IC-DIEVALDI1D [ICHAUS]

DUAL SENSOR INTERFACE; 双传感器接口
IC-DIEVALDI1D
型号: IC-DIEVALDI1D
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

DUAL SENSOR INTERFACE
双传感器接口

传感器
文件: 总15页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 1/15  
FEATURES  
APPLICATIONS  
Dual channel switches, configurable for high-side, low-side  
and push-pull operation  
Switches are current limited  
Sensor interface for light barriers  
and proximity switches, for  
example  
Push-pull operation with tristate function  
Output current of up to 100 mA per channel  
Parallel connection of both channels possible  
Channel 1 can be inverted (antivalent output)  
Wide supply voltage range of 9 to 30 V  
Sensor parameterisation via a feedback channel (up to 30 V)  
Switching converters and regulators for 3.3/5 V voltage  
generation  
PACKAGES  
Error detection with hysteresis with excessive temperature,  
overload and low voltage  
Driver shutdown in the event of error  
QFN24 4 mm x 4 mm  
Error messaging via two open-collector outputs  
BLOCK DIAGRAM  
LVH  
RSET  
CVH  
1 uF  
22 uH  
8.2 k  
..50 mA  
VH  
VHL  
ISET  
VBR  
VCC  
VCC3  
VCC  
NUVD  
NOVL  
Undervoltage  
Overtemp.  
Overload  
VCC3  
VBO  
HS1  
QCFG1  
QP1  
QN1  
IN1  
1 nF  
INV1  
LS1  
LINE  
HS2  
LS2  
QCFG2  
IN2  
QP2  
QN2  
1 nF  
VN  
OEN  
GND  
VBR  
VN  
CFI  
CFO  
CFP  
=1  
Copyright © 2008 iC-Haus  
http://www.ichaus.com  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 2/15  
DESCRIPTION  
iC-DI is a monolithic interface iC with two inde- NUVD (for low voltage at VBR or voltages VCC and  
pendent switching channels which enables digital VCC3, generated internally). The output switches  
sensors to drive peripheral elements, such as pro- are shut down with all types of error.  
grammable logic controllers (PLC) and relays, for ex-  
ample.  
To avoid errors occurring when the device is switched  
on the outputs remain at high impedance for ca.  
The switches can be operated as push-pull, high- 50 ms after the low voltage threshold has been ex-  
side or low-side switches using inputs QCFG1 and ceeded.  
QCFG2 (open, high and low) and are enabled or dis-  
abled via input OEN. They are designed to cope with Sensor interface iC-DI has an integrated switching  
high driver currents of 100 mA (RSET = 8.2 k), are converter which generates voltages VCC (5 V) and  
current limited and also short-circuit-proof in that they VCC3 (3.3 V) with the aid of two back-end series-  
shut down should excessive temperature or an over- regulators. If only a low current is required inductor  
load occur. The output current limit can be set via an LVH may be omitted; the series regulators are then  
external resistor at ISET.  
powered directly by VBR.  
The protective overload feature is included here as Input INV1 permits the input signal at channel 1 (IN1)  
an integrator so that capacitive loads with low repeat to be inverted.  
rates can be switched without the protective circuitry  
cutting in. In the event of excessive temperature an The connected sensor can be parameterised using  
error message is generated immediately.  
the feedback channel with a high volt input (CFI  
CFO).  
Errors are signalled by two open-collector outputs:  
NOVL (for excessive temperature and overloads) and  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 3/15  
PACKAGES QFN24 4 mm x 4 mm to JEDEC Standard  
PIN CONFIGURATION QFN24 4 mm x 4 mm  
PIN FUNCTIONS  
No. Name Function  
4 QCFG1 Configuration Input Channel 1  
5 QCFG2 Configuration Input Channel 2  
23  
22  
24  
21  
20  
19  
6 IN2  
7 OEN  
Input Channel 2  
Output Enable Input  
18  
17  
16  
15  
14  
13  
1
2
8 NOVL Overload Error Output  
9 NUVD Undervoltage Error Output  
3
10 CFO  
11 CFP  
12 CFI  
13 QP2  
14 QN2  
15 VN  
16 QN1  
17 QP1  
18 VBO  
19 VBR  
Output Feedback Channel  
Configuration Input Feedback Channel  
Input Feedback Channel  
DI  
code...  
...  
4
5
Output High Side Switch Channel 2  
Output Low Side Switch Channel 2  
Reference Voltage Low Side Switch  
Output Low Side Switch Channel 1  
Output High Side Switch Channel 1  
Reference Voltage High Side Switch  
Power Supply switching converter and  
linear regulators  
6
8
9
10  
12  
7
11  
PIN FUNCTIONS  
No. Name Function  
20 VHL  
21 VH  
22 VCC  
Inductor Switching Converter  
Input Linear Regulators  
5 V Sensor Supply  
1 ISET Reference Current for current limitation  
of driver outputs  
23 VCC3 3.3 V Sensor Supply  
24 GND Ground  
2 INV1 Inverting Input Channel 1  
3 IN1  
Input Channel 1  
Pins GND and VN must not be externally connected, otherwise with reverse bias intolerably high current  
may flow!  
The Thermal Pad is to be connected to a Ground Plane (VN) on the PCB.  
Only pin 1 marking on top or bottom defines the package orientation (iC-DI label and coding is subject  
to change).  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 4/15  
ABSOLUTE MAXIMUM RATINGS  
Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions.  
Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected  
interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system  
development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer  
suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with  
respect to actual interferences.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 VBO  
Power Supply at VBO  
Referenced to lowest voltage of VN, VBR,  
QP1, QN1, QP2, QN2, CFI, VH, VHL  
Referenced to highest voltage of VN, VBR,  
QP1, QN1, QP2, QN2, CFI, VH, VHL  
36  
V
V
-36  
-10  
G002 I(VBO)  
G003 VBR  
Current in VBO  
600  
36  
mA  
V
Power Supply at VBR  
Referenced to lowest voltage of VN, VBO,  
QP1, QN1, QP2, QN2, CFI, VH, VHL  
Referenced to highest voltage of VN, VBO,  
QP1, QN1, QP2, QN2, CFI, VH, VHL  
-36  
-10  
V
G004 I(VBR)  
G005 V(VH)  
Current in VBR  
Voltage at VH  
600  
36  
mA  
V
Referenced to lowest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VHL  
Referenced to highest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VHL  
-36  
-5  
V
G006 I(VH)  
Current in VH  
Voltage at VHL  
70  
36  
mA  
V
G007 V(VHL)  
Referenced to lowest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VH  
Referenced to highest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VH  
-36  
V
G008 I(VHL)  
G009 V(VN)  
Current in VHL  
-150  
5
mA  
Voltage at GND vs. VN  
VN < VBO  
VN > VBO (reverse bias)  
-1  
-27  
3
3
V
V
G010 I(VN)  
Current in VN  
VN < VBO  
VN > VBO (reverse bias)  
-500  
-10  
500  
10  
mA  
mA  
G011 I(GND)  
G012 V()  
G013 I()  
Current in GND  
-300  
-0.3  
-50  
300  
7
mA  
V
Voltage at VCC, VCC3  
Current in VCC, VCC3  
Voltage at QP1, QN1, QP2, QN2  
10  
36  
mA  
V
G014 V()  
Referenced to lowest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL  
Referenced to highest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL;  
VN < VBO, VBO < 29 V  
-7  
-36  
-36  
V
V
V
VN < VBO, VBO > 29 V  
VN > VBO (reverse bias)  
G015 I()  
Current in QP1, QP2  
Current in QN1, QN2  
Voltage at CFI  
-400  
mA  
mA  
V
G016 I()  
400  
36  
G017 V(CFI)  
Referenced to lowest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL  
Referenced to highest voltage of VN, VBO,  
VBR, QP1, QN1, QP2, QN2, CFI, VH, VHL  
-36  
V
G018 I(CFI)  
G019 V()  
Current in CFI  
-4  
4
7
mA  
V
Voltage at INV1, QCFG1, QCFG2, IN1,  
IN2, OEN, CFP  
-0.3  
G020 I()  
Current in INV1, QCFG1, QCFG2, IN1,  
IN2, OEN, CFP  
-4  
4
mA  
G021 V()  
Voltage at NOVL, NUVD, CFO  
Current in NOVL, NUVD, CFO  
Voltage at ISET  
-0.3  
-5  
7
20  
7
V
mA  
V
G022 I()  
G023 V(ISET)  
G024 I(ISET)  
G025 Vd()  
G026 Tj  
-0.3  
-4  
Current in ISET  
4
mA  
kV  
°C  
ESD Susceptibility at all pins  
Operating Junction Temperature  
HBM, 100 pF discharged through 1.5 k  
0.6  
150  
-40  
All voltages are referenced to ground unless otherwise stated.  
All currents into the device pins are positive; all currents out of the device pins are negative.  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 5/15  
ABSOLUTE MAXIMUM RATINGS (cont’d)  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
-40  
Max.  
G027 Ts  
Storage Temperature Range  
150  
°C  
THERMAL DATA  
Operating Conditions:  
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 k±1%, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
°C  
Min. Typ. Max.  
T01 Ta  
Operating Ambient Temperature Range  
(extended range on request)  
-40  
85  
T02 Rthja  
Thermal Resistance Chip/Ambient  
Surface mounted, thermal pad soldered to  
ca. 2 cm² heat sink  
30  
40  
K/W  
All voltages are referenced to ground unless otherwise stated.  
All currents into the device pins are positive; all currents out of the device pins are negative.  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 6/15  
ELECTRICAL CHARACTERISTICS  
Operating Conditions:  
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 k±1%, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
24  
Max.  
Total Device  
001 VBO  
Permissible Supply Voltage  
Supply Current in VBO  
Permissible Supply Voltage  
Supply Current in VBR  
Referenced to VN  
9
9
30  
0.3  
30  
6
V
mA  
V
002 I(VBO)  
003 VBR  
No load, I(QP1) = I(QP2) = 0, HSx switched on  
24  
004 I(VBR)  
VH connected to VBR, no load,  
mA  
I(VCC) = I(VCC3) = 0, V(OEN) = hi  
005 Vc()hi  
006 Vc()lo  
007 Vc()hi  
008 Vc()lo  
Clamp Voltage hi at VBO, VBR  
vs. VN  
I() = 10 mA  
36  
V
V
V
V
Clamp Voltage lo at VBO, VBR  
vs. VN  
I() = -10 mA  
-36  
39  
-6  
Clamp Voltage hi at QN1, QN2  
vs. VN  
I() = 1 mA, VBO and VBR > VN  
I() = -1 mA, VBO and VBR > VN  
36  
-9  
Clamp Voltage lo at QP1, QP2  
vs. VN  
009 Vc(CFI)hi Clamp Voltage hi at CFI vs. VN I() = 1 mA  
010 Vc(CFI)lo Clamp Voltage lo at CFI vs. VN I() = -1 mA  
36  
V
V
V
-36  
-36  
011 Vc(VN)hi Clamp Voltage hi at VN vs. low- I() = 1 mA  
est voltage of QP1, QN1, QP2,  
36  
QN1, CFI  
012 Vc()hi  
013 Vc()lo  
014 Vc()hi  
Clamp Voltage hi at VH, VHL  
Clamp Voltage lo at VH, VHL  
I() = 1 mA  
I() = -1 mA  
36  
7
V
V
V
Clamp Voltage hi at VCC, VCC3, I() = 1 mA  
ISET, INV1, IN1, IN2, QCFG1,  
QCFG2, OEN, CFO, CFP, NOVL,  
NUVD  
015 Vc()lo  
016 tpio  
Clamp Voltage lo at VCC, VCC3, I() = -1 mA  
ISET, INV1, IN1, IN2, QCFG1,  
QCFG2, OEN, CFO, CFP, NOVL,  
NUVD  
-0.5  
11  
V
Propagation Delay  
IN1 QP1, QN1  
IN2 QP2, QN2  
2.4  
10  
µs  
017 R(GND)off Resistance of GND switch  
VBO < VN (reverse bias)  
kΩ  
018 R(GND)on Resistance of GND switch  
VBO > VN; V(GND) < VN + 0.6V  
20  
Low-Side Switch QN1, QN2; V(QCFG1) = V(QCFG2) = 0 V  
101  
Vs()lo  
Saturation Voltage lo at QN1,  
QN2 vs. VN  
RSET = 5.1 k;  
I() = 100 mA  
I() = 50 mA  
1.5  
1
0.3  
V
V
V
I() = 10 mA  
102 Isc()lo  
Short-Circuit Current lo in QN1, RSET = 8.2 k, V() = 1.4 V...VBO  
100  
125  
160  
mA  
QN2  
103 Vol()on  
104 Vol()off  
105 Vol()hys  
Overload Detection Threshold on QN1, QN2 lo hi; referenced to GND  
Overload Detection Threshold off QN1, QN2 hi lo; referenced to GND  
1.55  
1.5  
2.1  
1.8  
V
V
V
Overload Detection Threshold  
Hysteresis  
Vol()hys = Vol()on Vol()off  
0.1  
106  
llk()  
Leakage Current at QN1, QN2  
OEN = lo;  
V(QN1, QN2) = VBO...VBO + 6 V  
V(QN1, QN2) = 0...VBO  
V(QN1, QN2) = -6...0 V  
0
0
-500  
50  
50  
0
µA  
µA  
µA  
107 SR()  
108 Imax()  
109 Ir()  
Slew Rate (switch off on)  
VBO = 30 V, Cl = 2.2 nF  
45  
V/µs  
mA  
Maximum Current in QN1, QN2 V(ISET) = 0 V, QNx > 3 V  
195  
-10  
300  
450  
Reverse Current in QN1, QN2  
QNx activated; V(QNx) = -6 V  
mA  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 7/15  
ELECTRICAL CHARACTERISTICS  
Operating Conditions:  
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 k±1%, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
High-Side Switch QP1, QP2; V(QCFG1) = V(QCFG2) = 5 V  
201  
Vs()hi  
Saturation Voltage hi vs. VBO  
RSET = 5.1 k;  
I() = -100 mA  
I() = -50 mA  
-1.2  
-0.7  
-0.3  
V
V
V
I() = -10 mA  
202 Isc()hi  
203 Vol()on  
204 Vol()off  
205 Vol()hys  
Short-Circuit Current hi  
RSET = 8.2 k, V() = 0...VBO 1.5 V  
-160  
-2.1  
-1.8  
0.1  
-125  
-100  
-1.5  
-1.4  
mA  
V
Overload Detection Threshold on QP1, QP2 hi lo; referenced to VBO  
Overload Detection Threshold off QP1, QP2 lo hi; referenced to VBO  
Overload Detection Threshold  
Hysteresis  
V
Vol()hys = Vol()off Vol()on  
V
206  
llk()  
Leakage Current at QP1, QP2  
OEN = lo;  
V(QP1, QP2) = -6...0 V  
V(QP1, QP2) = 0 V...VBO  
V(QP1, QP2) > VBO...VBO + 6 V  
-500  
-40  
0
0
0
500  
µA  
µA  
µA  
207 SR()  
208 Imax()  
209 Ir()  
Slew Rate (switch off on)  
VBO = 30 V, Cl = 2.2 nF  
40  
-350  
1
V/µs  
mA  
Maximum Current in QP1, QP2 V(ISET) = 0 V, VBO QPx > 4 V  
-630  
-450  
Reverse Current in QP1, QP2  
QPx activated; V(QPx) = VBO...VBO + 6 V  
Permanent overload (see Fig. 1)  
mA  
Short-Circuit/Overload Monitor  
301 toldly  
Time to Overload Message  
(NOVL 1 0, switch tri-state)  
Time to Overload Message Reset No overload (see Fig. 2)  
126  
35  
180  
50  
280  
80  
µs  
302 tolcl  
ms  
(NOVL 0 1, switch active)  
VBR Voltage Monitor  
401 VBRon  
402 VBRoff  
403 VBRhys  
404 tuvdly  
Turn-On Threshold VBR  
Referenced to GND  
8
9
V
V
Turn-Off Threshold VBR  
Hysteresis  
Decreasing voltage VBR  
7.3  
200  
15  
8.5  
VBRhys = VBRon VBRoff  
500  
50  
mV  
µs  
Time to Undervoltage Message Permanent undervoltage at VBR, VCC or  
(NUVD 1 0, switch tri-state)  
Time to Undervoltage Message No undervoltage at VBR, VCC and VCC3 (see  
100  
80  
VCC3  
405 tuvcl  
35  
ms  
Reset (NUVD 0 1, switch ac- Fig. 1)  
tive)  
Temperature Monitor  
501 Toff  
Overtemperature Shutdown  
(NOVL 1 0, switch tri-state)  
Increasing temperature Tj  
130  
35  
155  
80  
°C  
502 ton  
Overtemperature Shutdown Re- Temperature Tj < Toff  
set Delay  
50  
ms  
(NOVL 0 1, switch active)  
Inputs IN1, IN2, INV1, QCFG1, QCFG2, OEN  
601 Vt()hi  
602  
603 Vt()hys  
604  
Input Threshold Voltage hi at IN1,  
IN2, INV1, OEN  
2
V
V
Vt()lo  
Input Threshold Voltage lo at IN1,  
IN2, INV1, OEN  
0.8  
Hysteresis at IN1, IN2, INV1,  
OEN  
Vt()hys = Vt()hi Vt()lo  
300  
500  
64  
mV  
Ipd()  
Pull-Down Current at IN1, IN2,  
INV1  
V() = 0.4 V...Vt()lo  
V() > Vt()hi  
30  
10  
168  
40  
µA  
µA  
605 Ipd(OEN) Pull-Down Current at OEN  
V(OEN) > 0.4 V  
1
6
µA  
%
606 Vahi()  
Input Threshold hi at QCFG1,  
QCFG2 (V() > Va()hi QN1,  
QN2 tri-state)  
Referenced to VCC3 (see Fig. 3)  
52  
69  
607 Vahi()hys Hysteresis hi at QCFG1, QCFG2 Referenced to VCC3 (see Fig. 3)  
3
7
%
(V() < Vahi() Vahi()hys QN1,  
QN2 active)  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 8/15  
ELECTRICAL CHARACTERISTICS  
Operating Conditions:  
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 k±1%, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
608 Valo()  
Input Threshold lo at QCFG1,  
QCFG2 (V() < Va()lo QP1,  
QP2 tri-state)  
Referenced to VCC3 (see Fig. 3)  
24  
29  
34  
%
609 Valo()hys Hysteresis lo at QCFG1, QCFG2 Referenced to VCC3 (see Fig. 3)  
3
7
%
(V() > Valo() + Valo()hys QN1,  
QN2 active)  
610 Vpp()  
611 Ri()  
612 tsup  
613 ttrig  
614 tsup  
615 ttrig  
Open Circuit Voltage at QCFG1, Referenced to VCC3  
QCFG2  
42  
40  
46.5  
85  
51  
190  
2.2  
%
kΩ  
µs  
µs  
µs  
µs  
Internal Resistance at QCFG1,  
QCFG2  
Permissible Spurious Pulse  
Width at IN1, IN2, INV1, OEN  
No activity triggered  
Activity triggered  
Required Pulse Width at IN1,  
IN2, INV1, OEN  
7
Permissible Spurious Pulse  
Width at QCFG1, QCFG2  
No activity triggered  
4.5  
Required Pulse Width at QCFG1, Activity triggered  
QCFG2  
14  
Error Output NOVL, NUVD  
701 Vs()lo  
702 Isc()lo  
703 Ilk()  
Saturation Voltage lo  
I() = 1.0 mA  
0.4  
25  
10  
V
Short Circuit Current lo  
Leakage Current  
V() = 0.4 V...VCC  
V() = 0 V...VCC, no error  
1.2  
-10  
mA  
µA  
Feedback Channel CFI to CFO  
801 Vt1(CFI)hi Input Threshold 1 hi at CFI  
802 Vt1(CFI)lo Input Threshold 1 lo at CFI  
803 Vt2(CFI)hi Input Threshold 2 hi at CFI  
804 Vt2(CFI)lo Input Threshold 2 lo at CFI  
VBR < 18 V  
59  
44  
66  
50  
74  
56  
%VBR  
VBR < 18 V  
%VBR  
VBR > 18 V  
10.5  
8
11.3  
9
12  
V
V
VBR > 18 V  
10.5  
805 Vt()hys  
806 Ipu(CFI)  
Hysteresis at CFI  
Vt(CFI)hys = Vt(CFI)hi Vt(CFI)lo  
1
V
Pull-Up Current at CFI  
CFP = hi, V(CFI) = 0...VBR 3 V,  
-300  
-40  
µA  
V(CFI) > Vt(CFI)lo  
807 Ipd(CFI)  
Pull-Down Current at CFI  
CFP = lo, V(CFI) = 3 V...VBR,  
V(CFI) < Vt(CFI)lo  
40  
300  
µA  
808 tpcf  
Propagation Delay CFI CFO V(CFO) = 10 90%VCC  
2.4  
11  
0.4  
25  
10  
2
µs  
V
809 Vs()lo  
810 Isc()lo  
811 Ilk()  
Saturation Voltage lo at CFO  
Short Circuit Current lo in CFO  
Leakage Current at CFO  
I(CFO) = 1.2 mA  
V(CFO) = 0.4 V...VCC  
1.2  
-10  
mA  
µA  
V
V(CFO) = 0 V...VCC, CFO inaktive  
812 Vt()hi  
Input Threshold Voltage hi at  
CFP  
813 Vt()lo  
Input Threshold Voltage lo at  
CFP  
0.8  
V
814 Vt()hys  
Hysteresis at CFP  
Vt(CFP)hys = Vt(CFP)hi Vt(CFP)lo  
V(CFP) = 0.4 V...Vt(CFP)lo  
V(CFP) > Vt(CFP)hi  
300  
500  
mV  
815  
Ipd(CFP) Pull-Down Current at CFP  
30  
10  
168  
40  
µA  
µA  
816 tsup  
Permissible Spurious Pulse  
Width at CFI  
No activity triggered  
2.2  
µs  
817 ttrig  
818 tsup  
Required Pulse Width at CFI  
Activity triggered  
7
µs  
µs  
Permissible Spurious Pulse  
Width at CFP  
No activity triggered  
4.5  
819 ttrig  
Required Pulse Width at CFP  
Activity triggered  
14  
20  
µs  
820 Ipd(CFI)+ Pull-Down Current at CFI plus  
llk(QPx) leakage current at QPx  
Switching Regulator VHL, VH  
901 VHn Nominal Voltage at VH  
CFP = lo, V(CFI) = 3 V...VBR, OEN = lo  
µA  
LVH = 22 µH, Ri(LVH) < 1.1 , CVH = 1 µF;  
6.4  
7.7  
V
I(VH) = 0...50 mA  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 9/15  
ELECTRICAL CHARACTERISTICS  
Operating Conditions:  
VBO = 9...30 V, VBR = 9...30 V (both referenced to VN), Tj = -40...125 °C, RSET = 8.2 k±1%, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
902 Ia(VHL)  
max. DC Cut-Off Current from  
VHL  
-200  
mA  
903 Va(VH)  
904 Va()hys  
Cut-Off Voltage at VH  
Hysteresis at VH  
Va(VH) > VHn  
6.5  
10  
7.3  
25  
7.7  
V
150  
mV  
905  
Vs(VHL)  
Saturation Voltage at VHL vs.  
VBR  
I(VHL) = -50 mA  
I(VHL) = -150 mA  
1.1  
3.0  
V
V
906  
Vf(VHL)  
Forward Voltage of Fly-Back  
Diode  
Vf() = V(GND) V(VHL);  
I(VHL) = -50 mA  
1.5  
2.9  
V
V
I(VHL) = -150 mA  
907 Ilk(VHL)  
Leakage Current at VHL  
VHL = lo, V(VHL) = V(VH)  
-20  
70  
20  
µA  
%
908 ηVH  
Efficiency of VH-switching regula- I(VH) = 50 mA, Ri(LVH) < 1.1 ,  
tor  
V(VBR) = 12...30 V  
Series Regulator VCC  
A01 VCCn  
A02 CVCC  
Nominal Voltage at VCC  
I(VCC) = -50...0 mA, VH = VHn  
4.75  
150  
5
5.25  
1
V
Required Capacitor at VCC vs.  
GND  
nF  
A03 RiCVCC  
Maximum Permissible Internal  
Resisitance of capacitor at VCC  
A04 VCCon  
A05 VCCoff  
A06 VCChys  
VCC Monitor Threshold hi  
VCC Monitor Threshold lo  
Hysteresis  
90  
83  
50  
99  
95  
%VCCn  
%VCCn  
mV  
Decreasing Voltage at VCC  
VCChys = VCCon VCCoff  
150  
3.3  
Series Regulator VCC3  
B01 VCC3n  
B02 CVCC3  
Nominal Voltage at VCC3  
I(VCC3) = -50...0 mA, VH = VHn  
3.1  
3.5  
V
Required Capacitor at VCC3 vs.  
GND  
150  
nF  
B03 RiCVCC3 Maximum Permissible Internal  
Resisitance of capacitor at VCC3  
1
B04 VCC3on  
VCC3 Monitor Threshold hi  
90  
83  
50  
98  
95  
%
VCC3n  
B05 VCC3off  
VCC3 Monitor Threshold lo  
Decreasing Voltage at VCC3  
%
VCC3n  
B06 VCC3hys Hysteresis  
VCC3hys = VCC3on VCC3off  
150  
2
mV  
Oscillator  
C01  
fos  
Oscillator Frequency  
1.2  
1.5  
2.75  
2.3  
MHz  
MHz  
Tj = 27 °C  
Reference and Bias  
D01 V(ISET)  
D02 I(ISET)  
D03 rIbeg  
Voltage at ISET  
Tj = 27 °C  
1.16  
-1.1  
1.22  
-0.65  
800  
1.28  
V
Current in ISET  
V(ISET) = 0 V, Tj = 27 °C  
-0.25  
mA  
Transmission Ratio for driver  
output current limitation  
Imax(QP1) = Imax(QP2) = Imax(QN1) =  
Imax(QN2) = I(ISET) rIbeg,  
RSET = 5.1...20 kΩ  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 10/15  
DESCRIPTION OF FUNCTIONS  
Overload detection  
tion. This integrator is an 8-bit counter which is up-  
To protect the device against excessive power dissipa- dated together with the oscillator clock. If an overload  
tion due to high currents the switches are clocked if an is detected on one channel the counter is raised by 1;  
overload occurs. If a short circuit is detected, i.e. if the an overload on both channels increases the counter  
voltage at the switch output overshoots or undershoots value by 2. If no overload is apparent the counter is  
Overload Detection Threshold off (cf. Electrical Char- reduced by 1 every 10 clock pulses. Provided that the  
acteristics Nos. 104 and 204), the switches are shut time during which excessive current flows does not ex-  
down for a typical 50 ms (cf. Electrical Characteristics ceed the value stipulated by Electrical Characteristics  
No. 302) and the current flow thus interrupted.  
No. 301, a maximum duty cycle – without deactiva-  
tion of the switches – of 1:10 results if one channel  
is overloaded; if both channels signal an overload this  
changes to 1:5. Only when these ratios are exceeded  
can the counter achieve its maximum value, this then  
generating an error message at NOVL and deactivat-  
ing the switches.  
VBR  
NUVD  
NOVL  
OEN  
Qyx  
tuvcl  
toldly  
tolcl  
Configuring the switches  
The various functions of the switches are determined  
by pins QCFG1 and QCFG2. A voltage at the QCFG  
pins which is lower than Va()lo deactivates the relevant  
high-side switches; with a voltage higher than Va()hi  
the relevant low-side switches are deactivated. Both  
high-side and low-side switches are activated in the  
open-circuit voltage range (pin open).  
Figure 1: Permanent short circuit  
The level of power dissipation is dependent on the  
current and the time during which this current flows.  
A current which fails to trigger the overload detec-  
tion is not critical; high current can also be tolerated  
for a short period and with low repeat rates. This is  
particularly important when switching capacitive loads  
(charge/discharge currents).  
Valo()hys  
QPx active  
VBR  
NUVD  
NOVL  
OEN  
Vahi()hys  
QNx active  
INx  
Valo()  
Vahi()  
V(QCNFx)  
Qyx  
Off  
Integrator  
Figure 3: Levels at QCFG1/QCFG2 and switch activa-  
tion  
tuvcl  
tolcl  
Figure 2: Overload  
Pull-up and pull-down currents  
The pull-down currents at pins IN1, IN2, INV1 and  
So that this is possible a shared back-end integrator CFP are two-stage with switching thresholds Vt()hi and  
follows the switches for the purpose of overload detec- Vt()lo (cf. Electrical Characteristics Nos. 604 and 815).  
 
 
 
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 11/15  
CHANNEL 2  
IN2 QCFG2 OEN QN2 QP2  
Function tables  
X
L
H
L
H
L
H
X
Z
Z
H
H
L
L
off  
on  
off  
off  
off  
off  
on  
off  
off  
on  
off  
on  
off  
off  
CHANNEL 1  
IN1 QCFG1 INV OEN QN1 QP1  
H
H
H
H
H
H
X
L
H
L
H
L
H
L
X
Z
Z
Z
Z
H
H
H
H
L
X
L
L
H
H
L
L
off  
on  
off  
off  
on  
off  
off  
off  
off  
off  
on  
on  
off  
off  
off  
on  
on  
off  
off  
on  
on  
off  
off  
off  
off  
off  
H
H
H
H
H
H
H
H
H
H
H
H
L
Table 2: Function table Channel 2  
L
FEEDBACK CHANNEL  
CFI CFP  
H
H
L
L
H
H
CFO  
H
L
H
H
L
H
L
H
L
Z
L
L
Z
H
L
L
L
H
L
L
Table 1: Function table Channel 1  
Table 3: Function table Feedback Channel  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 12/15  
APPLICATION NOTES  
DVN:  
General purpose diode,  
high reverse voltage  
Figure 4 shows recommended protective circuitry  
against reverse bias and transients on the transmis-  
sion line; suggested values as follows:  
RCFI:  
RQxx:  
RVB:  
50 Ω  
5 Ω  
> 20 Ω  
CQx:  
CVB:  
22 nF  
1 µF  
Pins GND and VN must not be externally con-  
nected, otherwise with reverse bias intolerably  
high current may flow!  
CVBO:  
100 nF  
DQx, DVBO: High speed diodes (eg. BAS16)  
LVH  
CVH  
RSET  
1uF  
22uH  
..50mA  
VH  
VHL  
ISET  
VCC  
VBR  
VCC3  
CVCC  
CVCC3  
NUVD  
VCC3  
VCC VBR  
Undervoltage  
Overtemp.  
Overload  
RVB  
NOVL  
VCC3  
VBO  
UB  
Q1  
HS1  
CVBO  
PRG1  
QP1 RQP1  
QN1  
IN1  
RQN1  
LS1  
POL1  
DVBO  
VCC3  
CQ1  
DQ1  
HS2  
LS2  
PRG2  
QP2 RQP2  
QN2  
Q2  
M
IN2  
RQN2  
VN  
DQ2  
OEN  
DVN  
VN>VBO  
GND  
VBR  
VN  
RCFI  
CFI  
CFO  
CFP  
CFI  
=1  
Figure 4: Recommended external protective circuitry for differential push-pull operation  
 
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 13/15  
DEMO BOARD  
iC-DL comes with a demo board for test purposes. Figures 5 and 6 show both the schematic and the component  
side of the demo board.  
L1  
VH  
C4  
VHL  
VHL  
VH  
22uH  
1uF  
VCC  
VCC  
VCC3  
VCC3  
U1  
21  
VH  
20  
D6  
RD  
D5  
RD  
VHL  
iC-DI  
VCC  
C6  
100nF  
C5  
100nF  
R1  
22  
VB  
VBR  
22  
23  
19  
VB  
VBR  
DCDC  
C3  
C2  
C1  
VCC3  
CONVERTER  
R3  
1k  
R2  
1k  
1uF  
100nF  
100nF  
BAS16_02L  
D1  
NUVD  
NOVL  
9
8
NUVD  
NOVL  
UVolt  
NUVD  
VNI  
TEMP  
LOAD  
NOVL  
18  
VBO  
PRG1  
PRG1  
IN1  
4
3
2
PRG1  
IN1  
R5  
QP1 17  
QN1 16  
QP1  
QN1  
IN1  
VQ1  
VQ1  
VQ2  
4.7  
CHANNEL1  
R6  
C7  
22nF  
INV1  
INV1  
INV1  
4.7  
BAS16_02L  
D2  
PRG2  
IN2  
PRG2  
IN2  
5
6
PRG2  
IN2  
R7  
13  
QP2  
QP2  
QN2  
VQ2  
4.7  
CHANNEL2  
R8  
14  
15  
QN2  
VN  
C8  
4.7  
22nF  
BAS16_02L  
OEN  
CFO  
CFP  
OEN  
CFO  
CFP  
7
OEN  
D3  
VNI  
10 CFO  
11 CFP  
VBR  
VN  
C9  
4.7nF  
=1  
R9  
1k  
CFI  
CFI 12  
CFI  
VN  
CFI_I  
1
ISET  
ISET  
BIAS  
GND  
D4  
BYS10-45  
VNI  
VN  
R4  
8.2k  
24  
EPAD  
GND  
GND  
Figure 5: Schematic of the demo board  
Figure 6: Demo board (component side)  
 
 
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 14/15  
This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein,  
design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data.  
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions  
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of  
merchantability, tness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which  
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or  
areas of applications of the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical  
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of  
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued  
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in  
Hanover (Hannover-Messe).  
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations  
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can  
be put to.  
iC-DI  
DUAL SENSOR INTERFACE  
Rev C2, Page 15/15  
ORDERING INFORMATION  
Type  
iC-DI  
Package  
Order Designation  
QFN24 4 x 4 mm²  
Evaluation Board  
iC-DI QFN24  
iC-DI EVAL DI1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.de/support_distributors.php  

相关型号:

IC-DIQFN24

DUAL SENSOR INTERFACE
ICHAUS

IC-DL

3-CHANNEL DIFFERENTIAL LINE DRIVER
ICHAUS

IC-DLEVALDL2D

3-CHANNEL DIFFERENTIAL LINE DRIVER
ICHAUS

IC-DLQFN28

3-CHANNEL DIFFERENTIAL LINE DRIVER
ICHAUS

IC-DN

LOWSIDE SWITCH
ICHAUS

IC-DNSOT23-6L

LOWSIDE SWITCH
ICHAUS

IC-DP

HIGHSIDE SWITCH
ICHAUS

IC-DPSOT23-6L

HIGHSIDE SWITCH
ICHAUS

IC-DP_11

HIGHSIDE SWITCH
ICHAUS

IC-DX

UNIVERSAL DIGITAL SENSOR OUTPUT DRIVER
ICHAUS

IC-DXC

Digital Sensor Output Drivers
ICHAUS

IC-DXC_11

DIGITAL SENSOR I/O DRIVER
ICHAUS