ICS8442AYIT [ICSI]

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER; 700MHZ ,晶体振荡器,差分LVDS频率合成器
ICS8442AYIT
型号: ICS8442AYIT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
700MHZ ,晶体振荡器,差分LVDS频率合成器

振荡器 晶体振荡器 外围集成电路 时钟
文件: 总15页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS8442I is a general purpose, dual output Dual differential LVDS outputs  
ICS  
Crystal-to-Differential LVDS High Frequency  
Selectable crystal oscillator interface or  
LVCMOS/LVTTLTEST_CLK  
HiPerClockS™  
Synthesizer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS. The ICS8442I has a selectable TEST_CLK  
Output frequency range: 31.25MHz to 700MHz  
Crystal input frequency range: 10MHz to 25MHz  
VCO range: 250MHz to 700MHz  
or crystal input. The TEST_CLK input accepts LVCMOS or  
LVTTL input levels and translates them to LVDS levels. The  
VCO operates at a frequency range of 250MHz to 700MHz.  
The VCO frequency is programmed in steps equal to the value  
of the input reference or crystal frequency.TheVCO and output  
frequency can be programmed using the serial or parallel  
interface to the configuration logic. The low phase noise  
characteristics of the ICS8442I makes it an ideal clock source  
for Gigabit Ethernet and Sonet applications.  
Parallel or serial interface for programming counter  
and output dividers  
RMS period jitter: 3.5ps (typical)  
Cycle-to-cycle jitter: 18ps (typical)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
XTAL_IN  
1
M5  
M6  
M7  
M8  
N0  
N1  
nc  
OSC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
XTAL_OUT  
TEST_CLK  
XTAL_SEL  
VDDA  
XTAL_OUT  
ICS8442I  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
÷ 1  
÷ 2  
÷ 4  
÷ 8  
MR  
0
1
GND  
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
9
10 11 12 13 14 15 16  
÷ M  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
TopView  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
1
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
FUNCTIONAL DESCRIPTION  
cific default state that will automatically occur during power-  
up. The TEST output is LOW when operating in the parallel  
input mode.The relationship between the VCO frequency, the  
crystal frequency and the M divider is defined as follows:  
NOTE: The functional description that follows describes op-  
eration using a 25MHz crystal. Valid PLL loop divider values  
for different crystal or input frequencies are defined in the In-  
put Frequency Characteristics, Table 5, NOTE 1.  
fVCO = fxtal x M  
The ICS8442I features a fully integrated PLL and therefore  
requires no external components for setting the loop band-  
width. A fundamental crystal is used as the input to the on-  
chip oscillator.The output of the oscillator is fed into the phase  
detector. A 25MHz crystal provides a 25MHz phase detector  
reference frequency. The VCO of the PLL operates over a  
range of 250MHz to 700MHz. The output of the M divider is  
also applied to the phase detector.  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table.Valid M values for which the PLL will achieve lock for a  
25MHz reference are defined as 10 M 28. The frequency  
out is defined as follows:  
FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the  
shift register are loaded into the M divider and N output di-  
vider when S_LOAD transitions from LOW-to-HIGH. The M  
divide and N output divide values are latched on the HIGH-to-  
LOW transition of S_LOAD. If S_LOAD is held HIGH, data at  
the S_DATA input is passed directly to the M divider and N  
output divider on each rising edge of S_CLOCK. The serial  
mode can be used to program the M and N bits and test bits  
T1 and T0.The internal registersT0 and T1 determine the state  
of the TEST output as follows:  
The phase detector and the M divider force the VCO output fre-  
quency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock.The output of the  
VCO is scaled by a divider prior to being sent to each of the  
LVDS output buffers.The divider provides a 50% output duty cycle.  
The programmable features of the ICS8442I support two in-  
put modes to program the M divider and N output divider.The  
two input operational modes are parallel and serial. Figure 1  
shows the timing diagram for each mode. In parallel mode,  
the nP_LOAD input is initially LOW. The data on inputs M0  
through M8 and N0 and N1 is passed directly to the M divider  
and N output divider. On the LOW-to-HIGH transition of the  
nP_LOAD input, the data is latched and the M divider remains  
loaded until the next LOW transition on nP_LOAD or until a  
serial event occurs. As a result, the M and N bits can be  
hardwired to set the M divider and N output divider to a spe-  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS FOUT  
S
ERIAL LOADING  
S_CLOCK  
T1  
T0  
*NULL N1  
N0 M8  
M7  
M6  
M5 M4  
M3 M2  
M1  
M0  
S_DATA  
t
t
H
S
S_LOAD  
nP_LOAD  
t
S
PARALLEL LOADING  
M0:M8, N0:N1  
nP_LOAD  
M, N  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
2
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transistion  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4,  
28, 29,  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines output divider value as defined in Table 3C  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
GND  
Power supply ground.  
Test output which is ACTIVE in the serial mode of operation. Output  
driven LOW in parallel mode. LVCMOS / LVTTL interface levels.  
9
TEST  
VDD  
Output  
Power  
10, 13  
11, 12  
14, 15  
Core supply pins.  
FOUT1, nFOUT1 Output  
FOUT0, nFOUT0 Output  
Differential output for the synthesizer. LVDS interface levels.  
Differential output for the synthesizer. LVDS interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not effect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VDDA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between crystal oscillator or test inputs as the PLL reference  
22  
XTAL_SEL  
Input  
Pullup  
source. Selects XTAL inputs when HIGH. Selects TEST_CLK when  
LOW. LVCMOS / LVTTL interface levels.  
23  
TEST_CLK  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input,  
XTAL_OUT is the output.  
24, 25  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
26  
nP_LOAD  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
3
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
Reset. When HIGH, forces the outputs to a differential  
LOW state (FOUTx = LOW and nFOUTx = HIGH), but  
does not effect loaded M, N, and T values.  
H
L
X
L
X
X
X
X
X
X
X
X
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
Data Data  
Data Data  
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
275  
10  
11  
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency  
of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
N0  
0
Minimum  
250  
Maximum  
700  
0
0
1
1
1
2
4
8
1
125  
350  
0
62.5  
175  
1
31.25  
87.5  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
4
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
-0.5V to VDD + 0.5V  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
I
Outputs, VO  
PackageThermal Impedance, θ  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VDD  
VDDA  
IDD  
Core Supply Voltage  
3.465  
3.465  
155  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
mA  
mA  
IDDA  
20  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
M0-M8, N0, N1, MR, nP_LOAD,  
S_CLOCK, S_DATA, S_LOAD,  
XTAL_SEL, VCO_SEL  
2
VDD + 0.3  
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
2
V
DD + 0.3  
0.8  
M0-M8, N0, N1, MR, nP_LOAD,  
S_CLOCK, S_DATA, S_LOAD,  
XTAL_SEL, VCO_SEL  
-0.3  
-0.3  
V
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
V
M0-M4, M6-M8, N0, N1, MR,  
nP_LOAD, S_CLOCK, S_DATA,  
S_LOAD,  
VDD = VIN = 3.465V  
150  
5
µA  
Input  
IIH  
High Current  
M5, XTAL_SEL, VCO_SEL  
VDD = VIN = 3.465V  
M0-M4, M6-M8, N0, N1, MR,  
nP_LOAD, S_CLOCK, S_DATA,  
S_LOAD,  
V
DD = 3.465V,  
VIN = 0V  
-5  
µA  
Input  
IIL  
Low Current  
VDD = 3.465V,  
VIN = 0V  
M5, XTAL_SEL, VCO_SEL  
-150  
2.6  
Output  
VOH  
TEST; NOTE 1  
TEST; NOTE 1  
V
V
High Voltage  
Output  
Low Voltage  
VOL  
0.5  
NOTE 1: Outputs terminated with 50Ω to VDD/2. See Parameter Measurement Information section,  
"3.3V Output Load Test Circuit".  
TABLE 4C. LVDS DC CHARACTERISTICS, VDD = VDDA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VOD  
Differential Output Voltage  
250  
450  
600  
50  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.125  
1.4  
1.6  
50  
Δ VOS  
VOS Magnitude Change  
mV  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
5
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
10  
25  
25  
50  
MHz  
MHz  
MHz  
XTAL_IN, XTAL_OUT;  
NOTE 1  
fIN  
Input Frequency  
10  
S_CLOCK  
NOTE 1: For the input crystal and TEST_CLK frequency range the M value must be set for the VCO to operate within the  
250MHz to 700MHz range. Using the minimum input frequency of 10MHz valid values of M are 25 M 70. Using the  
maximum frequency of 25MHz valid values of M are 10 M 28.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
25  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 7. AC CHARACTERISTICS, VDD = VDDA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
FOUT  
Output Frequency  
31.25  
700  
32  
N = 1, 2  
N = 4  
18  
29  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1, 3  
55  
ps  
tjit(per)  
tsk(o)  
tR / tF  
Period Jitter, RMS; NOTE 1, 3  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
3.5  
11  
ps  
15  
ps  
20% to 80%  
150  
750  
ps  
M, N to nP_LOAD  
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
47  
ns  
odc  
tPW  
Output Duty Cycle; NOTE 4  
Output Pulse Width  
PLL Lock Time  
N > 1  
N = 1  
53  
%
tPeriod/2 - 150  
tPeriod/2 + 150  
1
ps  
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: In the Application Section, please refer to the application note, "Differential Duty Cycle Improvement".  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
6
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
VDD  
out  
out  
SCOPE  
Qx  
DC Input  
LVDS  
Power Supply  
Float GND  
LVDS  
+
-
nQx  
VOS/Δ VOS  
OFFSET VOLTAGE SETUP  
3.3V OUTPUT LOAD TEST CIRCUIT  
VDD  
nFOUTx  
FOUTx  
out  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
nFOUTy  
FOUTy  
out  
tsk(o)  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
OUTPUT SKEW  
VOH  
VREF  
nFOUT0,  
nFOUT1  
FOUT0,  
FOUT1  
VOL  
tcycle n  
tcycle n+1  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
Cycle-to-Cycle Jitter  
nFOUT0, nFOUT1  
Period Jitter  
80%  
80%  
FOUT0, FOUT1  
VSWING  
tPW  
Clock  
20%  
20%  
tPERIOD  
Outputs  
tF  
tR  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
7
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
STORAGE AREA NETWORKS  
A variety of technologies are used for interconnection of the quencies used as well as the settings for the ICS8442I to gen-  
elements within a SAN.The tables below lists the common fre- erate the appropriate frequency.  
Table 8. Common SANs Application Frequencies  
Reference Frequency to SERDES  
(MHz)  
Crystal Frequency  
(MHz)  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.8125  
125, 250  
25, 19.53125  
16.6015625, 25  
25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Infiniband  
2.5 GHz  
Table 9. Configuration Details for SANs Applications  
ICS8442I  
ICS8442I  
Interconnect  
Technology  
Crystal Frequency  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M & N Settings  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS8442I provides sepa-  
rate power supplies to isolate any high switching noise from  
the outputs to the internal PLL. VDD and VDDA, should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, better power supply  
isolation is required. Figure 2 illustrates how a 10Ω along  
|with a 10μF and a .01μF bypass capacitor should be  
connected to each VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
10Ω  
VDDA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
8
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
CRYSTAL INPUT INTERFACE  
A crystal can be characterized for either series or parallel mode suitable for most applications. Additional accuracy can be  
operation. The ICS8442I has a built-in crystal oscillator circuit. achieved by adding two small capacitors C1 and C2 as shown in  
This interface can accept either a series or parallel crystal without Figure 3.Typical results using parallel 18pF crystals are shown  
additional components and generate frequencies with accuracy inTable 10.  
XTAL_IN  
C1  
18p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 3. CRYSTAL INPUt INTERFACE  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 4. In a 100Ω differ- put. For a multiple LVDS outputs buffer, if only partial outputs  
ential transmission line environment, LVDS drivers require a are used, it is recommended to terminate the un-used outputs.  
matched load termination of 100Ω across near the receiver in-  
3.3V  
Zo = 50 Ohm  
3.3V  
LVDS_DRIVER  
CLK  
R1  
100  
nCLK  
HiPerClockS  
Zo = 50 Ohm  
100Ω Differential Transmission Line  
FIGURE 4. TYPICAL LVDS DRIVER TERMINATION  
DIFFERENTIAL DUTY CYCLE IMPROVEMENT  
The schematic below is recommended for applications using the  
÷1 output configuration for improving the differential duty cycle.  
Vcc = 3.3V  
R2  
1.3k  
R4  
1.3k  
C1  
Zo = 50  
+
-
R1  
100  
.1uf  
C2  
Zo = 50  
.1uf  
R3  
800  
R5  
800  
LVDS Driver  
Receiver_dif  
FIGURE 5. DIFFERENTIAL DUTY CYCLE IMPROVEMENT  
www.icst.com/products/hiperclocks.html  
8442AYI  
REV. C MAY 10, 2005  
9
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
LAYOUT GUIDELINE  
The schematic of the ICS8442I layout example used in this lay-  
out guideline is shown in Figure 5A. The ICS8442I recommended  
PCB board layout for this example is shown in Figure 5B. This  
layout example is used as a general guideline.The layout in the  
actual system will depend on the selected component types, the  
density of the components, the density of the traces, and the  
stack up of the P.C. board.  
C1  
C2  
X1  
U1  
VDD  
1
2
3
4
5
6
7
8
24  
R7  
10  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
X_OU T  
T_CLK  
nXTAL_SEL  
VDDA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
23  
22  
21  
20  
19  
18  
17  
VDDA  
C11  
C16  
0.01u  
10u  
GND  
ICS8442  
Zo = 50 Ohm  
C14  
0.1u  
+
-
R1  
100  
C15  
0.1u  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
R2  
100  
FIGURE 5A. RECOMMENDED SCHEMATIC LAYOUT  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
10  
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
traces should be routed first and should be locked prior to routing  
other signal traces.  
• The traces with 50Ω transmission linesTL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
POWER AND GROUNDING  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid any vias on the clock traces. Any via on the  
trace can affect the trace characteristic impedance and  
hence degrade signal quality.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor.Maximize the number of vias between power (ground)  
and the pads.This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to theVCCA as possible.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The matching termination resistors R1 and R2 should be located  
as close to the receiver input pins as possible. Other termination  
scheme can also be used but is not shown in this example.  
The component placements, locations and orientations should  
be arranged to achieve the best clock signal quality. Poor clock  
signal quality can degrade the system performance or cause  
system failure. In the synchronous high-speed digital system,  
the clock signal is less tolerable to poor signal quality than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The trace shape and the trace  
delay might be restricted by the available space on the board and  
the component location.While routing the traces, the clock signal  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL_OUT) and 25 (XTAL_IN).The trace length between the  
X1 and U1 should be kept to a minimum to avoid unwanted para-  
sitic inductance and capacitance. Other signal traces should not  
be routed near the crystal traces.  
GND  
C1  
C2  
VDD  
X1  
VIA  
U1  
PIN 1  
C16  
C11  
VDDA  
R7  
Close to the input  
pins of the  
receiver  
For FOUT0/n FOUT0  
output TL1, TL1N are  
50 Ohm traces and  
equal length  
C14  
TL1  
R1  
Same requirement fo  
FOUT1/nFOUT1  
C15  
TL1N  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS8442I  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
11  
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 10. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8442I is: 3662  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
12  
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
13  
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS8442AYI  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS8442AYI  
ICS8442AYI  
TBD  
32 Lead LQFP  
ICS8442AYIT  
32 Lead LQFP  
1000 tape & reel  
tray  
ICS8442AYILF  
ICS8442AYILFT  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
TBD  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
14  
ICS8442I  
700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL  
LVDS FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
T5  
6
Input Frequency Characteristics Table - corrected minimum values from 14MHz to  
10MHz and corrected within the note.  
B
9/17/04  
T6  
T7  
6
6
9
1
Crystal Characteristics - corrected minimum frequency from 14MHz to 10MHz.  
AC Characteristics Table - added Note 4.  
Added Application Note, "Differential Duty Cycle Improvement".  
Changed XTAL1/2 naming convention to XTAL_IN/_OUT throughout the  
datasheet.  
B
12/16/04  
Pin Assignment, corrected pin 24 to read XTAL_OUT from XTAL1 and pin 25 to  
XTAL_IN from XTAL2.  
2
6
6
Updated Figure 1, Parallel & Serial Load Operations diagram.  
Crystal Characteristics Table - added Drive Level  
AC Characteristics Table - changed test conditions for Cycle-to-Cycle Jitter from  
ƒ = 350MHz to N = 1, 2 and ƒ< 350MHz to N = 4.  
Corrected Crystal Input Interface diagram.  
C
T6  
T7  
5/10/05  
9
10  
14  
Updated Schematic Layout diagram.  
Add Lead-Free note to Ordering Information Table.  
T12  
8442AYI  
www.icst.com/products/hiperclocks.html  
REV. C MAY 10, 2005  
15  

相关型号:

ICS8442AYLF

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS8442AYLF

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS8442AYLFT

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS8442AYLFT

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS8442AYT

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS8442AYT

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS8442I

700MHZ, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER
ICSI

ICS844801AGI-24

FEMTOCLOCKS™ CRYSTAL-TO-LVDS 400MHZ FREQUENCY SYNTHESIZER
IDT

ICS844801AGI-24LF

FEMTOCLOCKS™ CRYSTAL-TO-LVDS 400MHZ FREQUENCY SYNTHESIZER
IDT

ICS844801AGI-24LFT

FEMTOCLOCKS™ CRYSTAL-TO-LVDS 400MHZ FREQUENCY SYNTHESIZER
IDT

ICS844801AGI-24T

FEMTOCLOCKS™ CRYSTAL-TO-LVDS 400MHZ FREQUENCY SYNTHESIZER
IDT

ICS844801I-24

FEMTOCLOCKS™ CRYSTAL-TO-LVDS 400MHZ FREQUENCY SYNTHESIZER
IDT