ICS8430-61 [ICSI]

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER; 500MHZ ,水晶- TO- 3.3V的差分LVPECL频率合成器
ICS8430-61
型号: ICS8430-61
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
500MHZ ,水晶- TO- 3.3V的差分LVPECL频率合成器

文件: 总15页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8430-61 is a general purpose, dual output Dual differential 3.3V LVPECL outputs  
ICS  
Crystal-to-3.3V Differential LVPECL High Fre-  
quency Synthesizer and a member of the  
or LVCMOS/LVTTLTEST_CLK  
Selectable crystal oscillator interface  
HiPerClockS™  
HiPerClockS™ family of High Performance Clock  
Solutions from ICS.The ICS8430-61 has a select-  
Output frequency range: 20.83MHz to 500MHz  
Crystal input frequency range: 14MHz to 27MHz  
VCO range: 250MHz to 500MHz  
able TEST_CLK or crystal inputs. The VCO operates at a fre-  
quency range of 250MHz to 500MHz. The VCO frequency is  
programmed in steps equal to the value of the input reference  
or crystal frequency. The VCO and output frequency can be  
programmed using the serial or parallel interfaces to the con-  
figuration logic. Frequency steps as small as 1MHz can be  
achieved using a 16MHz crystal or TEST_CLK.  
Parallel or serial interface for programming counter  
and output dividers  
RMS period jitter: 6ps (maximum)  
Cycle-to-cycle jitter: 30ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
XTAL_IN  
1
OSC  
M5  
M6  
M7  
M8  
N0  
N1  
N2  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
XTAL_IN  
TEST_CLK  
XTAL_SEL  
VCCA  
XTAL_OUT  
÷ 16  
÷1  
ICS8430-61  
÷1.5  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
÷2  
÷3  
PHASE DETECTOR  
÷4  
÷6  
0
1
VEE  
VCO  
÷8  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
MR  
÷12  
9
10 11 12 13 14 15 16  
÷ M  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N2  
Y Package  
TopView  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
1
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes op- specific default state that will automatically occur during  
eration using a 16MHz crystal. Valid PLL loop divider values power-up. The TEST output is LOW when operating in the  
for different crystal or input frequencies are defined in the In- parallel input mode. The relationship between the VCO fre-  
put Frequency Characteristics, Table 5, NOTE 1.  
quency, the crystal frequency and the M divider is defined as  
fxtal  
16  
follows:  
x
fVCO =  
M
The ICS8430-61 features a fully integrated PLL and therefore  
requires no external components for setting the loop band- The M value and the required values of M0 through M8 are  
width. A parallel-resonant, fundamental crystal is used as the shown in Table 3B, Programmable VCO Frequency Function  
input to the on-chip oscillator. The output of the oscillator is Table.Valid M values for which the PLL will achieve lock for a  
divided by 16 prior to the phase detector.With a 16MHz crys- 16MHz reference are defined as 250 M 500.The frequency  
fVCO fxtal  
M
N
tal, this provides a 1MHz reference frequency. The VCO of out is defined as follows:  
the PLL operates over a range of 250MHz to 500MHz. The  
fout  
x
=
=
N
16  
output of the M divider is also applied to the phase detector.  
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
The phase detector and the M divider force the VCO output bits with the rising edge of S_CLOCK. The contents of the  
frequency to be M times the reference frequency by adjusting shift register are loaded into the M divider and N output di-  
the VCO control voltage. Note that for some values of M (ei- vider when S_LOAD transitions from LOW-to-HIGH. The M  
ther too high or too low), the PLL will not achieve lock. The divide and N output divide values are latched on the HIGH-to-  
output of the VCO is scaled by a divider prior to being sent to LOW transition of S_LOAD. If S_LOAD is held HIGH, data at  
each of the LVPECL output buffers. The divider provides a the S_DATA input is passed directly to the M divider and N  
50% output duty cycle.  
output divider on each rising edge of S_CLOCK. The serial  
mode can be used to program the M and N bits and test bits  
The programmable features of the ICS8430-61 support two T1 andT0.The internal registers T0 andT1 determine the state  
input modes and to program the M divider and N output di- of the TEST output as follows:  
vider.The two input operational modes are parallel and serial.  
Figure 1 shows the timing diagram for each mode. In parallel  
mode, the nP_LOAD input is initially LOW.The data on inputs  
T1 T0  
TEST Output  
LOW  
M0 through M8 and N0 through N2 is passed directly to the M  
divider and N output divider. On the LOW-to-HIGH transition  
of the nP_LOAD input, the data is latched and the M divider  
remains loaded until the next LOW transition on nP_LOAD or  
until a serial event occurs. As a result, the M and N bits can  
be hard-wired to set the M divider and N output divider to a  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout  
SERIAL  
L
OADING  
S_CLOCK  
S_DATA  
S_LOAD  
T1  
T0  
N2  
N1  
N0  
M8 M7 M6 M5 M4 M3 M2 M1 M0  
t
t
H
S
nP_LOAD  
t
S
PARALLEL LOADING  
M0:M8, N0:N2  
nP_LOAD  
M, N  
t
t
H
Time  
S
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
2
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
28, 29, 30  
31, 32, 1, 2 M3, M4, M5, M6  
M0, M1, M2  
Input Pulldown  
M divider inputs. Data latched on LOW-to-HIGH transition of  
nP_LOAD input. LVCMOS / LVTTL interface levels.  
3, 4  
M7, M8  
Input  
Pullup  
5, 7  
6
N0, N2  
N1  
Input Pulldown  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS / LVTTL interface levels.  
Input  
Pullup  
8, 16  
VEE  
Power  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS interface levels.  
9
TEST  
VCC  
Output  
Power  
10  
Core supply pin.  
11, 12  
13  
FOUT1, nFOUT1 Output  
VCCO Power  
FOUT0, nFOUT0 Output  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Output supply pin.  
14, 15  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input Pulldown outputs nFOUTx to go high. When Logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not affect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input Pulldown  
Input Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input Pulldown  
Power  
Input  
Analog supply pin.  
Selects between crystal oscillator or test inputs as the PLL  
reference source. Selects XTAL inputs when HIGH. Selects  
TEST_CLK when LOW. LVCMOS / LVTTL interface levels.  
22  
23  
XTAL_SEL  
TEST_CLK  
Pullup  
Input Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
24,  
25  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
Input  
Parallel load input. Determines when data present at M8:M0 is  
Input Pulldown loaded into M divider, and when data present at N2:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
26  
nP_LOAD  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
3
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
1
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
251  
252  
253  
250  
251  
252  
253  
0
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0
1
498  
499  
500  
498  
499  
500  
1
1
1
1
1
0
0
1
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to a TEST_CLK or crystal frequency of 16MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N2  
0
N1  
0
N0  
0
Minimum  
250  
Maximum  
500  
1
1.5  
2
0
0
1
166.66  
125  
333.33  
250  
0
1
0
0
1
1
3
83.33  
62.5  
166.66  
125  
1
0
0
4
1
0
1
6
41.66  
31.25  
20.83  
83.33  
62.5  
1
1
0
8
1
1
1
12  
41.66  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
4
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
155  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
mA  
mA  
ICCA  
55  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Minimu-  
Symbol Parameter  
Test Conditions  
Typical Maximum Units  
m
M0:M8, N0:N2, MR,  
S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
VCO_SEL, XTAL_SEL  
2
V
CC + 0.3  
V
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
2
VCC + 0.3  
0.8  
M0:M8, N0:N2, MR,  
S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
VCO_SEL, XTAL_SEL  
-0.3  
-0.3  
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
150  
5
V
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
µA  
µA  
µA  
Input  
IIH  
High Current  
M5, XTAL_SEL, VCO_SEL  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCC = 3.465V,  
VIN = 0V  
-5  
Input  
IIL  
Low Current  
VCC = 3.465V,  
VIN = 0V  
M5, XTAL_SEL, VCO_SEL  
TEST; NOTE 1  
-150  
2.6  
µA  
V
Output  
VOH  
High Voltage  
Output  
VOL  
TEST; NOTE 1  
0.5  
V
Low Voltage  
NOTE 1:Outputs terminated with 50toVCCO/2.  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
5
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO - 2V. See "Parameter Measurement Information" section,  
"3.3V Output Load Test Circuit" figure.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
XTAL_IN XTAL_OUT NOTE 1  
S_CLOCK  
14  
14  
27  
27  
50  
MHz  
MHz  
MHz  
Input  
fIN  
Frequency  
NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within  
the 250MHz to 500MHz range. Using the minimum input frequency of 14MHz, valid values of M are 286 M 511.  
Using the maximum input frequency of 27MHz, valid values of M are 149 M 296.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
27  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
20.83  
500  
30  
MHz  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
N 1.5  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1, 4  
N = 1.5  
100  
6
tjit(per)  
tsk(o)  
tR / tF  
Period Jitter, RMS; NOTE 1, 3  
Output Skew; NOTE 2, 4  
Output Rise/Fall Time  
15  
20% to 80%  
200  
5
700  
M, N to nP_LOAD  
tS  
Setup Time  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
5
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
Even N divides  
Odd N divides  
48  
45  
52  
55  
1
odc  
Output Duty Cycle  
PLL Lock Time  
%
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: N divide = 1.5 characterized using the Wavecrest tailfit algorithm.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
6
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
SCOPE  
nFOUTx  
FOUTx  
VCC  
VCCA, VCCO  
,
Qx  
LVPECL  
nFOUTy  
FOUTy  
nQx  
VEE  
tsk(o)  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
OUTPUT SKEW  
VOH  
VREF  
nFOUTx  
FOUTx  
tcycle n  
tcycle n+1  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
t
jit(cc) =  
tcycle n –tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
CYCLE  
-
TO-CYCLE  
JITTER  
nFOUTx  
FOUTx  
80%  
80%  
VSWING  
20%  
Pulse Width  
Clock  
20%  
tPERIOD  
Outputs  
tF  
tR  
tPW  
odc =  
tPERIOD  
O
UTPUT  
R
ISE/FALL  
T
IME  
O
UTPUT  
D
UTY  
CYCLE/PULSE WIDTH/PERIOD  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
7
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8430-61 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10 µF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50transmission lines. Matched impedance techniques  
tion for LVPECL outputs.The two different layouts mentioned should be used to maximize operating frequency and mini-  
are recommended only as guidelines.  
mize signal distortion. There are a few simple termination  
schemes. Figures 3A and 3B show two different layouts which  
FOUT and nFOUT are low impedance follower outputs that are recommended only as guidelines. Other suitable clock lay-  
generate ECL/LVPECL compatible outputs.Therefore, termi- outs may exist and it would be recommended that the board  
nating resistors (DC current path to ground) or current sources designers simulate to guarantee compatibility across all printed  
must be used for functionality.These outputs are designed to circuit and clock component process variations.  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
8
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
CRYSTAL INPUT INTERFACE  
The ICS8430-61 has been characterized with 18pF parallel error. These same capacitor values will tune any 18pF paral-  
resonant crystals. The capacitor values, C1 and C2, shown lel resonant crystal over the frequency range and other pa-  
in Figure 4 below were determined using a 25MHz, 18pF par- rameters specified in this data sheet.The optimum C1 and C2  
allel resonant crystal and were chosen to minimize the ppm values can be slightly adjusted for different board layouts.  
XTAL_IN  
C1  
22p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
ICS8430-61  
Figure 4. CRYSTAL INPUt INTERFACE  
LAYOUT GUIDELINE  
The schematic of the ICS8430-61 layout example used in this The layout in the actual system will depend on the selected  
layout guideline is shown in Figure 5A. The ICS8430-61 rec- component types, the density of the components, the density  
ommended PCB board layout for this example is shown in of the traces, and the stack up of the P.C. board.  
Figure 5B. This layout example is used as a general guideline.  
C1  
C2  
X1  
U1  
VCC  
1
24  
R7  
10  
M5  
M6  
M7  
M8  
N0  
N1  
N2  
VEE  
XTAL_IN  
REF_IN  
nXTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
REF_IN  
XTAL_SEL  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
C11  
C16  
10u  
0.01u  
8430-61  
VCC  
R1  
125  
R3  
125  
Zo = 50 Ohm  
IN+  
IN-  
C14  
0.1u  
TL1  
+
-
C15  
0.1u  
Zo = 50 Ohm  
TL2  
R2  
84  
R4  
84  
FIGURE 5A. SCHEMATIC OF RECOMMENDED LAYOUT  
www.icst.com/products/hiperclocks.html  
8430AY-61  
REV. A JULY 22, 2004  
9
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
• The traces with 50transmission lines TL1 andTL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
• Keep the clock trace on the same layer.Whenever pos-  
sible, avoid any vias on the clock traces. Any via on the  
trace can affect the trace characteristic impedance and  
hence degrade signal quality.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor.Maximize the number of vias between power (ground)  
and the pads.This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to the VCCA pin as possible.  
The matching termination resistors R1, R2, R3 and R4 should  
be located as close to the receiver input pins as possible. Other  
termination schemes can also be used but are not shown in  
this example.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should be  
arranged to achieve the best clock signal quality.Poor clock signal  
quality can degrade the system performance or cause system fail-  
ure. In the synchronous high-speed digital system, the clock signal  
is less tolerable to poor signal quality than other signals. Any ring-  
ing on the rising or falling edge or excessive ring back can cause  
system failure. The trace shape and the trace delay might be re-  
stricted by the available space on the board and the component  
location.While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL_IN) and 25 (XTAL_OUT).The trace length between the  
X1 and U1 should be kept to a minimum to avoid unwanted para-  
sitic inductance and capacitance. Other signal traces should not  
be routed near the crystal traces.  
GND  
C1  
C2  
VCC  
X1  
VIA  
U1  
PIN 1  
C16  
VCCA  
C11  
R7  
Close to the input  
pins of the  
receiver  
R1  
R3  
R2  
R4  
C15  
TL1  
C14  
TL1N  
TL1, TL21N are 50 Ohm  
traces and equal length  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS8430-61  
www.icst.com/products/hiperclocks.html  
8430AY-61  
REV. A JULY 22, 2004  
10  
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8430-61.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8430-61 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 155mA = 537.1mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 537.1mW + 60mW = 597.1mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 8 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.597W * 42.1°C/W = 95°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 8. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
11  
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
12  
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 9. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8430-61 is: 4258  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
13  
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 10. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
14  
ICS8430-61  
Integrated  
Circuit  
Systems, Inc.  
500MH  
Z
, CRYSTAL  
-
TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 11. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8430AY-61  
ICS8430AY-61T  
ICS8430AY-61  
ICS8430AY-61  
32 Lead LQFP  
32 Lead LQFP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8430AY-61  
www.icst.com/products/hiperclocks.html  
REV. A JULY 22, 2004  
15  

相关型号:

ICS8430-62

500MHz, Crystal-to-3.3V, 2.5V Differential LVPECL Frequency Synthesizer
IDT

ICS8430-71B

700MHZ, LOW JITTER, CRYSTAL INTERFACE / LVCMOS-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430002

High-Performance Fractional-N Frequency Synthesizer
IDT

ICS843001

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21L

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001AG-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG-21LF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG-21LFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG-21T

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI