Ax  
DOUT Ax  
DOUT Ax  
DOUT Ax  
3
0
1
2
(-360)  
Burst is terminated three clocks after the Precharge command,  
consistent with CAS Latency.  
Bank can be reactivated at completion of tRP  
.
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Burst write operations will be terminated by the Precharge command. However, write data written to the  
device prior to the Precharge command may be stored incorrectly and is a function of CAS latency and tDPL  
.
When CAS latency is set to equal 1 or 2 or when set to 3 with tDPL = 1 clock, the last write data that will be  
properly stored in the device is that write data that is presented to the device on the clock cycle prior to the  
Precharge command. The write data presented during the Precharge command will not be written.  
Precharge Termination of a Burst Write (Burst Length = 8, CAS Latency = 1)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
WRITE Ax  
COMMAND  
0
tDPL  
tRP  
tDAL  
*
CAS latency = 1  
t
CK1, DQs  
DIN Ax  
DIN Ax  
DIN Ax  
2
0
1
Bank can be reactivated at completion of t  
DAL  
*
Precharge Termination of a Burst Write (Burst Length = 8, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
WRITE Ax  
COMMAND  
0
tDPL  
tRP  
tDAL  
*
CAS latency = 2  
t
CK2, DQs  
DIN Ax  
DIN Ax  
DIN Ax  
2
0
1
Bank can be reactivated at completion of tDAL  
.
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Precharge Termination of a Burst Write (Burst Length = 8, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
WRITE Ax  
COMMAND  
0
tRP  
tDPL  
tDAL  
*
CAS latency = 3  
CK3,DQs  
t
DIN Ax  
DIN Ax  
DIN Ax  
2
0
1
(-80, -10)  
Bank can be reactivated at completion of tDAL  
.
*
When CAS latency is set to equal 3 and tDPL = 2 clocks, the last write data that will be properly stored in the  
device is that write data that is presented to the device two clocks prior to the Precharge command. The write  
data presented during the clock cycle prior to the Precharge command may be stored incorrectly. To prevent  
the writing of invalid data to the device, DQM must be asserted high one clock cycle prior to the Precharge  
command to mask the invalid write data.  
Precharge Termination of a Burst Write (Burst Length = 8, CAS Latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
NOP  
NOP  
Precharge A  
NOP  
NOP  
NOP  
NOP  
WRITE Ax  
COMMAND  
0
tDPL  
tRP  
tDAL  
*
CAS latency = 3  
tCK3,  
DQs  
DIN Ax  
DIN Ax  
1
0
-360  
(
)
DQM is needed to mask  
the invalid data  
Bank can be reactivated at completion of tDAL  
.
*
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Automatic Refresh Command (CAS Before RAS Refresh)  
When CS, RAS and CAS are held low with CKE and WE high at the rising edge of the clock, the chip enters  
the Automatic Refresh mode (CBR). Both banks of the SDRAM must be precharged and idle for a minimum  
of the Precharge time (tRP) before the Auto Refresh Command (CBR) can be applied. For a stacked device,  
only one deck at a time can be refreshed using Automatic Refresh Mode. An address counter, internal to the  
device, supplies the bank address during the refresh cycle. No control of the external address pins is required  
once this cycle has started.  
When the refresh cycle has completed, both banks of the SDRAM will be in the precharged (idle) state. A  
delay between the Auto Refresh Command (CBR) and the next Activate Command or subsequent Auto  
Refresh Command must be greater than or equal to the RAS cycle time (tRC).  
Self Refresh Command  
The SDRAM device has a built-in timer to accommodate Self Refresh operation. The Self Refresh Command  
is defined by having CS, RAS, CAS and CKE held low with WE high at the rising edge of the clock. Once the  
Command is registered, CKE must be held low to keep the device in Self Refresh mode. When the SDRAM  
has entered Self Refresh mode all of the external control signals, except CKE, are disabled. The clock is  
internally disabled during Self Refresh Operation to save power. The user may halt the external clock while  
the device is in Self Refresh mode, however, the clock must be restarted before the device can exit Self  
Refresh operation. Once the clock is cycling, the exit command will be registered asynchronously by bringing  
CKE high. After CKE is brought high, an internal timer is started to insure CKE is held high for approximately  
10ns before registering the Self Refresh exit command. The purpose of this circuit is to filter out noise glitches  
on the CKE input which may cause the SDRAM to erroneously exit Self Refresh operation. Once the Self  
Refresh command is registered, a delay equal to the RAS cycle time (tRC) must be satisfied before any new  
command can be issued to the device. CKE must remain high for the entire Self Refresh exit period (tSREX  
and commands must be gated off with CS held high. Alternatively, NOP commands may be registered on  
each positive clock edge during the Self Refresh exit interval. (See Self Refresh Exit figures.) When using  
Self Refresh, both decks of a stacked device may be refreshed at the same time.  
)
Self Refresh Exit (Commands Gated Off with CS High)  
T
T
T
T
T
T
T
T
T
m
m+1  
m+2  
m+3  
m+4  
m+5  
m+6  
m+7  
m+8  
CLK  
CKE  
CS  
tRC  
COMMAND  
Any  
Command  
Self Refresh  
Exit  
: “H” or “L”  
Begin Self Refresh Exit  
Self Refresh  
Exit Command  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Self Refresh Exit (Commands Gated Off with NOP Commands)  
T
T
T
T
T
T
T
T
T
m
m+1  
m+2  
m+3  
m+4  
m+5  
m+6  
m+7  
m+8  
CLK  
CKE  
CS  
tRC  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Any  
Command  
Self Refresh  
Exit  
Begin Self Refresh Exit  
Self Refresh  
Exit Command  
: “H” or “L”  
Data Mask  
The SDRAM has a Data Mask function that can be used in conjunction with data read and write cycles. When  
the Data Mask is high during a write cycle, the write operation is prohibited immediately (zero clock latency).  
If the Data Mask is activated during a read cycle, the data outputs are disabled and become high impedance  
after a two clock delay, independent of CAS latency.  
Data Mask Activated During a Read Cycle (Burst Length = 4, CAS Latency = 1)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
DQM  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DOUT A  
DQs  
DOUT A  
1
0
A two clock delay before  
the DQs become Hi-Z  
: “H” or “L”  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state. The pur-  
pose of the No Operation Command is to prevent the SDRAM from registering any unwanted commands  
between operations. A No Operation Command is registered when CS is low with RAS, CAS, and WE held  
high at the rising edge of the clock. A No Operation Command will not terminate a previous operation that is  
still executing, such as a burst read or write cycle.  
Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect Command  
occurs when CS is brought high, the RAS, CAS, and WE signals become don’t cares.  
Power Down Mode  
In order to reduce standby power consumption, two power down modes are available: Precharge and Active  
Power Down mode. To enter Precharge Power Down mode, all banks must be precharged and the neces-  
sary Precharge delay (tRP) must occur before the SDRAM can enter the Power Down mode. If a bank is acti-  
vated but not performing a Read or Write operation, Active Power Down mode will be entered. (Issuing a  
Power Down Mode Command when the device is performing a Read or Write operation causes the device to  
enter Clock Suspend mode. See the following section.) Once the Power Down mode is initiated by holding  
CKE low, all of the receiver circuits except CLK and CKE are gated off. The Power Down mode does not per-  
form any refresh operations, therefore the device can’t remain in Power Down mode longer than the Refresh  
period (tREF) of the device.  
The Power Down mode is exited by bringing CKE high. A one clock delay after the registration of CKE high is  
required for the SDRAM to exit the Power Down mode.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Clock Suspend Mode  
During normal access mode, CKE is held high enabling the clock. When CKE is registered low while at least  
one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode deactivates the inter-  
nal clock and suspends or “freezes” any clocked operation that was currently being executed. There is a one  
clock delay between the registration of CKE low and the time at which the SDRAM’s operation suspends.  
While in Clock Suspend mode, the SDRAM ignores any new commands that are issued. The Clock Suspend  
mode is exited by bringing CKE high. There is a one clock cycle delay from when CKE returns high to when  
Clock Suspend mode is exited.  
When the operation of the SDRAM is suspended during the execution of a Burst Read operation, the last  
valid data output onto the DQ pins will be actively held valid until Clock Suspend mode is exited.  
Clock Suspend During a Read Cycle (Burst Length = 4, CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
CKE  
A one clock delay to exit  
the Suspend command  
A one clock delay before  
suspend operation starts  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DOUT A  
DOUT A  
2
DOUT A  
DQs  
0
1
DOUT element at the DQs when the  
suspend operation starts is held valid  
: “H” or “L”  
If Clock Suspend mode is initiated during a burst write operation, then the input data is masked and ignored  
until the Clock Suspend mode is exited.  
Clock Suspend During a Write Cycle (Burst Length = 4, CAS Latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
CKE  
A one clock delay to exit  
the Suspend command  
A one clock delay before  
suspend operation starts  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
DIN A  
DIN A  
DIN A  
3
DIN A  
0
DQs  
1
2
: “H” or “L”  
DIN is masked during the Clock Suspend Period  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Command Truth Table (Notes: 1)  
CKE  
Function  
CS  
RAS  
CAS  
WE  
DQM A11  
A10  
A9 - A0  
Notes  
Previous Current  
Cycle  
H
H
H
L
Cycle  
Mode Register Set  
Auto (CBR) Refresh  
Entry Self Refresh  
Exit Self Refresh  
X
L
L
L
H
L
L
L
L
L
L
L
L
L
H
X
X
X
X
X
L
L
L
L
L
H
H
X
L
X
OP Code  
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
L
X
X
X
X
X
L
L
H
X
X
L
X
H
H
H
L
X
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
H
H
H
H
H
H
H
H
H
H
L
BS  
X
2
X
L
L
H
X
L
H
L
BS  
BS  
BS  
BS  
BS  
X
Row Address  
2
2
2
2
2
3
Write  
X
H
H
H
H
H
H
X
X
X
X
X
X
L
H
L
Column  
Write with Auto-Precharge  
Read  
X
L
L
Column  
X
L
H
H
L
Column  
Read with Auto-Precharge  
Burst Termination  
X
L
H
X
X
X
X
X
X
X
X
Column  
X
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
No Operation  
X
H
X
X
X
X
X
X
X
Device Deselect  
X
X
Clock Suspend/Standby Mode  
Data Write/Output Enable  
Data Mask/Output Disable  
Power Down Mode Entry  
Power Down Mode Exit  
X
X
4
5
H
H
X
X
X
X
H
X
X
X
5
L
X
6, 7  
6, 7  
X
H
X
1. All of the SDRAM operations are defined by states of CS, WE, RAS, CAS, and DQM at the positive rising edge of the clock. For  
stacked devices: only one deck can be operated at once, except during Self Refresh.  
2. Bank Select (BS), if BS = 0 then bank A is selected, if BS = 1 then bank B is selected.  
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.  
4. During normal access mode, CKE is held high and CLK is enabled. When it is low, it freezes the internal clock and extends data  
Read and Write operations. One clock delay is required for mode entry and exit.  
5. The DQM has two functions for the data DQ Read and Write operations. During a Read cycle, when DQM goes high at a clock tim-  
ing the data outputs are disabled and become high impedance after a two clock delay. DQM also provides a data mask function for  
Write cycles. When it activates, the Write operation at the clock is prohibited (zero clock latency).  
6. All banks must be precharged before entering the Precharge Power Down Mode. If banks are active, Active Power Down Mode is  
entered. The Power Down Mode does not perform any refresh operations, therefore the device can’t remain in this mode longer  
than the Refresh period (tREF) of the device. One clock delay is required for mode entry and exit.  
7. If CS is low, then when CKE returns high, no command is registered into the chip for one clock cycle.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Clock Enable (CKE) Truth Table  
CKE  
Command  
WE  
Current State  
Action  
Notes  
Previous Current  
CS  
RAS CAS  
A11 A10 - A0  
Cycle  
H
L
Cycle  
X
X
H
L
X
X
H
H
H
L
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
1
2
2
2
2
2
H
H
H
H
H
L
X
H
H
L
Exit Self Refresh with Device Deselect  
Exit Self Refresh with No Operation  
ILLEGAL  
L
Self Refresh  
L
L
L
L
X
X
X
X
X
X
X
X
X
X
H
L
ILLEGAL  
L
L
X
X
X
X
X
X
X
X
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
X
H
L
Maintain Self Refresh  
INVALID  
H
L
X
1
2
2
H
H
L
Power Down mode exit, all banks idle  
ILLEGAL  
Power Down  
L
L
X
H
L
Maintain Power Down Mode  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
3
3
3
Refer to the Idle State section of the  
Current State Truth Table  
L
L
L
X
X
CBR Refresh  
L
L
L
OP Code  
Mode Register Set  
4
3
3
3
4
All Banks Idle  
H
L
X
H
L
X
X
H
L
X
X
X
H
L
Refer to the Idle State section of the  
Current State Truth Table  
L
L
L
L
L
L
X
X
Entry Self Refresh  
Mode Register Set  
Power Down  
L
L
L
L
OP Code  
X
X
X
X
X
X
X
X
4
5
Refer to operations in the Current  
State Truth Table  
H
H
X
X
X
X
X
Any State  
other than  
listed above  
H
L
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain Clock Suspend  
1. For the given Current State, CKE must be low in the previous cycle.  
2. When CKE has a low to high transition, the clock and other inputs are re-enabled asynchronously. The minimum setup time for  
CKE (tCES) must be satisfied before any command other than Exit is issued.  
3. The address inputs (A11 - A0) depend on the command that is issued. See the Idle State section of the Current State Truth Table  
for more information.  
4. The Power Down Mode, Self Refresh Mode, and the Mode Register Set can only be entered from the all banks idle state.  
5. Must be a legal command as defined in the Current State Truth Table.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Current State Truth Table (Part 1 of 4) (Notes: 1)  
Command  
Current State  
Action  
Notes  
CS RAS CAS WE A11  
A10 - A0  
OP Code  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
Mode Register Set  
Set the Mode Register  
2
X
X
X
Auto or Self Refresh Start Auto or Self Refresh  
2, 3  
L
H
H
L
BS  
Precharge  
No Operation  
L
H
L
BS Row Address Bank Activate  
Activate the specified bank and row  
Idle  
Row Active  
Read  
H
H
H
H
X
L
BS  
BS  
X
Column  
Write w/o Precharge ILLEGAL  
Read w/o Precharge ILLEGAL  
4
4
L
H
L
Column  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
No Operation  
H
X
L
X
No Operation  
X
Device Deselect  
Mode Register Set  
No Operation or Power Down  
ILLEGAL  
5
OP Code  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
Precharge  
6
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
4
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
Start Write; Determine if Auto-Precharge  
Start Read; Determine if Auto-Precharge  
No Operation  
7, 8  
7, 8  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
Precharge Terminate Burst; Start the Precharge  
L
H
H
L
BS  
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
4
H
H
H
H
X
BS  
BS  
X
Column  
Write  
Terminate Burst; Start the Write cycle  
Terminate Burst; Start a new Read cycle  
Terminate the Burst  
8, 9  
8, 9  
L
H
L
Column  
Read  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
H
X
X
Continue the Burst  
X
Continue the Burst  
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the Com-  
mand is being applied to.  
2. Both Banks must be idle; otherwise it is an illegal action.  
3. If CKE is active (high), the SDRAM will start the Auto (CBR) Refresh operation. If CKE is inactive (low), then the Self Refresh mode  
is entered.  
4. The Current State only refers to one of the banks. If BS selects this bank, then the action is illegal. If BS selects the bank not being  
referenced by the Current State, then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low), then the Power Down mode is entered. Otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
 
 
 
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Current State Truth Table (Part 2 of 4) (Notes: 1)  
Command  
Current State  
Action  
Notes  
CS RAS CAS WE A11  
A10 - A0  
OP Code  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
Mode Register Set  
ILLEGAL  
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BS Row Address Bank Activate  
4
Write  
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
Terminate Burst; Start a new Write cycle  
Terminate Burst; Start the Read cycle  
Terminate the Burst  
8, 9  
8, 9  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
H
X
L
X
Continue the Burst  
X
Continue the Burst  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
4
4
4
4
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
Read with  
Auto-  
Precharge  
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
ILLEGAL  
H
X
L
X
Continue the Burst  
Continue the Burst  
ILLEGAL  
X
OP Code  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
4
4
4
4
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
Write with  
Auto-  
Precharge  
H
H
H
H
X
BS  
BS  
X
Column  
Write  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
Continue the Burst  
Continue the Burst  
X
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the Com-  
mand is being applied to.  
2. Both Banks must be idle; otherwise it is an illegal action.  
3. If CKE is active (high), the SDRAM will start the Auto (CBR) Refresh operation. If CKE is inactive (low), then the Self Refresh mode  
is entered.  
4. The Current State only refers to one of the banks. If BS selects this bank, then the action is illegal. If BS selects the bank not being  
referenced by the Current State, then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low), then the Power Down mode is entered. Otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Current State Truth Table (Part 3 of 4) (Notes: 1)  
Command  
Current State  
Action  
Notes  
CS RAS CAS WE A11  
A10 - A0  
OP Code  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
Mode Register Set  
ILLEGAL  
X
X
X
Auto or Self Refresh ILLEGAL  
No Operation; Bank(s) idle after tRP  
ILLEGAL  
L
H
H
L
BS  
Precharge  
L
H
L
BS Row Address Bank Activate  
4
4
4
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
ILLEGAL  
Precharging  
L
H
L
Column  
Read  
ILLEGAL  
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
4
4, 10  
4
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
ILLEGAL  
Row Activating  
L
H
L
Column  
Read  
ILLEGAL  
4
No Operation; Row Active after tRCD  
No Operation; Row Active after tRCD  
No Operation; Row Active after tRCD  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
4
4
9
9
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
Write  
Recovering  
H
H
H
H
X
BS  
BS  
X
Column  
Write  
Start Write; Determine if Auto-Precharge  
Start Read; Determine if Auto-Precharge  
No Operation; Row Active after tDPL  
No Operation; Row Active after tDPL  
No Operation; Row Active after tDPL  
L
H
L
Column  
Read  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
H
X
X
X
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the Com-  
mand is being applied to.  
2. Both Banks must be idle; otherwise it is an illegal action.  
3. If CKE is active (high), the SDRAM will start the Auto (CBR) Refresh operation. If CKE is inactive (low), then the Self Refresh mode  
is entered.  
4. The Current State only refers to one of the banks. If BS selects this bank, then the action is illegal. If BS selects the bank not being  
referenced by the Current State, then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low), then the Power Down mode is entered. Otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Current State Truth Table (Part 4 of 4) (Notes: 1)  
Command  
Current State  
Action  
Notes  
CS RAS CAS WE A11  
A10 - A0  
OP Code  
Description  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
Mode Register Set  
ILLEGAL  
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
4
L
H
L
BS Row Address Bank Activate  
4
Write  
Recovering  
with Auto-  
Precharge  
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
4, 9  
4, 9  
L
H
L
Column  
Read  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
H
H
H
H
X
L
BS  
BS  
X
Column  
Write  
ILLEGAL  
Refreshing  
L
H
L
Column  
Read  
ILLEGAL  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
Auto or Self Refresh ILLEGAL  
L
H
H
L
BS  
Precharge  
ILLEGAL  
L
H
L
BS Row Address Bank Activate  
ILLEGAL  
Mode Register  
Accessing  
H
H
H
H
X
BS  
BS  
X
Column  
Write  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
No Operation; Idle after two clock cycles  
No Operation; Idle after two clock cycles  
X
1. CKE is assumed to be active (high) in the previous cycle for all entries. The Current State is the state of the bank that the Com-  
mand is being applied to.  
2. Both Banks must be idle; otherwise it is an illegal action.  
3. If CKE is active (high), the SDRAM will start the Auto (CBR) Refresh operation. If CKE is inactive (low), then the Self Refresh mode  
is entered.  
4. The Current State only refers to one of the banks. If BS selects this bank, then the action is illegal. If BS selects the bank not being  
referenced by the Current State, then the action may be legal depending on the state of that bank.  
5. If CKE is inactive (low), then the Power Down mode is entered. Otherwise there is a No Operation.  
6. The minimum and maximum Active time (tRAS) must be satisfied.  
7. The RAS to CAS Delay (tRCD) must occur before the command is given.  
8. Column address A10 is used to determine if the Auto Precharge function is activated.  
9. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
10. The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Absolute Maximum Ratings  
Symbol  
VDD  
VDDQ  
VIN  
Parameter  
Power Supply Voltage  
Rating  
-1.0 to +4.6  
-1.0 to +4.6  
-1.0 to +4.6  
-1.0 to +4.6  
0 to +70  
-55 to +125  
1.0  
Units  
V
Notes  
1
1
1
1
1
1
1
1
Power Supply Voltage for Output  
Input Voltage  
V
V
VOUT  
TA  
Output Voltage  
V
°C  
°C  
Operating Temperature (ambient)  
Storage Temperature  
Power Dissipation  
TSTG  
PD  
W
IOUT  
Short Circuit Output Current  
50  
mA  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
Recommended DC Operating Conditions (TA= 0 to 70˚C)  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
3.0  
Typ.  
3.3  
3.3  
Max.  
3.6  
VDD  
VDDQ  
VIH  
Supply Voltage  
V
V
V
V
1
1
1
1
Supply Voltage for Output  
Input High Voltage  
3.0  
3.6  
2.0  
VDD + 0.3  
0.8  
VIL  
Input Low Voltage  
-0.3  
1. All voltages referenced to VSS and VSSQ.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Capacitance (T = 25°C, f=1MHz, V = 3.3V ± 0.3V)  
A
DD  
Symbol  
CI1  
Parameter  
Min.  
2.0  
2.0  
2.0  
Typ  
2.7  
2.7  
4.0  
Max.  
4.0  
Units  
pF  
Notes  
Input Capacitance (A0 - A11)  
1
1
1
CI2  
Input Capacitance (RAS, CAS, WE, CS, CLK, CKE, DQM)  
Output Capacitance (DQ0 - DQ15)  
4.0  
pF  
CO  
5.0  
pF  
1. Multiply given planar values by 2 for 2-High stacked device.  
DC Electrical Characteristics (T = 0 to +70˚C, V = 3.3V ± 0.3V)  
A
DD  
Symbol  
Parameter  
Min.  
Max.  
+1  
Units  
Input Leakage Current, any input  
II(L)  
µA  
-1  
-1  
(0.0V VIN 3.6V), All Other Pins Not Under Test = 0V  
Output Leakage Current  
IO(L)  
VOH  
VOL  
µA  
V
+1  
VDDQ  
0.4  
(DOUT is disabled, 0.0V VOUT 3.6V)  
Output Level (TTL)  
2.4  
0.0  
Output “H” Level Voltage (IOUT = -2.0mA)  
Output Level (TTL)  
V
Output “L” Level Voltage (IOUT = +2.0mA)  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Standby and Refresh Currents (T = 0 to +70˚C, V = 3.3V ± 0.3V) (Notes: 1)  
A
DD  
Organization  
Parameter  
Symbol  
Test Condition  
Units  
Notes  
2
x4  
3
x8  
3
x16  
3
ICC1P  
CKE VIL(max), tCK = 15ns  
CKE VIL(max), tCK = Infinity  
mA  
mA  
Precharge Standby Current in  
Power Down Mode  
I
CC1PS  
2
2
2
CKE VIH(min), tCK = 15ns  
CS=High  
2
I
CC1N  
25  
10  
25  
10  
25  
10  
mA  
mA  
Input Change every 30ns  
Precharge Standby Current in  
Non-Power Down Mode  
CKE VIH(min), tCK = Infinity  
ICC1NS  
2
No Input Change  
ICC2  
P
CKE VIL(max), tCK = 15ns  
CKE VIL(max), tCK = Infinity  
3
2
3
2
3
2
mA  
mA  
3, 11  
4, 11  
Active Standby Current in  
Power Down Mode  
ICC2PS  
CKE VIH(min), tCK = 15ns  
CS=High  
5
I
CC2N  
25  
15  
85  
25  
15  
85  
25  
15  
85  
mA  
mA  
mA  
Input Change every 30ns  
Active Standby Current in  
Non-Power Down Mode  
CKE VIH(min), tCK = Infinity  
I
CC2NS  
6, 11  
No Input Change  
CAS Latency = 1  
tRC tRC(min)  
-10  
-80  
-360  
-10  
110  
110  
90  
110  
CAS Latency = 2  
RC tRC(min)  
t
7, 8, 9,  
10  
mA  
ICC3  
Auto (CBR) Refresh Current  
90  
140  
90  
90  
140  
-80  
140  
140  
110  
2
CAS Latency = 3  
-360  
-10  
tRC tRC(min)  
mA  
110  
2
110  
2
-80/-10  
-360  
mA  
mA  
2
ICC4  
CKE 0.2V  
Self Refresh Current  
2
1. For stacked devices: only one deck may be active at a time, except during self refresh.  
2. For stacked devices: multiply the given planar (individual deck) values by 2.  
3. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (ICC2P + ICC1P).  
4. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (ICC2PS + ICC1PS).  
5. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (ICC2N + ICC1N).  
6. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (ICC2NS+ ICC1NS).  
7. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (ICC3 + ICC1N).  
8. The specified values are valid when addresses are changed no more than once during tCK(min).  
9. The specified values are valid when No Operation commands are registered on every rising clock edge during tRC(min).  
10. The specified values are valid when data inputs (DQs) are stable during tRC(min).  
11. Active Standby Current will be higher if Clock Suspend is entered during a burst read cycle (add 1mA per DQ).  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
 
 
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Operating Currents (T = 0 to +70˚C, V = 3.3V ± 0.3V)  
A
DD  
Organization  
X8  
CAS  
Speed  
Sort  
tRC(min)  
Symbol  
Parameter  
Test Condition  
Units Notes  
mA  
Latency  
X4  
95  
X16  
95  
CL=1  
CL=2  
90 ns  
72 ns  
-10  
-80  
95  
130  
130  
105  
105  
155  
160  
125  
75  
135  
90 ns  
-360  
-10  
mA  
t
t
RC = tRC(min)  
CK tCK(min)  
O = 0mA  
Operating Current  
Burst Length = 1  
ICC5  
90 ns  
105  
155  
110  
160  
1, 2, 3  
I
72 ns  
-80  
CL=3  
CL=1  
CL=2  
70 ns  
-360  
-10  
mA  
mA  
90 ns  
125  
75  
130  
80  
120 ns  
84 ns  
-10  
-80  
125  
125  
100  
100  
155  
155  
125  
65  
130  
105 ns  
105 ns  
80 ns  
-360  
-10  
mA  
t
t
RC = tRC(min)  
CK tCK(min)  
O = 0mA  
Operating Current  
Burst Length = 2  
1, 2, 3,  
4
ICC6  
ICC7  
ICC8  
100  
155  
105  
160  
I
-80  
CL=3  
CL=1  
CL=2  
80 ns  
-360  
-10  
mA  
mA  
100 ns  
180 ns  
108 ns  
135 ns  
135 ns  
96 ns  
125  
65  
130  
70  
-10  
-80  
115  
120  
95  
125  
-360  
-10  
mA  
t
t
RC = tRC(min)  
CK tCK(min)  
O = 0mA  
Operating Current  
Burst Length = 4  
1, 2, 3,  
4
90  
95  
100  
160  
I
-80  
150  
155  
150  
125  
60  
CL=3  
CL=1  
CL=2  
100 ns  
120 ns  
300 ns  
156 ns  
195 ns  
195 ns  
128 ns  
140 ns  
160 ns  
-360  
-10  
mA  
mA  
120  
55  
130  
65  
-10  
-80  
105  
110  
90  
120  
-360  
-10  
mA  
t
t
RC = tRC(min)  
CK tCK(min)  
O = 0mA  
Operating Current  
Burst Length = 8  
1, 2, 3,  
4
85  
90  
100  
165  
I
-80  
150  
155  
145  
125  
CL=3  
-360  
-10  
mA  
120  
135  
1. The specified values are obtained with the output open.  
2. The specified values are valid when addresses and DQs are changed no more than once during tCK(min).  
3. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (Operating Current+ ICC1N).  
4. The specified values are obtained when the programmed burst length is executed to completion without interruption by a subse-  
quent burst Read or Write cycle.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Operating Currents (T = 0 to +70˚C, V = 3.3V ± 0.3V)  
A
DD  
Organization  
Units Notes  
CAS  
Speed  
Sort  
tRC(min)  
Symbol  
Parameter  
Test Condition  
Latency  
X4  
40  
X8  
X16  
tRC = ∞  
tCK=30 ns  
CL=1  
CL=2  
-10  
-80  
45  
55  
mA  
tRC = ∞  
tCK=12 ns  
90  
95  
75  
110  
tRC = ∞  
tCK=15 ns  
-360  
-10  
mA  
t
RC = Infinity  
CK tCK(min)  
O = 0mA  
Operating Current  
Burst Length = Full  
Page  
1, 2, 3,  
4
tRC = ∞  
tCK=15 ns  
ICC9  
t
70  
75  
90  
I
tRC = ∞  
tCK=8 ns  
-80  
125  
130  
105  
105  
85  
170  
tRC = ∞  
tCK=10 ns  
CL=3  
CL=1  
CL=2  
-360  
-10  
mA  
mA  
mA  
tRC = ∞  
tCK=10 ns  
100  
85  
135  
90  
tRC = ∞  
tCK=30 ns  
-10  
tRC = ∞  
tCK=12ns  
-80  
165  
165  
130  
130  
220  
175  
175  
175  
Operating Current  
1-N Rule  
tRC = ∞  
tCK=15 ns  
-360  
-10  
t
RC = Infinity  
tRC = ∞  
tCK=15 ns  
(Continuous  
ICC10  
t
CK tCK(min)  
130  
220  
140  
240  
1, 2, 3  
Read/Write cycles  
with new column  
address registered  
each clock cycle)  
IO = 0mA  
tRC = ∞  
tCK=8 ns  
-80  
tRC = ∞  
tCK=10 ns  
CL=3  
-360  
-10  
mA  
tRC = ∞  
tCK=10 ns  
175  
190  
1. The specified values are obtained with the output open.  
2. The specified values are valid when addresses and DQs are changed no more than once during tCK(min).  
3. For stacked devices: this is the active portion only.The total stack current includes the Precharge Standby current of the inactive  
deck (Operating Current+ ICC1N).  
4. The specified values are obtained when the programmed burst length is executed to completion without interruption by a subse-  
quent burst Read or Write cycle.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
AC Characteristics (T = 0 to +70˚C, V = 3.3V ± 0.3V)  
A
DD  
1. An initial pause of 100µs is required after power-up, then a Precharge All Banks command must be given followed by a minimum of  
two Auto (CBR) Refresh cycles before the Mode Register Set operation can begin.  
2. The Transition time is measured between VIH and VIL (or between VIL and VIH).  
3. In addition to meeting the transition rate specification, the clock and CKE must transit between VIH and VIL (or between VIL and VIH)  
in a monotonic manner.  
4. AC timing tests have VIL = 0.4 V and VIH = 2.4 V with the timing referenced to the 1.40V crossover point.  
5. AC measurements assume tT=1.0 ns.  
tT  
VIH  
1.4V  
Clock  
VIL  
Vtt=1.4V  
tSETUP  
50Ω  
tHOLD  
Output  
Z = 50Ω  
o
50pF  
1.4V  
Input  
AC Output Load Circuit  
tOH  
tAC  
tLZ  
1.4V  
Output  
Clock and Clock Enable Parameters  
-80  
-360  
Max.  
100MHz 10 100MHz ns  
-10  
Symbol  
Parameter  
Units Notes  
Min.  
Max.  
Min.  
10  
15  
3
Min. Max.  
tCK3  
tCK2  
tCK1  
tAC3  
tAC2  
tAC1  
tCKH  
tCKL  
tCES  
tCEH  
tCESP  
tT  
Clock Cycle Time,CAS Latency=3  
Clock Cycle Time,CAS Latency=2  
Clock Cycle Time,CAS Latency=1  
Clock Access Time,CAS Latency=3  
Clock Access Time,CAS Latency=2  
Clock Access Time,CAS Latency=1  
Clock High Pulse Width  
8
12  
3
125MHz  
83MHz  
66MHz  
15  
30  
3.5  
3.5  
3
66MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
33MHz  
8
6
5.5  
9
1, 2  
1, 2  
1, 2  
3
7
9
27  
Clock Low Pulse Width  
3
3
3
Clock Enable Set-up Time  
2
2
Clock Enable Hold Time  
1
1
1
CKE Set-up Time (Power down mode)  
Transition Time (Rise and Fall)  
2
2
3
1
30  
1
30  
1
30  
1. Access time is measured at 1.4V. See AC Characteristics: notes 1,2,3,4,5 and load circuit.  
2. Access time is measured assuming a clock rise time of 1 ns. If clock rise time is longer than 1 ns, then (trise/2-0.5)ns should be  
added to the parameter.  
3. Assumes clock rise and fall times are equal to 1 ns. If rise or fall time exceeds 1 ns, then other AC parameters under consider-  
ation should be compensated by an additional [(trise+tfall)/2-1]ns.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Common Parameters  
-80  
-360  
-10  
Symbol  
Parameter  
Units  
Min.  
2
Max.  
Min.  
2
Max.  
Min.  
3
Max.  
tCS  
tCH  
Command Setup Time  
ns  
ns  
Command Hold Time  
1
1
1
tAS  
Address and Bank Select Set-up Time  
Address and Bank Select Hold Time  
RAS to CAS Delay  
2
2
3
ns  
tAH  
1
1
1
ns  
tRCD  
tRC  
tRAS  
tRP  
tRRD  
tCCD  
24  
72  
48  
24  
16  
1
20  
70  
50  
20  
20  
1
30  
90  
60  
30  
20  
1
ns  
Bank Cycle Time  
120K  
120K  
120K  
120K  
120K  
120K  
ns  
Active Command Period  
Precharge Time  
ns  
ns  
Bank to Bank Delay Time  
CAS to CAS Delay Time (Same Bank)  
ns  
CLK  
Refresh Cycle  
-80  
-360  
-10  
Symbol  
Parameter  
Units Notes  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
tREF  
Refresh Period  
Self Refresh Exit Time  
64  
64  
64  
ms  
ns  
1, 2  
3
10ns +  
tRC  
10ns +  
10ns +  
tRC  
tSREX  
tRC  
1. 4096 cycles.  
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to “wake-  
up” the device.  
3. Self Refresh Exit is an asynchronous operation. Self refresh exit is accomplished by starting the clock (CLK) and then asserting  
CKE high. During the exit time (tSREX), no commands may be issued until tRC is satisfied and CKE must remain high. It is recom-  
mended to hold CS high during the self refresh exit time, but NOP commands may be issued with each rising clock edge during this  
period as an alternative. To prevent erroneous exit of self refresh operation, a glitch suppressor circuit is incorporated into the CKE  
receiver. If CKE is asserted high (system noise) for less than 10ns (approximately), then the device will not exit self refresh opera-  
tion.  
Read Cycle  
-80  
-360  
Max.  
-10  
Symbol  
Parameter  
Units Notes  
Min.  
2.5  
2.5  
2.5  
2.5  
Max.  
6
Min.  
3
Min.  
3
Max.  
8
tOH  
tLZ  
Data Out Hold Time  
5.5  
8
ns  
ns  
1
Data Out to Low Impedance Time  
2.5  
2.5  
2.5  
3
tHZ3  
tHZ2  
tHZ1  
tDQZ  
Data Out to High Impedance Time,CL= 3  
Data Out to High Impedance Time,CL= 2  
Data Out to High Impedance Time,CL= 1  
DQM Data Out Disable Latency  
3
ns  
2
2
2
7
3
8
ns  
3
15  
ns  
2
2
2
CLK  
1. -360: 50pf load.  
2. Referenced to the time at which the output achieves the open circuit condition, not to output voltage levels.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
 
 
 
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Write Cycle  
-80  
-360  
-10  
Symbol  
Parameter  
Units Notes  
Min.  
2
Max.  
Min.  
2
Max.  
Min.  
3
Max.  
tDS  
tDH  
tDPL  
tDQW  
Data In Set-up Time  
Data In Hold Time  
ns  
ns  
1
1
1
Data Input to Precharge  
DQM Write Mask Latency  
8
15  
0
10  
0
ns  
0
CLK  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Clock Frequency and Latency  
Symbol  
fCK  
tCK  
Parameter  
-80  
-360  
-10  
66  
15  
2
Units  
MHz  
ns  
Clock Frequency  
Clock Cycle Time  
CAS Latency  
125  
8
83  
12  
2
100  
10  
3
66  
15  
2
100  
10  
3
33  
30  
1
tAA  
3
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
tRCD  
tRL  
RAS to CAS Delay  
3
2
2
2
3
2
1
RAS Latency  
6
4
5
4
6
4
2
tRC  
Bank Cycle Time  
9
6
7
6
9
6
3
tRAS  
tRP  
Minimum Bank Active Time  
Precharge Time  
6
4
5
4
6
4
2
3
2
2
2
3
2
1
tDPL  
tDAL  
tRRD  
tCCD  
tWL  
Data In to Precharge  
Data In to Active/Refresh  
Bank to Bank Delay Time  
CAS to CAS Delay Time  
Write Latency  
1
1
2
1
1
1
1
4
3
4
3
4
3
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
tDQW  
tDQZ  
tCSL  
DQM Write Mask Latency  
DQM Data Disable Latency  
Clock Suspend Latency  
0
0
0
0
0
0
0
2
2
2
2
2
2
2
1
1
1
1
1
1
1
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Timing Diagrams  
Page  
AC Parameters for Write Timing...............................................................................................................55  
AC Parameters for Read Timing...............................................................................................................56  
Mode Register Set ....................................................................................................................................57  
Power on Sequence and Auto Refresh (CBR)..........................................................................................58  
Clock Suspension During a Burst Read (Using CKE)  
CAS Latency = 1...............................................................................................................59  
CAS Latency = 2...............................................................................................................60  
CAS Latency = 3, t  
= 3................................................................................................61  
RCD  
Clock Suspension During a Burst Write (Using CKE)  
CAS Latency = 1...............................................................................................................62  
CAS Latency = 2...............................................................................................................63  
CAS Latency = 3, t = 3................................................................................................64  
RCD  
Power Down Mode and Clock Suspend ...................................................................................................65  
Auto Refresh (CBR)..................................................................................................................................66  
Self Refresh (Entry and Exit) ....................................................................................................................67  
Random Column Read (Page within same Bank)  
CAS Latency = 1...............................................................................................................68  
CAS Latency = 2...............................................................................................................69  
CAS Latency = 3, t  
CAS Latency = 3, t  
, t = 3.........................................................................................70  
RCD RP  
, t = 2.........................................................................................71  
RCD RP  
Random Column Write (Page within same Bank)  
CAS Latency = 1...............................................................................................................72  
CAS Latency = 2...............................................................................................................73  
CAS Latency = 3, t  
CAS Latency = 3, t  
, t = 3, t  
= 1 .........................................................................74  
= 2 ..........................................................................75  
RCD RP  
DPL  
, t = 2, t  
RCD RP  
DPL  
Random Row Read (Interleaving Banks)  
CAS Latency = 1...............................................................................................................76  
CAS Latency = 2...............................................................................................................77  
CAS Latency = 3, t  
, t = 3.........................................................................................78  
RCD RP  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
 
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Timing Diagrams  
Page  
Random Row Write (Interleaving Banks)  
CAS Latency = 1............................................................................................................... 79  
CAS Latency = 2............................................................................................................... 80  
CAS Latency = 3, t  
, t = 3 ........................................................................................ 81  
RCD RP  
Read And Write Cycle  
CAS Latency = 1............................................................................................................... 82  
CAS Latency = 2............................................................................................................... 83  
CAS Latency = 3, t  
, t = 3 ........................................................................................ 84  
RCD RP  
Interleaved Column Read Cycle  
CAS Latency = 1............................................................................................................... 85  
CAS Latency = 2............................................................................................................... 86  
CAS Latency = 3, t  
, t = 3 ........................................................................................ 87  
RCD RP  
Interleaved Column Write Cycle  
CAS Latency = 1............................................................................................................... 88  
CAS Latency = 2............................................................................................................... 89  
CAS Latency = 3, t  
CAS Latency = 3, t  
, t = 3, t  
= 1.......................................................................... 90  
= 2.......................................................................... 91  
RCD RP  
DPL  
DPL  
, t = 2, t  
RCD RP  
Auto-Precharge after a Read Burst  
CAS Latency = 1............................................................................................................... 92  
CAS Latency = 2............................................................................................................... 93  
CAS Latency = 3, t  
, t = 3 ........................................................................................ 94  
RCD RP  
Auto-Precharge after a Write Burst  
CAS Latency = 1............................................................................................................... 95  
CAS Latency = 2............................................................................................................... 96  
CAS Latency = 3, t  
, t = 3 ........................................................................................ 97  
RCD RP  
Full Page Read Cycle  
CAS Latency = 1............................................................................................................... 98  
CAS Latency = 2............................................................................................................... 99  
CAS Latency = 3, t  
, t = 3 ........................................................................................ 100  
RCD RP  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Timing Diagrams  
Page  
Full Page Write Cycle  
CAS Latency = 1...............................................................................................................101  
CAS Latency = 2...............................................................................................................102  
CAS Latency = 3, t  
, t = 3.........................................................................................103  
RCD RP  
Byte Write Operation.................................................................................................................................104  
Burst Read and Single Write Operation....................................................................................................105  
Full Page Burst Read and Single Write Operation....................................................................................106  
Random Row Read (Interleaving Banks)..................................................................................................107  
Full Page Random Column Read .............................................................................................................108  
Full Page Random Column Write .............................................................................................................109  
Precharge Termination of a Burst  
CAS Latency = 1...............................................................................................................110  
CAS Latency = 2...............................................................................................................111  
CAS Latency = 3, t  
, t = 3.........................................................................................112  
RCD RP  
CS Function (Only CS signal needs to be asserted at minimum rate)......................................................113  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Burst Length = 4, CAS Latency = 2  
AC Parameters for Write Timing  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
tCKH  
tCKL  
tCS  
CKE  
CS  
Begin Auto-Precharge  
Bank A  
Begin Auto-Precharge  
Bank B  
tCES  
tCEH  
tCH  
RAS  
CAS  
WE  
A11(BS)  
tAH  
RAx  
RBx  
RBx  
RAy  
RAz  
RAz  
RBy  
RBy  
A10  
tAS  
RAx  
CAx  
CBx  
RAy  
CAy  
A0 - A9  
DQM  
tRCD  
tDAL  
tDS  
tDPL  
tRC  
tRP  
tRRD  
tDH  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
DQ  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
Activate  
Write with  
Activate  
Write with  
Activate  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Command Auto-Precharge Command Auto-Precharge Command  
Bank A  
Command  
Bank A  
Bank B  
Command  
Bank B  
Bank A  
 
Burst Length = 2, CAS Latency = 2  
AC Parameters for Read Timing  
T0  
T1  
T7  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T11  
T13  
CLK  
tCK2  
tCS  
tCKH tCKL  
Begin Auto-  
Precharge  
Bank B  
CKE  
tCEH  
tCES  
tCH  
CS  
RAS  
CAS  
WE  
A11(BS)  
tAH  
RAx  
RBx  
RAy  
RAy  
A10  
tAS  
RAx  
CAx  
RBx  
CBx  
A0 - A9  
DQM  
tRRD  
tRAS  
tRC  
tAC2  
tLZ  
tOH  
tRP  
tHZ  
tRCD  
tHZ  
Hi-Z  
Ax0  
Ax1  
Bx0  
Bx1  
DQ  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Read with  
Precharge  
Command  
Bank A  
Auto-Precharge  
Command  
Bank B  
Mode Register Set  
CAS Latency = 2  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
2 Clock min.  
RAS  
CAS  
WE  
A11(BS)  
A10  
Address Key  
A0 - A9  
DQM  
DQ  
tRP  
Hi-Z  
Mode Register  
Any  
Precharge  
Command  
All Banks  
Set Command Command  
Power on Sequence and Auto Refresh (CBR)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High level  
is required  
CKE  
CS  
2 Clock min.  
Minimum of 2 Refresh Cycles are required  
RAS  
CAS  
WE  
A11(BS)  
A10  
Address Key  
A0 - A9  
DQM  
DQ  
tRP  
tRC  
Hi-Z  
Mode Register  
Set Command  
Precharge  
Command  
All Banks  
2nd Auto Refresh  
Command  
Any  
Command  
1st Auto Refresh  
Command  
Inputs must be  
stable for 100µs  
Burst Length = 4, CAS Latency = 1  
Clock Suspension During Burst Read (Using CKE) (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
A0 - A9  
DQM  
DQ  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Read  
Command  
Bank A  
Burst Length = 4, CAS Latency = 2  
Clock Suspension During Burst Read (Using CKE) (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
A0 - A9  
DQM  
DQ  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Burst Length = 4, CAS Latency = 3, tRCD = 3  
Clock Suspension During Burst Read (Using CKE) (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
A0 - A9  
DQM  
DQ  
tHZ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock Suspend  
3 Cycles  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Read command may be issued 1 clock sooner for -360 (tRCD = 2 clocks)  
Burst Length = 4, CAS Latency = 1  
Clock Suspension During Burst Write (Using CKE) (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Clock Suspend  
3 Cycles  
Write  
Command  
Bank A  
Burst Length = 4, CAS Latency = 2  
Clock Suspension During Burst Write (Using CKE) (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAx  
A10  
CAx  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Clock Suspend  
3 Cycles  
Write  
Command  
Bank A  
Burst Length = 4, CAS Latency = 3, tRCD = 3  
Clock Suspension During Burst Write (Using CKE) (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAx  
A10  
CAx  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock Suspend  
1 Cycle  
Clock Suspend  
2 Cycles  
Clock Suspend  
3 Cycles  
Write  
Command  
Bank A  
Write command may be issued 1 clock sooner for -360 (tRCD = 2 clocks)  
Burst Length = 4, CAS Latency = 2  
Power Down Mode and Clock Suspend  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
tCESP  
tCESP  
CKE  
CS  
VALID  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
A0 - A9  
DQM  
DQ  
tHZ  
Hi-Z  
Ax0 Ax1  
Ax2  
Ax3  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
ACTIVE  
STANDBY  
Power Down  
Mode Exit  
Activate  
Command  
Bank A  
Clock Suspension  
Start  
Clock Suspension  
End  
Power Down  
Mode Entry  
PRECHARGE  
STANDBY  
Any  
Command  
Clock Suspension  
Mode Entry  
Clock Suspension  
Mode Exit  
Burst Length = 4, CAS Latency = 2  
Auto Refresh (CBR)  
T0  
T1  
T7  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAx  
A10  
CAx  
A0 - A9  
tRP  
tRC  
tRC  
DQM  
DQ  
Hi-Z  
Ax0 Ax1 Ax2 Ax3  
Auto Refresh  
Command  
Auto Refresh  
Command  
Read  
Command  
Bank A  
Precharge  
Command  
All Banks  
Activate  
Command  
Bank A  
 
Self Refresh (Entry and Exit) ***Note: The CLK signal must be reestablished prior to CKE returning high.  
T0  
T1  
T2  
T3  
T4  
Tm  
Tm+1  
Tm+3  
Tm+8  
Tm+12  
Tm+9 Tm+10 Tm+11 Tm+13 Tm+14 Tm+15  
Tm+2  
Tm+4 Tm+5 Tm+6 Tm+7  
CLK  
CKE  
CS  
tSREX  
RAS  
CAS  
WE  
A11(BS)  
A10  
A0 - A9  
DQM  
DQ  
tRC  
Hi-Z  
Self Refresh  
Entry  
Begin Self Refresh Exit  
All Banks  
must be idle  
Any Command  
Self Refresh  
Exit  
Self Refresh  
Exit Command  
 
Burst Length = 4, CAS Latency = 1  
Random Column Read (Page within same Bank) (1 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAw  
RAz  
RAz  
A10  
RAw  
CAw  
CAx  
CAy  
CAz  
A0 - A9  
DQM  
DQ  
Hi-Z  
Aw0 Aw1 Aw2 Aw3 Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
Az0  
Az1  
Az2  
Az3  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Burst Length = 4, CAS Latency = 2  
Random Column Read (Page within same Bank) (2 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAw  
RAz  
RAz  
A10  
CAw  
CAx  
CAy  
CAz  
RAw  
A0 - A9  
DQM  
DQ  
Hi-Z  
Aw0 Aw1 Aw2 Aw3 Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
Az0  
Az1  
Az2  
Az3  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Burst Length = 4, CAS Latency = 3, tRCD, tRP = 3  
Random Column Read (Page within same Bank) (3 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAw  
RAz  
RAz  
A10  
CAw  
CAx  
CAy  
CAz  
RAw  
A0 - A9  
DQM  
DQ  
Hi-Z  
Aw0 Aw1 Aw2 Aw3 Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
 
Burst Length = 4, CAS Latency = 3, tRCD, tRP = 2  
Random Column Read (Page within same Bank) (4 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAw  
RAz  
RAz  
A10  
CAw  
CAx  
CAy  
CAz  
RAw  
A0 - A9  
DQM  
DQ  
Hi-Z  
Aw0 Aw1 Aw2 Aw3 Ax0  
Ax1  
Ay0  
Ay1  
Ay2  
Ay3  
Az0  
Az1  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
 
Burst Length = 4, CAS Latency = 1  
Random Column Write (Page within same Bank) (1 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBw  
RBz  
RBz  
A10  
RBw  
CBw  
CBx  
CBy  
CBz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1 DBz2 DBz3  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Burst Length = 4, CAS Latency = 2  
Random Column Write (Page within same Bank) (2 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBw  
RBz
A10  
RBw  
CBw  
CBx  
CBy  
RBz
CBz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1 DBz2 DBz3  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Burst Length = 4, CAS Latency = 3, tRCD, tRP= 3, tDPL = 1  
Random Column Write (Page within same Bank) (3 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBw  
RBz  
A10  
RBw  
CBw  
CBx  
CBy  
RBz  
CBz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1 DBz2  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
 
Random Column Write (Page within same Bank) (4 of 4)  
Burst Length = 4, CAS Latency = 3, tRCD , tRP = 2, tDPL = 2  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBw  
RBz  
A10  
RBw  
CBw  
CBx  
CBy  
RBz  
CBz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1 DBz2 DBz3  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
 
Burst Length = 8, CAS Latency = 1  
Random Row Read (Interleaving Banks) (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBx  
RAx  
RAx  
RBy  
A10  
RBx  
CBx  
CAx  
RBy  
CBy  
A0 - A9  
DQM  
DQ  
tRCD tAC1  
tRP  
Hi-Z  
Bx0  
Bx1  
Bx2  
Bx3  
Bx4  
Bx5  
Bx6  
Bx7  
Ax0  
Ax1  
Ax2  
Ax3  
Ax4  
Ax5  
Ax6  
Ax7  
By0  
By1  
By2  
Read  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Command  
Bank A  
Activate  
Read  
Read  
Command  
Bank B  
Command  
Bank B  
Command  
Bank A  
Burst Length = 8, CAS Latency = 2  
Random Row Read (Interleaving Banks) (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAx  
RBx  
RBy  
RBy  
A10  
CAx  
CBx  
CBy  
RBx  
A0 - A9  
DQM  
DQ  
tRCD  
tRP  
tAC2  
Hi-Z  
Bx0  
Bx1  
Bx2  
Bx3  
Bx4  
Bx5  
Bx6  
Bx7  
Ax0  
Ax1  
Ax2  
Ax3  
Ax4  
Ax5  
Ax6  
Ax7  
By0  
By1  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Burst Length = 8, CAS Latency = 3, tRCD , tRP = 3  
Random Row Read (Interleaving Banks) (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAx  
RBx  
RBy  
RBy  
A10  
CBx  
CAx  
CBy  
RBx  
A0 - A9  
DQM  
DQ  
tAC3  
tRCD  
tRP  
Hi-Z  
Bx0  
Bx1  
Bx2  
Bx3  
Bx4  
Bx5  
Bx6  
Bx7  
Ax0  
Ax1  
Ax2  
Ax3  
Ax4  
Ax5  
Ax6  
Ax7  
By0  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Burst Length = 8, CAS Latency = 1  
Random Row Write (Interleaving Banks) (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RAy  
RAy  
A10  
RAx  
CAx  
CBx  
CAy  
A0 - A9  
DQM  
DQ  
tRCD  
tRP  
tDPL  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7  
DAy0 DAy1 DAy2 DAy3  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank B  
Write  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Burst Length = 8, CAS Latency = 2  
Random Row Write (Interleaving Banks) (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RAy  
RAy  
A10  
RAx  
CAX
CBx  
CAy  
A0 - A9  
DQM  
DQ  
tRCD  
tDPL  
tDPL  
tRP  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 DAy4  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank B  
Burst Length = 8, CAS Latency = 3, tRCD , tRP = 3  
Random Row Write (Interleaving Banks) (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RAy  
RAy  
A10  
RAx  
CAX  
CAy  
CBx  
A0 - A9  
DQM  
DQ  
tRCD  
tDPL  
tRP  
tDPL  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Burst Length = 4, CAS Latency = 1  
Read and Write Cycle (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
CAy  
CAz  
RAx  
CAx  
A0 - A9  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1 Ax2  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az1  
Az3  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
The Read Data  
is Masked with a  
Two Clock  
The Write Data  
is Masked with a  
Zero Clock  
Activate  
Command  
Bank A  
Latency  
Latency  
Read  
Command  
Bank A  
Burst Length = 4, CAS Latency = 2  
Read and Write Cycle (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
CAy  
CAz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAy0 DAy1  
DAy3  
Az0  
Az1  
Az3  
Ax0  
Ax1 Ax2  
Ax3  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
The Read Data  
is Masked with a  
Two Clock  
The Write Data  
is Masked with a  
Zero Clock  
Activate  
Command  
Bank A  
Latency  
Latency  
Read and Write Cycle (3 of 3)  
Burst Length = 4, CAS Latency = 3, tRCD, tRP = 3  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
RAx  
CAx  
CAy  
CAz  
A0 - A9  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1 Ax2  
Ax3  
DAy0 DAy1  
DAy3  
Az0  
Az1  
Az3  
Read  
Command  
Bank A  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
The Read Data  
is Masked with a  
Two Clock  
The Write Data  
is Masked with a  
Zero Clock  
Activate  
Command  
Bank A  
Latency  
Latency  
Burst Length = 4, CAS Latency = 1  
Interleaved Column Read Cycle (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBw  
RBw  
A10  
RAx  
CAx  
CBw  
CBx  
CBy  
CAy  
CBz  
A0 - A9  
DQM  
DQ  
tRCD tAC1  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bw0 Bw1 Bx0  
Bx1  
By0  
By1  
Ay0  
Ay1  
Bz0  
Bz1  
Bz2  
Bz3  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Burst Length = 4, CAS Latency = 2  
Interleaved Column Read Cycle (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBw  
RBw  
A10  
CBw  
CBx  
CBy  
CBz  
RAx  
CAx  
CAy  
A0 - A9  
DQM  
DQ  
tRCD  
tAC2  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bw0 Bw1 Bx0  
Bx1  
By0  
By1  
Ay0  
Ay1  
Bz0  
Bz1  
Bz2  
Bz3  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank A  
Burst Length = 4, CAS Latency = 3, tRCD, tRP = 3  
Interleaved Column Read Cycle (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
A10  
RAx  
CAx  
CBx  
CBy  
CBz  
CAy  
A0 - A9  
DQM  
DQ  
tRCD  
tAC3  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
By0  
By1  
Bz0  
Bz1  
Ay0  
Ay1  
Ay2  
Ay3  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Precharge  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
 
Burst Length = 4, CAS Latency = 1  
Interleaved Column Write Cycle (1 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBw  
RBw  
A10  
RAx  
CAx  
CBw  
CBx  
CBy  
CAy  
CBz  
A0 - A9  
DQM  
DQ  
tRP  
tDPL  
tRCD  
tRRD  
tRP  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1  
DBz0 DBz1 DBz2 DBz3  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Burst Length = 4, CAS Latency = 2  
Interleaved Column Write Cycle (2 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBw  
RBw  
A10  
RAx  
CAx  
CBw  
CBx  
CBy  
CAy  
CBz  
A0 - A9  
DQM  
DQ  
tRP  
tDPL  
tRP  
tRCD  
tRRD  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1 DBz0 DBz1 DBz2 DBz3  
Write  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Interleaved Column Write Cycle (3 of 4)  
Burst Length = 4, CAS Latency = 3, tRCD , tRP = 3, tDPL = 1  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBw  
RBw  
A10  
RAx  
CAx  
CBw  
CBx  
CBy  
CAy  
CBz  
A0 - A9  
DQM  
DQ  
tRP  
tRCD  
tDPL  
tRRD  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1 DBz0 DBz1 DBz2 DBz3  
Write  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Burst Length = 4, CAS Latency = 3, tRCD , tRP = 2, tDPL = 2  
Interleaved Column Write Cycle (4 of 4)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBw  
RBw  
A10  
RAx  
CAx  
CBw  
CBx  
CBy  
CAy  
CBz  
A0 - A9  
DQM  
DQ  
tDPL  
tRP  
tRCD  
tRRD  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 DBy1 DAy0 DAy1 DBz0 DBz1 DBz2 DBz3  
Write  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
 
Burst Length = 4, CAS Latency = 1  
Auto-Precharge after Read Burst (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
High  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
Start Auto-Precharge  
Bank B  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RBz  
RBz  
A10  
RAx  
CAx  
CBx  
CAy  
RBy  
CBy  
CBz  
A0 - A9  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
By0  
By1  
By2  
By3  
Bz0  
Bz1  
Bz2  
Bz3  
Activate  
Activate  
Activate  
Command  
Bank B  
Read with  
Activate  
Command  
Bank A  
Command  
Bank B  
Command  
Bank B  
Auto-Precharge  
Command  
Bank B  
Read with  
Read with  
Auto-Precharge  
Command  
Read with  
Auto-Precharge  
Command  
Bank B  
Read  
Command  
Bank A  
Auto-Precharge  
Command  
Bank B  
Bank A  
Burst Length = 4, CAS Latency = 2  
Auto-Precharge after Read Burst (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RAz  
A10  
CAx  
CBx  
CAy  
CBy  
CAz  
RAx  
RBy  
RAz  
A0 - A9  
DQM  
DQ  
Hi-Z  
Az0  
Az1  
Az2  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
By0  
By1  
By2  
By3  
Read with  
Read with  
Read with  
Read with  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Auto-Precharge  
Command  
Bank B  
Auto-Precharge  
Command  
Bank A  
Auto-Precharge  
Command  
Bank B  
Auto-Precharge  
Command  
Bank A  
Burst Length = 4, CAS Latency = 3, tRCD , tRP = 3  
Auto-Precharge after Read Burst (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
Start Auto-Precharge  
Bank B  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBx  
RBx  
RBy  
RAx  
A10  
CAx  
CBx  
CAy  
RBy  
CBy  
RAx  
A0 - A9  
DQM  
DQ  
Hi-Z  
Ax0  
Ax1  
Ax2  
Ax3  
Bx0  
Bx1  
Bx2  
Bx3  
Ay0  
Ay1  
Ay2  
Ay3  
By0  
By1  
By2  
By3  
Activate  
Activate  
Command  
Bank B  
Read with  
Read with  
Activate  
Command  
Bank A  
Command  
Bank B  
Auto-Precharge  
Command  
Bank B  
Auto-Precharge  
Command  
Bank B  
Read with  
Auto-Precharge  
Command  
Read  
Command  
Bank A  
Bank A  
Burst Length = 4, CAS Latency = 1  
Auto-Precharge after Write Burst (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
Start Auto-  
Precharge  
Bank A  
High  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
Start Auto-Precharge  
Bank B  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RAz  
A10  
RAx  
CAx  
CBx  
CAy  
RBy  
CBy  
RAz  
CAz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBx0 DBx1 DBx2 DBx3 DAy0 DAy1 DAy2 DAy3 DBy0 DBy1 DBy2 DBy3  
DAz0 DAz1 DAz2 DAz3  
Activate  
Activate  
Command  
Bank A  
Write with  
Auto-Precharge  
Command  
Write with  
Auto-Precharge  
Command  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Command  
Bank B  
Write with  
Write with  
Auto-Precharge  
Command  
Bank B  
Bank B  
Auto-Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Bank A  
 
Burst Length = 4, CAS Latency = 2  
Auto-Precharge after Write Burst (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
Start Auto  
Precharge  
Bank A  
High  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
Start Auto-Precharge  
Bank B  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RBx  
RBx  
RBy  
RAx  
RAz  
A10  
CAx  
CBx  
CAy  
RBy  
CBy  
CAz  
RAx  
RAz  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBx0 DBx1 DBx2 DBx3 DAy0 DAy1 DAy2 DAy3 DBy0 DBy1 DBy2 DBy3 DAz0 DAz1 DAz2 DAz3  
Write with  
Auto-Precharge  
Command  
Write with  
Auto-Precharge  
Command  
Write with  
Auto-Precharge  
Command  
Write with  
Auto-Precharge  
Command  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Bank B  
Bank A  
Bank B  
Bank A  
 
Burst Length = 4, CAS Latency = 3, tRCD , tRP = 3  
Auto-Precharge after Write Burst (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
Start Auto-Precharge  
Bank B  
Start Auto-Precharge  
Bank A  
Start Auto-  
CKE  
CS  
Precharge  
Bank B  
RAS  
CAS  
WE  
A11(BS)  
RBx  
RBx  
RBy  
RBy  
RAx  
A10  
CAx  
CBx  
CAy  
CBy  
RAx  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DBx0 DBx1 DBx2 DBx3 DAy0 DAy1 DAy2 DAy3  
DBy0 DBy1 DBy2 DBy3  
Activate  
Command  
Bank B  
Write with  
Auto-Precharge  
Command  
Write with  
Auto-Precharge  
Command  
Write with  
Auto-Precharge  
Command  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Bank B  
Bank A  
Bank B  
Write  
Command  
Bank A  
Burst Length = Full Page, CAS Latency = 1  
Full Page Read Cycle (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBy  
RBy  
A10  
RAx  
CAx  
RBx  
CBx  
A0 - A9  
DQM  
DQ  
tRP  
tRRD  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Ax Ax+1  
Bx  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5 Bx+6 Bx+7  
Page Length:  
Precharge  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank B  
2Mb x 4I/O x 2 Banks = 1024  
1Mb x 8I/O x 2 Banks = 512  
512kb x 16I/O x 2 Banks = 256  
Activate  
Command  
Bank A  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
Activate  
Command  
Bank B  
Read  
Command  
Bank A  
Burst Stop  
Command  
 
Burst Length = Full Page, CAS Latency = 2  
Full Page Read Cycle (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RBy  
A10  
RAx  
CAx  
CBx  
A0 - A9  
DQM  
DQ  
tRP  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Ax  
Ax+1  
Bx  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5 Bx+6  
Read  
Full Page burst operation does not  
Command  
Bank B  
Precharge  
Command  
Bank B  
Read  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Burst Stop  
Command  
Burst Length = Full Page, CAS Latency = 3, tRCD, tRP = 3  
Full Page Read Cycle (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RBy  
A10  
RAx  
CAx  
CBx  
A0 - A9  
DQM  
DQ  
tRP  
Hi-Z  
Ax  
Ax+1 Ax+2 Ax-2 Ax-1  
Ax  
Ax+1  
Bx  
Bx+1 Bx+2 Bx+3 Bx+4 Bx+5  
Full Page burst operation does not  
terminate when the length is  
satisfied; the burst counter  
increments and continues  
bursting beginning with  
Read  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
the starting address.  
Burst Stop  
Command  
Burst Length = Full Page, CAS Latency = 1  
Full Page Write Cycle (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBy  
RBy  
A10  
RAx  
CAx  
RBx  
CBx  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx DAx+1 DAx+2 DAx+DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6 DBx+7  
Page Length:  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
2Mb x 4I/O x 2 Banks = 1024  
1Mb x 8I/O x 2 Banks = 512  
512kb x 16I/O x 2 Banks = 256  
Data is ignored.  
Activate  
Command  
Bank A  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
Activate  
Command  
Bank B  
Write  
Command  
Bank A  
Burst Stop  
Command  
 
Burst Length = Full Page, CAS Latency = 2  
Full Page Write Cycle (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RBy  
A10  
RAx  
CAx  
CBx  
A0 - A9  
DQM  
DQ  
Hi-Z  
DAx DAx+1 DAx+2 DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Data is ignored.  
Activate  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
Burst Stop  
Command  
Burst Length = Full Page, CAS Latency = 3, tRCD, tRP = 3  
Full Page Write Cycle (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBy  
RBy  
A10  
RAx  
CAx  
CBx  
A0 - A9  
DQM  
DQ  
Data is ignored.  
Hi-Z  
DAx DAx+1 DAx+2 DAx+DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5  
Activate  
Command  
Bank B  
Write  
Precharge  
Command  
Bank B  
Command Full Page burst operation does not  
Bank B terminate when the length is  
satisfied; the burst counter  
increments and continues  
bursting beginning with  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Burst Stop  
Command  
the starting address.  
Burst Length = 4, CAS Latency = 2  
Byte Write Operation  
T0  
T1  
T7  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
A10  
CAx  
CAy  
CAz  
RAx  
A0 - A9  
LDQM  
UDQM  
Hi-Z  
Hi-Z  
DQ0 - DQ7  
DQ8 - DQ15  
Ax0  
Ax1  
Ax2  
DAy1 DAy2  
Az1  
Az2  
Ax1  
Ax2  
Ax3  
DAy0 DAy1  
Write  
DAy3  
Ax0 Az1  
Az2  
Az3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Lower Byte  
is masked  
Read  
Lower Byte  
is masked  
Lower Byte  
is masked  
Upper Byte  
is masked  
Command  
Bank A  
Upper Byte  
is masked  
Command  
Bank A  
Burst Length = 4, CAS Latency = 2  
Burst Read and Single Write Operation  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
A10  
A0 - A9  
LDQM  
UDQM  
RAv  
CAv  
CAw  
CAx  
CAy  
CAz  
RAv  
Hi-Z  
Hi-Z  
DQ0 - DQ7  
DQ8 - DQ15  
Av0  
Av1  
Av2  
Av3  
DAw0  
Ay0  
Ay1  
Ay3  
Az0  
Az0  
DAx0  
Av0  
Av1  
Av2  
Av3  
DAw0  
Ay0  
Ay2  
Ay3  
Lower Byte  
is masked  
Lower Byte  
is masked  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Single Write  
Command  
Bank A  
Read  
Command  
Bank A  
Single Write  
Command  
Bank A  
Single Write  
Command  
Bank A  
Upper Byte  
is masked  
Burst Length = Full Page, CAS Latency = 3, tRCD, tRP = 3  
Full Page Burst Read and Single Write Operation  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
A10  
A0 - A9  
LDQM  
UDQM  
RAv  
CAv  
CAw  
CAx  
CAy  
RAv  
Hi-Z  
Hi-Z  
DQ0 - DQ7  
DQ8 - DQ15  
Av0  
Av1  
Av2  
Av3  
DAw0  
DAw0  
DAx0  
DAx0  
Ay0  
Ay1  
Ay2  
Ay3  
Av0  
Av1  
Av2  
Av3  
Ay0  
Ay1  
Ay2  
Ay3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Burst Stop  
Command  
Single Write  
Command  
Bank A  
Read  
Command  
Bank A  
Burst Stop  
Command  
Single Write  
Command  
Bank A  
Burst Length = 2, CAS Latency = 1  
Random Row Read (Interleaving Banks)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
High  
CKE  
CS  
Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto- Begin Auto-  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Precharge  
Bank B  
RAS  
CAS  
WE  
A11(BS)  
RBu  
RBu  
RAu  
RAu  
RBv  
RBv  
RAv  
RAv  
RBw  
RBw  
RAw  
RAw  
RBx  
RBx  
RAx  
RAx  
RBy  
RBy  
RAy  
RAy  
RBz  
RBz  
RAz  
A10  
CBu  
CAu  
CBv  
CAv  
CBw  
CAw  
CBx  
CAx  
CBy  
CAy  
CBz  
RAz  
A0 - A9  
DQM  
DQ  
tRP  
tRP  
tRP  
tRP  
tRP  
tRP  
tRP  
tRP  
tRP  
tRP  
Hi-Z  
Bu0  
Bu1  
Au0  
Au1  
Bv0  
Bv1  
Av0  
Av1  
Bw0 Bw1 Aw0 Aw1 Bx0  
Bx1  
Ax0  
Ax1  
By0  
By1  
Ay0  
Ay1  
Bz0  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Bank B  
Bank A  
Bank B  
Bank A  
Bank B  
Bank A  
Bank B  
Bank A  
Bank B  
Bank A  
Bank B  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
with Auto-  
Precharge  
Burst Length = Full Page, CAS Latency = 2  
Full Page Random Column Read  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBw  
A10  
RAx  
CAx  
CBx  
CAy  
CBy  
CAz  
CBz  
RBw  
A0 - A9  
DQM  
DQ  
tRP  
tRRD  
tRCD  
Hi-Z  
Ax0  
Bx0  
Ay0  
Ay1  
By0  
By1  
Az0  
Az1  
Az2  
Bz0  
Bz1  
Bz2  
Precharge  
Command Bank B  
(Precharge Termination)  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank B  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Activate  
Command  
Bank B  
Burst Length = Full Page, CAS Latency = 2  
Full Page Random Column Write  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RBx  
RBx  
RBw  
A10  
RAx  
CAx  
CBx  
CAy  
CBy  
CAz  
CBz  
RBw  
A0 - A9  
DQM  
DQ  
tDPL  
tRP  
tRRD  
tRCD  
Hi-Z  
DAx0 DBx0 DAy0 DAy1 DBy0 DBy1 DAz0 DAz1 DAz2 DBz0 DBz1 DBz2  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank A  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command Bank B  
(Precharge Termination)  
Write  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Write Data  
is masked  
Burst Length = Full Page, CAS Latency = 1  
Precharge Termination of a Burst (1 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK1  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAy  
RAy  
RAz  
A10  
RAx  
CAx  
CAy  
RAz  
CAz  
A0 - A9  
DQM  
DQ  
tRP  
tRP  
Precharge  
Termination of  
a Read Burst.  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4  
Ay0  
Ay1  
Ay2  
DAz0 DAz1 DAz2 DAz3 DAz4 DAz5 DAz6 DAz7  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge Termination  
Write  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
of a Write Burst.  
Command  
Bank A  
Write data is masked.  
 
Burst Length = 8 or Full Page, CAS Latency = 2  
Precharge Termination of a Burst (2 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAy  
RAy  
RAz  
RAz  
A10  
RAx  
CAx  
CAy  
CAz  
A0 - A9  
DQM  
DQ  
tRP  
tRP  
tRP  
Hi-Z  
DAx0 DAx1 DAx2 DAx3  
Ay0  
Ay1  
Ay2  
Az0  
Az1  
Az2  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge Termination  
of a Write Burst. Write  
data is masked.  
Precharge Termination  
of a Read Burst.  
Burst Length = 4,8 or Full Page, CAS Latency = 3, tRCD , tRP = 3  
Precharge Termination of a Burst (3 of 3)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
RAx  
RAy  
RAy  
RAz  
RAz  
A10  
RAx  
CAx  
CAy  
A0 - A9  
DQM  
DQ  
tRP  
tRP  
Hi-Z  
DAx0 DAx1  
Ay0  
Ay1  
Ay2  
Ay3  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Write Data  
is masked  
Precharge Termination  
of a Read Burst.  
Precharge Termination  
of a Write Burst.  
 
at 100MHz Burst Length = 4, CAS Latency = 3, tRCD, tRP = 3  
CS Function (Only CS signal needs to be asserted at minimum rate)  
T0  
T7  
T1  
T2  
T3  
T4  
T5  
T6  
T8  
T9  
T10  
T12  
T17  
T21  
T11  
T13  
T14  
T15  
T16  
T18  
T19  
T20  
T22  
CLK  
tCK3  
CKE  
CS  
RAS  
CAS  
WE  
A11(BS)  
A10  
RAx  
RAx  
CAx  
CAy  
A0 - A9  
DQM  
DQ  
Low  
Hi-Z  
tDPL  
tRCD  
Ax0  
Ax1  
Ax2  
Ax3  
DAy0 DAy1 DAy2 DAy3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
PACKAGE DIMENSIONS (400mil; 44 lead; Thin Small Outline Package)  
18.41 ± 0.13  
Detail A  
Lead #1  
Seating Plane  
0.10  
+ 0.10  
- 0.05  
0.35  
0.80 Basic  
0.805 REF  
Detail A  
0.25 Basic  
Gage Plane  
0.05 Min  
0.5 ± 0.1  
NOTE: All dimensions are in millimeters; Package Diagrams are not drawn to scale.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
PACKAGE DIMENSIONS (400mil; 50 lead; Thin Small Outline Package)  
20.95 ± 0.13  
Detail A  
+0.075  
-0.005  
0.125  
Lead #1  
Seating Plane  
0.10  
+ 0.10  
- 0.05  
0.35  
0.80 Basic  
0.875 REF  
Detail A  
0.25 Basic  
1.00 ± 0.05  
Gage Plane  
+0.10  
-0.00  
0.5 ± 0.1  
0.05  
NOTE: All dimensions are in millimeters; Package Diagrams are not drawn to scale.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
PACKAGE DIMENSIONS (400mil; 44 lead; 2 High Stack; Thin Small Outline J Lead Package)  
3.20 Max  
0.75 Min  
18.40 ± 0.28  
Lead #1 Identifier (1.27)  
Lead #1  
Seating Plane  
0.10  
+ 0.13  
- 0.04  
+ 0.10  
- 0.04  
0.8  
0.8  
0.5  
0.3  
NOTE: All dimensions are in millimeters; Package Diagrams are not drawn to scale.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Revision Log  
Revision  
2/10/97  
Contents Of Modification  
Initial Release (Preliminary)  
page 20  
Correction to Auto-precharge description/diagram notes. (Page 23, 24)  
Change tDPL from 8ns to 10ns for -10.  
page 50  
page 67  
page 45  
page 25  
page 26  
page 29  
page 30  
page 66  
page 70  
page 70  
page 87  
page 95  
page 96  
page 98  
page 101  
page 110  
page 112  
page 115  
page 45  
5/16/97  
Correct CKE transition.  
Correction of note regarding total stack current (CBR current).  
Precharge Termination changed (now similar to burst stop).  
Correct WE - Read Command.  
Precharge Termination changed: precharge and subsequent commands 1 clock sooner.  
Correct A10 - Precharge Command A.  
Precharge Termination changed: last precharge 1 clock sooner.  
Fix numbering of data - address Az.  
7/14/97  
Fix numbering of data - address Az.  
Correct A10 - Read Command.  
Correct A10 - first Write Command.  
Correct A10 - Write and Read Commands.  
Precharge Termination: number of data bits after command changed.  
Precharge Termination: number of data bits after command changed.  
Add note to ICC2NS.  
8/21/97  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Revision Log  
Remove -7, -8; Add -322, -90. Remove low power SR. Change max. data rate.  
Remove VREF, remove part numbers.  
Remove VREF  
page 1  
page 2  
page 3  
.
page 4  
Change part number information.  
page 5  
Remove VREF. (Also, page 7 - page 9.)  
Remove VREF in Power On description.  
Change max. data rate.  
page 6  
page 10  
page 14  
page 43  
page 44  
page 45  
page 46  
page 48  
page 49  
page 50  
page 51  
page 55  
page 1  
10/08/97  
Remove SSTL_3 Recommended DC Operating conditions.  
Remove SSTL_3 Output Characteristics.  
Change currents - different speed sorts.  
Change currents - different speed sorts.  
Remove -7, -8; Add -322, -90.  
Change speed sorts.  
Correct address (Page 55 also).  
Remove x8 stack. Add Column address clarification. Add note to performance table.  
Remove x8 stack.  
page 3  
Update ordering information.  
Remove x8 stack.  
page 5  
page 9  
Change diagrams.  
page 22  
page 26  
page 28  
page 30  
page 31  
Change/ add diagram.  
Change diagram.  
Change/ add diagram.  
Change text (tDPL).  
11/14/97  
Change diagram/ text (tDPL).  
page 32  
Specify -322 ICC2P, ICC4 currents.  
page 45  
page 48  
page 52  
page 71  
page 75  
page 91  
page 115  
Change notes for AC Characteristics and Clock and Clock Enable Parameters tables (VIH, VIL, tT).  
Correct/ clarify titles.  
Add timing diagram: Random column read, CL=3, tRCD / tRP = 2.  
Change diagram.  
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
IBM0316409C IBM0316809C IBM0316169C  
IBM03164B9C  
16Mb Synchronous DRAM-Die Revision D  
Revision Log  
Update speed sort information: remove -90, add -80. Also, page 5, page 14, page 45, page 46, page  
48 - page 51.  
page 1  
Update Auto-precharge description.  
page 21  
page 22  
page 26  
page 35  
page 39  
page 67  
page 74  
Add diagrams showing Auto-precharge Interrupt. Also, page 23, page 24.  
Change -90 to -80 or add -80. Also, page 28, page 30.  
Update Power Down Mode description. Also, page 37.  
Update Read/Write with Auto-precharge notes.  
1/05/98  
Correct address inputs.  
Add tDPL clarification. Also, page 75, page 90, page 91, page 115.  
Change -322 to -360.  
2/2/98  
Change ICC2P (2mA->3mA), ICC4 (400µA->2 mA), for -360 sorts.  
Add 1Mx16,-80.  
2/23/98  
page 45  
page 5  
Remove currents for -360 (x4, x16). Only x8 supported.  
page 46  
page 49  
page 49  
3/13/98  
5/1/98  
Update tHZ  
.
Add clarification: tOH  
.
©IBM Corporation. All rights reserved.  
Use is further subject to the provisions at the end of this document.  
08J3348.E35853  
5/98  
Discontinued (12/98 - last order; 9/99 last ship)  
International Business Machines Corp.1998  
Printed in the United States of America  
All rights reserved  
IBM and the IBM logo are registered trademarks of the IBM Corporation.  
This document may contain preliminary information and is subject to change by IBM without notice. IBM assumes no responsibility or  
liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or  
indemnity under the intellectual property rights of IBM or third parties. The products described in this document are not intended for  
use in implantation or other direct life support applications where malfunction may result in direct physical harm or injury to persons.  
NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.  
For more information contact your IBM Microelectronics sales representative or  
visit us on World Wide Web at http://www.chips.ibm.com  
IBM Microelectronics manufacturing is ISO 9000 compliant.  

相关型号:

IBM0316809CT3D-360

Synchronous DRAM, 2MX8, 5.5ns, CMOS, PDSO44, 0.400 INCH, PLASTIC, TSOP2-44
IBM

IBM0316809DT3-80

Synchronous DRAM, 2MX8, 6ns, CMOS, PDSO44
IBM

IBM03168B9DT3-80

Synchronous DRAM Module, 2MX8, 6ns, CMOS, PDSO44
IBM

IBM03168B9QT3-70

Synchronous DRAM Module, 2MX8, 5ns, CMOS, PDSO44
IBM

IBM03168B9QT3-80

Synchronous DRAM Module, 2MX8, 6ns, CMOS, PDSO44
IBM

IBM0317329NQ6A-10

Synchronous Graphics RAM (SGRAM)
ETC

IBM0317329NQ6A-7

Synchronous Graphics RAM (SGRAM)
ETC

IBM0317329NQ6A-7R5

Synchronous Graphics RAM (SGRAM)
ETC

IBM0317329NQ6A-8

Synchronous Graphics RAM (SGRAM)
ETC

IBM0317329PQ6A-10

Synchronous Graphics RAM (SGRAM)
ETC

IBM0317329PQ6A-7

Synchronous Graphics RAM (SGRAM)
ETC

IBM0317329PQ6A-7R5

Synchronous Graphics RAM (SGRAM)
ETC