ICS843252AGLF [ICSI]

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER; FEMTOCLOCKS ™ CRYSTAL - TO- 3.3V LVPECL频率合成器
ICS843252AGLF
型号: ICS843252AGLF
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
FEMTOCLOCKS ™ CRYSTAL - TO- 3.3V LVPECL频率合成器

文件: 总17页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
FEATURES  
GENERAL DESCRIPTION  
Fully integrated PLL  
The ICS84314-02 is a general purpose quad  
ICS  
output frequency synthesizer and a member of  
the HiPerClockS™family of High Performance  
Four differential 3.3V or 2.5V LVPECL outputs  
HiPerClockS™  
Clock Solutions from ICS.When the device uses Selectable crystal oscillator interface  
parallel loading, the M bits are programmable and  
or LVCMOS/LVTTLTEST_CLK input  
Output frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
the output divider is hard-wired for divide by 2 thus providing  
a frequency range of 125MHz to 350MHz. In serial program-  
ming mode, the M bits are programmable and the output  
divider can be set for either divide by 1, 2, 4 or divide by 8,  
providing a frequency range of 31.25MHz to 700MHz.  
Additionally, the device supports spread spectrum clocking  
(SSC) for minimizing Electromagnetic Interference (EMI).The  
low cycle-cycle jitter and broad frequency range of the  
ICS84314-02 make it an ideal clock generator for a variety of  
demanding applications which require high performance.  
Supports Spread Spectrum Clocking (SSC)  
Parallel interface for programming counter  
and output dividers during power-up  
Serial 3 wire interface  
Cycle-to-cycle jitter: 20ps (typical)  
Output skew: TBD  
Output duty cycle: TBD  
Full 3.3V or mixed 3.3V core, 2.5V output operating supply  
0°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS-complaint  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
32 31 30 29 28 27 26 25  
VCO_SEL  
XTAL_SEL  
M4  
M5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
TEST_CLK  
XTAL_SEL  
VCCA  
TEST_CLK  
0
ICS84314-02  
32-Lead LQFP  
7mm x 7mm x 1.4mm  
package body  
Y Package  
M6  
M7  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
XTAL_IN  
1
OSC  
M8  
XTAL_OUT  
VEE  
÷ 16  
VCC  
VCCO  
TopView  
VCCO  
Q0  
nQ0  
9
10 11 12 13 14 15 16  
PLL  
Output Divider N  
÷1 Serial Mode  
÷2 Parallel/Serial Mode  
(Power-up Default)  
÷4 Serial Mode  
PHASE DETECTOR  
Q1  
nQ1  
MR  
0
1
VCO  
Q2  
nQ2  
÷8 Serial Mode  
Q3  
nQ3  
÷ M  
÷2  
S_LOAD  
S_DATA  
S_CLOCK  
CONFIGURATION  
INTERFACE  
LOGIC  
nP_LOAD  
M0:M8  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
1
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes  
operation using a 16MHz crystal. Valid PLL loop divider  
values for different crystal or input frequencies are defined  
in the Input Frequency Characteristics, Table 5, NOTE 1.  
nP_LOAD input is initially LOW. The data on inputs M0 through  
M8 is passed directly to the M divider. On the LOW-to-HIGH tran-  
sition of the nP_LOAD input, the data is latched and the M divider  
remains loaded until the next LOW transition on nP_LOAD or until  
a serial event occurs. As a result, the M bits can be hardwired to  
set the M divider to a specific default state that will automatically  
occur during power-up. In parallel mode, the N output divider is  
set to 2. In serial mode, the N output divider can be set for either  
÷1, ÷2, ÷4 or ÷8. The relationship between the VCO frequency,  
The ICS84314-02 features a fully integrated PLL and there-  
fore requires no external components for setting the loop  
bandwidth. A parallel-resonant, fundamental crystal is used  
as the input to the on-chip oscillator.The output of the os-  
cillator is divided by 16 prior to the phase detector.With a  
16MHz crystal, this provides a 1MHz reference frequency.  
The VCO of the PLL operates over a range of 250MHz to  
700MHz.The output of the M divider is also applied to the  
phase detector.  
the crystal frequency and the M divider is defined as follows:  
fxtal  
16  
x 2M  
fVCO =  
The M value and the required values of M0 through M8 are shown  
in Table 3B, Programmable VCO Frequency Function Table.Valid  
M values for which the PLL will achieve lock for a 16MHz refer-  
ence are defined as 125 M 350. The frequency out  
The phase detector and the M divider force the VCO output  
frequency to be 2M times the reference frequency by ad-  
justing the VCO control voltage. Note that for some values  
of M (either too high or too low), the PLL will not achieve  
lock. The output of the VCO is scaled by a divider prior to  
being sent to each of the LVPECL output buffers.The divider  
provides a 50% output duty cycle.  
is defined as follows: fout =  
fVCO x 1 = fxtal x 2M x 1  
16  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW.The shift register is loaded by sampling the S_DATA bits  
with the rising edge of S_CLOCK.The contents of the shift regis-  
ter are loaded into the M divider and N output divider when  
S_LOAD transitions from LOW-to-HIGH.The M divide and N out-  
put divide values are latched on the HIGH-to-LOW transition of  
S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is  
passed directly to the M divider and N output divider on each  
rising edge of S_CLOCK.  
The programmable features of the ICS84314-02 support  
two input modes to program the M divider. The two input  
operational modes are parallel and serial. Figure 1 shows  
the timing diagram for each mode. In parallel mode, the  
S
ERIAL  
L
OADING  
S_CLOCK  
S_DATA  
S_LOAD  
*NULL *NULL SSC0 **N1 **N0 M8  
M7  
M6  
M5  
M4  
M3 M2  
M1  
M0  
t
t
H
S
nP_LOAD  
t
S
P
ARALLEL LOADING  
M0:M8  
M, N  
nP_LOAD  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
TABLE 1A. N OUTPUT DIVIDER FUNCTION TABLE (SERIAL LOAD)  
TABLE 1B. SSC FUNCTION TABLE  
N1 Logic Value N0 Logic Value  
N Output Divide  
SSC0  
SSC State  
Off (Power-up Default)  
TBD  
0
0
1
1
0
1
0
1
÷1  
0
1
÷2 (Power-up Default)  
÷4  
÷8  
*NOTE: The NULL timing slot must be observed.  
**NOTE: “N” can only be controlled through serial loading.  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
2
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
TABLE 2. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 2, 5  
29, 30, 31  
M4, M5, M8,  
M0, M1, M2  
Input Pulldown  
M divider inputs. Data latched on LOW-to-HIGH transition  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
3, 4, 32  
6
M6, M7, M3  
VEE  
Input  
Power  
Power  
Power  
Output  
Output  
Output  
Output  
Pullup  
Negative supply pin.  
7
VCC  
Core power supply pin.  
8, 17  
9, 10  
11, 12  
13, 14  
15, 16  
VCCO  
Output supply pins.  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Differential output for the synthesizer. LVPECL interface levels.  
Differential output for the synthesizer. LVPECL interface levels.  
Differential output for the synthesizer. LVPECL interface levels.  
Differential output for the synthesizer. LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs Qx to go low and the inverted  
18  
MR  
Input Pulldown outputs nQx to go high. When logic LOW, the internal dividers and  
the outputs are enabled. Assertion of MR does not affect loaded  
M values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
19  
20  
S_CLOCK  
S_DATA  
Input Pulldown  
Input Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
Analog supply pin.  
Selects between the crystal oscillator or test clock as the PLL  
reference source. Selects XTAL inputs when HIGH. Selects  
TEST_CLK when LOW. LVCMOS / LVTTL interface levels.  
21  
22  
S_LOAD  
VCCA  
Input Pulldown  
Power  
Input  
23  
XTAL_SEL  
TEST_CLK  
Pullup  
24  
Input Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
25, 26  
Input  
Parallel load input. Determines when data present at M8:M0  
is loaded into the M divider. LVCMOS / LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
28  
nP_LOAD  
VCO_SEL  
Input Pulldown  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 3. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
3
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
TABLE 4A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
X
S_LOAD  
S_CLOCK  
S_DATA  
H
L
X
L
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data  
Data on M inputs passed directly to the M divider.  
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
Data  
X
L
L
X
L
X
H
H
Data  
Data  
X
L
L
L
H
H
H
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 4B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
0
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
250  
252  
254  
256  
125  
126  
127  
128  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
696  
698  
700  
348  
349  
350  
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input  
frequency of 16MHz.  
TABLE 4C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE (SERIAL PROGRAMMING MODE ONLY)  
Input  
Output Frequency (MHz)  
Q0:Q3, nQ0:nQ3  
N1 Logic  
N0 Logic  
N Divide  
Minimum  
250  
Maximum  
700  
0
0
1
1
0
1
0
1
1
2
4
8
125  
350  
62.5  
175  
31.25  
87.5  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
4
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
TBD  
TBD  
mA  
mA  
ICCA  
TABLE 5B. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
2.625  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
2.375  
2.5  
V
TBD  
TBD  
mA  
mA  
ICCA  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
5
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
TABLE 5C. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol  
VIH  
Parameter  
Input High Voltage  
Input Low Voltage  
M0:M2, M4, M5, M8, MR,  
Test Conditions  
Minimum Typical Maximum Units  
2
VCC + 0.3  
0.8  
V
V
VIL  
-0.3  
nP_LOAD, S_CLOCK,  
S_DATA, S_LOAD  
M3, M6, M7,  
V
CC = VIN = 3.465V  
150  
µA  
Input  
High Current  
IIH  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
5
µA  
µA  
XTAL_SEL, VCO_SEL  
TEST_CLK  
200  
M0:M2, M4, M5, M8, MR,  
nP_LOAD, S_CLOCK,  
S_DATA, S_LOAD  
VCC = 3.465V,  
VIN = 0V  
-5  
µA  
µA  
Input  
Low Current  
IIL  
VCC = 3.465V,  
VIN = 0V  
M3, M6, M7,  
XTAL_SEL, VCO_SEL  
-150  
TABLE 5D. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V. See "Parameter Measurement Information" section,  
"Output Load Test Circuit" diagrams.  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
10  
40  
40  
50  
MHz  
MHz  
MHz  
XTAL_IN, XTAL_OUT;  
NOTE 1  
fIN  
Input Frequency  
12  
S_CLOCK  
NOTE 1: For the input crystal and reference frequency range, the M value must be set for the VCO to operate within the  
250MHz to 700MHz range. Using the minimum input frequency of 12MHz, valid values of M are 167 M 466.  
Using the maximum frequency of 40MHz, valid values of M are 50 M 140.  
TABLE 7. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
40  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
6
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
TABLE 8A. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FMAX  
Output Frequency Range  
31.25  
700  
MHz  
ps  
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
20  
TBD  
TBD  
460  
ps  
ps  
20% to 80%  
ps  
M to nP_LOAD  
5
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M to nP_LOAD  
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
ns  
FM  
SSC Modulation Frequency; NOTE 4  
SSC Modulation Factor; NOTE 4  
Spectral Reduction; NOTE 4  
Output Duty Cycle  
30  
33.33  
0.6  
kHz  
%
FMF  
0.4  
10  
50  
SSCred  
odc  
7
dB  
%
tLOCK  
PLL Lock Time  
1
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using crystal inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Spread Spectrum clocking enabled.  
TABLE 8B. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 2.5V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FMAX  
Output Frequency Range  
31.25  
700  
MHz  
ps  
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
20  
TBD  
TBD  
460  
ps  
ps  
20% to 80%  
ps  
M to nP_LOAD  
5
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M to nP_LOAD  
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
ns  
FM  
SSC Modulation Frequency; NOTE 4  
SSC Modulation Factor; NOTE 4  
Spectral Reduction; NOTE 4  
Output Duty Cycle  
30  
33.33  
0.6  
kHz  
%
FMF  
0.4  
10  
50  
SSCred  
odc  
7
dB  
%
tLOCK  
PLL Lock Time  
1
ms  
See notes in Table 8A above.  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
7
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
2.8V 0.04V  
2V  
SCOPE  
SCOPE  
VCC  
VCCA  
,
VCC  
VCCA, VCCO  
,
Qx  
Qx  
VCCO  
LVPECL  
LVPECL  
VEE  
nQx  
nQx  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT  
nQx  
Qx  
nQx  
Qx  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
tsk(o)  
1000 Cycles  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
VOH  
VREF  
80%  
tF  
80%  
VSWING  
20%  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
Clock  
20%  
Outputs  
tR  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
nQ0:nQ3  
OUTPUT RISE/FALL TIME  
Q0:Q3  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
8
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84314-02 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUT:  
OUTPUTS:  
LVPECL OUTPUT  
For applications not requiring the use of the crystal oscillator All unused LVPECL outputs can be left floating. We  
input, both XTAL_IN and XTAL_OUT can be left floating. recommend that there is no trace attached. Both sides of the  
Though not required, but for additional protection, a 1kΩ differential output pair should either be left floating or  
resistor can be tied from XTAL_IN to ground.  
terminated.  
TEST_CLK INPUT:  
For applications not requiring the use of the test clock, it can  
be left floating. Though not required, but for additional  
protection, a 1kΩ resistor can be tied from the TEST_CLK to  
ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
9
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
CRYSTAL INPUT INTERFACE  
The ICS84314-02 has been characterized with 18pF parallel lel resonant crystal and were chosen to minimize the ppm  
resonant crystals. The capacitor values, C1 and C2, shown in error.The optimum C1 and C2 values can be slightly adjusted  
Figure 3 below were determined using a 25MHz, 18pF paral- for different board layouts.  
XTAL_IN  
C1  
22p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 3. CRYSTAL INPUt INTERFACE  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50Ω transmission lines. Matched impedance techniques  
tion for LVPECL outputs.The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 4A and 4B show two different lay-  
outs which are recommended only as guidelines. Other suit-  
FOUT and nFOUT are low impedance follower outputs that able clock layouts may exist and it would be recommended  
generate ECL/LVPECL compatible outputs.Therefore, terminat- that the board designers simulate to guarantee compatibility  
ing resistors (DC current path to ground) or current sources across all printed circuit and clock component process varia-  
must be used for functionality. These outputs are designed to tions.  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUTTERMINATION  
FIGURE 4B. LVPECL OUTPUTT ERMINATION  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
10  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 5A and Figure 5B show examples of termination for close to ground level. The R3 in Figure 5A can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 5C.  
minating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very  
2.5V  
VCCO=2.5V  
2.5V  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 5A. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
FIGURE 5B. 2.5V LVPECL DRIVERTERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 5C. 2.5V LVPECLTERMINATION EXAMPLE  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
11  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
LAYOUT GUIDELINE  
The schematic of the ICS84314-02 layout example used in guideline. The layout in the actual system will depend on the  
this layout guideline is shown in Figure 6A. The ICS84314-02 selected component types, the density of the components,  
recommended PCB board layout for this example is shown the density of the traces, and the stack up of the P.C. board.  
in Figure 6B. This layout example is used as a general  
Logic Input Pin Examples  
C1  
X1  
C2  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VCC  
VCC  
ICS84314_02  
24  
RU1  
1K  
RU2  
Not Install  
U1  
VCC  
VCCO  
To Logic  
Input  
pins  
To Logic  
R7  
10  
Input  
pins  
1
M4  
M5  
M6  
M7  
T_CLK  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
XTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
VCCO  
VCCA  
C11  
RD1  
Not Install  
RD2  
1K  
M8  
VCC  
C16  
10u  
VEE  
VCC  
VCCO  
0.01u  
VCCO  
C3  
0.1u  
C5  
0.1u  
C4  
0.1u  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
R2  
50  
R1  
50  
VCC=3.3V  
VCCO=3.3V  
C6 (Option)  
R3  
50  
0.1u  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
R5  
50  
R4  
50  
C7 (Option)  
0.1u  
R6  
50  
FIGURE 6A. SCHEMATIC OF 3.3V/3.3V RECOMMENDED LAYOUT  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
12  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
• The traces with 50Ω transmission lines TL1 and TL2  
at FOUT and nFOUT should have equal delay and  
run adjacent to each other. Avoid sharp angles on the  
clock trace. Sharp angle turns cause the characteris-  
tic impedance to change on the transmission lines.  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as  
possible to the power pins. If space allows, placing the  
decoupling capacitor at the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin generated by the via.  
• Keep the clock trace on the same layer.Whenever pos-  
sible, avoid any vias on the clock traces. Any via on the  
trace can affect the trace characteristic impedance and  
hence degrade signal quality.  
To prevent cross talk, avoid routing other signal traces  
in parallel with the clock traces. If running parallel traces  
is unavoidable, allow more space between the clock  
trace and the other signal trace.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor.Maximize the number of vias between power (ground)  
and the pads. This can reduce the inductance between the  
power (ground) plane and the component power (ground) pins.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to the VCCA as possible.  
The matching termination resistors R1, R2, R3 and R4  
should be located as close to the receiver input pins as  
possible. Other termination schemes can also be used but  
are not shown in this example.  
CLOCKT RACES ANDTERMINATION  
The component placements, locations and orientations should  
be arranged to achieve the best clock signal quality. Poor clock  
signal quality can degrade the system performance or cause  
system failure. In the synchronous high-speed digital system,  
the clock signal is less tolerable to poor signal quality than other  
signals. Any ringing on the rising or falling edge or excessive  
ring back can cause system failure. The trace shape and the  
trace delay might be restricted by the available space on the  
board and the component location. While routing the traces, the  
clock signal traces should be routed first and should be locked  
prior to routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the  
pins 25 (XTAL_IN) and 26 (XTAL_OUT). The trace length be-  
tween the X1 and U1 should be kept to a minimum to avoid  
unwanted parasitic inductance and capacitance. Other sig-  
nal traces should not be routed near the crystal traces.  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS84314-02  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
13  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
SPREAD SPECTRUM  
Spread-spectrum clocking is a frequency modulation tech- The ICS84314-02 triangle modulation frequency deviation will  
nique for EMI reduction. When spread-spectrum is enabled, not exceed 0.6% down-spread from the nominal clock fre-  
a 30kHz triangle waveform is used with 0.5% down-spread quency (+0.0%/-0.5%). An example of the amount of down  
(+0.0% / -0.5%) from the nominal 200MHz clock frequency. spread relative to the nominal clock frequency can be seen in  
An example of a triangle frequency modulation profile is shown the frequency domain, as shown in Figure 7B. The ratio of  
in Figure 7A below. The ramp profile can be expressed as: this width to the fundamental frequency is typically 0.4%,  
and will not exceed 0.6%. The resulting spectral reduction  
• Fnom = Nominal Clock Frequency in Spread OFF mode  
will be greater than 7dB, as shown in Figure 7B. It is impor-  
(200MHz with 16MHz IN)  
tant to note the ICS84314-02 7dB minimum spectral reduc-  
• Fm = Nominal Modulation Frequency (30kHz)  
tion is the component-specific EMI reduction, and will not  
δ = Modulation Factor (0.5% down spread)  
necessarily be the same as the system EMI reduction.  
1
(1 - δ) fnom + 2 fm x δ x fnom x t when 0 < t <  
,
2 fm  
1
1
fm  
(1 - δ) fnom - 2 fm x δ x fnom x t when  
< t <  
2 fm  
Δ − 10 dBm  
Fnom  
B
A
(1 - δ) Fnom  
δ = 0.4%  
0.5/fm  
1/fm  
FIGURE 6A. TRIANGLE FREQUENCY MODULATION  
FIGURE 6B. 200MHZ CLOCK OUTPUT IN FREQUENCY DOMAIN  
(A) SPREAD-SPECTRUM OFF  
(B) SPREAD-SPECTRUM ON  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
14  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 9. θJAVS. AIR FLOWT ABLE FOR 32 LEAD LQFP  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84314-02 is: 5051  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
15  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 10. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
0°  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
16  
PRELIMINARY  
ICS84314-02  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL  
FREQUENCY SYNTHESIZER W/FANOUT BUFFER  
TABLE 11. ORDERING INFORMATION  
Part/Order Number  
ICS84314AY-02  
Marking  
Package  
Shipping Packaging Temperature  
ICS84314AY02  
ICS84314AY02  
ICS84314A02L  
ICS84314A02L  
32 Lead LQFP  
tray  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
ICS84314AY-02T  
ICS84314AY-02LF  
ICS84314AY-02LFT  
32 Lead LQFP  
1000 tape & reel  
tray  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements  
are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84314AY-02  
www.icst.com/products/hiperclocks.html  
REV.B NOVEMBER 17, 2005  
17  

相关型号:

ICS843252AGLFT

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843252AGT

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843256

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER W/INTEGRATED FANOUT BUFFER
ICSI

ICS843256AG

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER W/INTEGRATED FANOUT BUFFER
ICSI

ICS843256AGI

Clock Generator, 333.33MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24
IDT

ICS843256AGILF

Clock Generator, 333.33MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24
IDT

ICS843256AGILFT

Clock Generator, 333.33MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24
IDT

ICS843256AGIT

Clock Generator, 333.33MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24
IDT

ICS843256AGLF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER W/INTEGRATED FANOUT BUFFER
ICSI

ICS843256AGLFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER W/INTEGRATED FANOUT BUFFER
ICSI

ICS843256AGT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER W/INTEGRATED FANOUT BUFFER
ICSI

ICS843256AM

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER W/INTEGRATED FANOUT BUFFER
ICSI