ICS853014 [ICSI]

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER; 低偏移, 1到5 2.5V / 3.3V的差分至LVPECL / ECL扇出缓冲器
ICS853014
型号: ICS853014
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
低偏移, 1到5 2.5V / 3.3V的差分至LVPECL / ECL扇出缓冲器

文件: 总17页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS853014 is a low skew, high performance 5 differential LVPECL/ECL outputs  
ICS  
1-to-5, 2.5V/3.3V Differential-to-LVPECL/ECL  
2 selectable differential LVPECL clock inputs  
HiPerClockS™  
Fanout Buffer and a member of the HiPerClockS™  
family of High Performance Clock Solutions  
from ICS. The ICS853014 has two selectable  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
clock inputs.  
Maximum output frequency: > 2GHz  
Output skew: 13ps (typical)  
Guaranteed output and part-to-part skew characteristics  
make the ICS853014 ideal for those applications  
demanding well defined performance and repeatability.  
Part-to-part skew: 60ps (typical)  
Propagation delay: 460ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.8V to -2.375V  
-40°C to 85°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
nQ1  
Q2  
nQ2  
Q3  
nQ3  
Q4  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
nEN  
VCC  
nPCLK1  
PCLK1  
VBB  
nPCLK0  
PCLK0  
CLK_SEL  
VEE  
D
nEN  
Q
LE  
PCLK0  
nPCLK0  
PCLK1  
0
Q0  
nQ0  
1
nPCLK1  
Q1  
nQ1  
9
10  
CLK_SEL  
nQ4  
Q2  
nQ2  
ICS853014  
20-LeadTSSOP  
Q3  
nQ3  
VBB  
6.5mm x 4.4mm x 0.92mm package body  
G Package  
Q4  
nQ4  
TopView  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
1
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
VEE  
Type  
Description  
Output  
Output  
Output  
Output  
Output  
Power  
Differential output pair. LVPECL / ECL interface levels.  
Differential output pair. LVPECL / ECL interface levels.  
Differential output pair. LVPECL / ECL interface levels.  
Differential output pair. LVPECL / ECL interface levels.  
Differential output pair. LVPECL / ECL interface levels.  
Negative supply pin.  
3, 4  
5, 6  
7, 8  
9, 10  
11  
Clock select input. When HIGH, selects CLK1, nCLK1 inputs.  
Pulldown When LOW, selects CLK0, nCLK0 inputs.  
LVTTL / LVCMOS interface levels.  
12  
CLK_SEL  
Input  
13  
14  
PCLK0  
nPCLK0  
VBB  
Input  
Input  
Pulldown Non-inverting differential LVPECL clock input.  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Bias voltage.  
15  
Output  
Input  
16  
PCLK1  
nPCLK1  
VCC  
Pulldown Non-inverting differential LVPECL clock input.  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Positive supply pins.  
17  
Input  
18, 20  
Power  
Synchronizing clock enable. When LOW, clock outputs follow clock input.  
Pulldown When HIGH, Q outputs are forced low, nQ outputs are forced high.  
LVTTL / LVCMOS interface levels.  
19  
nEN  
Input  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
RPULLDOWN  
RVCC/2  
Parameter  
Test Conditions  
Minimum  
Typical  
75  
Maximum  
Units  
kΩ  
Input Pulldown Resistor  
Pullup/Pulldown Resistors  
50  
kΩ  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
2
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
nEN  
CLK_SEL  
Selected Source  
PCLK0, nPCLK0  
PCLK1, nPCLK1  
PCLK0, nPCLK0  
PCLK1, nPCLK1  
Q0:Q4  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0:nQ4  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
1
1
0
0
0
1
0
1
Enabled  
Enabled  
After nEN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the PCLK0, nPCLK0 and PCLK1, nPCLK1 inputs as  
described in Table 3B.  
Enabled  
Disabled  
nPCLK0, nPCLK1  
PCLK0, PCLK1  
nEN  
nQ0:nQ4  
Q0:Q4  
FIGURE 1. nEN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Q0:Q4  
Input to Output Mode  
Polarity  
PCLK0 or PCLK1 nPCLK0 or nPCLK1  
nQ0:nQ4  
HIGH  
LOW  
0
1
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
3
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (ECL mode,VCC = 0)  
-0.5V to VCC + 0.5V  
Negative SupplyVoltage,VEE  
Inputs,VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sing/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 73.2°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
75  
V
mA  
TABLE 4B. DC CHARACTERISTICS, VCC = 3.3V, VEE = 0V  
-40°C  
Typ  
25°C  
85°C  
Typ  
Symbol Parameter  
Min  
Units  
Max  
Min  
Typ  
Max  
Min  
Max  
2.175 2.275 2.38 2.225 2.295 2.375 2.22 2.295 2.365  
1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63  
V
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
2.075  
1.43  
1.86  
2.36 2.075  
1.765 1.43  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1.98  
1.98  
3.3  
1.86  
1.2  
1.98  
3.3  
1.86  
1.2  
VBB  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
3.3  
V
VCMR  
IIH  
Input  
D0, D1, D2, D3  
150  
150  
150  
µA  
High Current nD0, nD1,n D2, nD3  
-10  
-10  
-10  
µA  
µA  
D0, D1, D2, D3  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nD0, nD1,n D2, nD3  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPLCK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
4
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
1.58  
0.88  
1.56  
0.965  
Min  
Max  
Min  
Max  
1.375 1.475  
0.605 0.745  
1.275  
1.425 1.495 1.57  
0.625 0.72 0.815 0.64 0.735 0.83  
1.42 1.495 1.565  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
1.275  
0.63  
1.56  
1.275  
-0.83  
0.965  
0.63  
0.965 0.63  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
1.2  
2.5  
1.2  
2.5  
1.2  
2.5  
V
VCMR  
IIH  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
High Current nPCLK0, nPCLK1  
-10  
-10  
-10  
µA  
µA  
PCLK0, PCLK1  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK0, nPCLK1  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V  
-40°C  
Typ Max  
25°C  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
Typ Max  
Min  
-1.08  
-1.86  
-1.225  
-1.87  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-1.005  
-1.765  
-0.935  
-1.67  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
-0.94  
-1.535  
-1.535  
Output Voltage Reference;  
NOTE 2  
-1.44  
-1.32  
-1.44  
-1.32  
-1.44  
-1.32  
V
VBB  
Input High Voltage  
Common Mode Range;  
NOTE 3, 4  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
IIH  
IIL  
High Current nPCLK0, nPCLK1  
-10  
-10  
-10  
µA  
µA  
PCLK0, PCLK1  
Input  
Low Current  
-150  
-150  
-150  
nPCLK0, nPCLK1  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
5
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5. AC CHARACTERISTICS, VCC = 2.375V TO 3.8V, TA = -40°C TO 85°C  
-40°C  
25°C  
85°C  
Max Min Typ Max  
>2  
Symbol Parameter  
Units  
Min Typ  
>2  
Max Min Typ  
fMAX  
Output Frequency  
>2  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 5  
355 440  
13  
525  
25  
376  
460  
13  
550 400 500  
595  
25  
tsk(o)  
tsk(pp)  
VPP  
25  
12  
ps  
Part-to-Part Skew; NOTE 3, 5  
Peak-to-Peak Input Voltage; NOTE 4  
105  
105  
130  
ps  
150 800 1800 150 800 1800 150 800 1800  
mV  
ps  
tR/tF  
Output Rise/Fall Time  
Clock Enable Setup Time  
Clock Enable Hold Time  
20% to 80%  
90  
150  
50  
210  
90  
150  
50  
210  
90  
150  
50  
210  
tS  
tH  
100  
100  
200  
100  
200  
ps  
ps  
200 140  
140  
140  
All parameters tested 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: The VCMR and VPP levels should be such that input low voltage never goes below VEE.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
6
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nPCLK0,  
nPCLK1  
VPP  
LVPECL  
VCMR  
Cross Points  
PCLK0,  
PCLK1  
nQx  
VEE  
VEE  
-0.375V to -1.8V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
nQx  
Qx  
PART 1  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK0,  
nPCLK1  
80%  
tF  
80%  
PCLK0,  
PCLK1  
VSWING  
20%  
Clock  
20%  
nQ0:nQ4  
Outputs  
tR  
Q0:Q4  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nPCLK0,  
nPCLK1  
PCLK0,  
PCLK1  
tHOLD  
nEN  
tSET-UP  
SETUP AND HOLD TIME  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
7
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows an example of the differential input that can be  
wired to accept single ended levels. The reference voltage level  
VBB generated from the device is connected to the negative input.  
The C1 capacitor should be located as close as possible to the  
input pin.  
VDD(or VCC)  
CLK_IN  
+
VBB  
-
C1  
0.1uF  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
8
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for 2.5V  
ground level. The R3 in Figure 4B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 4C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
9
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
LVPECL CLOCK INPUT INTERFACE  
The PCLKx /nPCLKx accepts LVPECL, CML, SSTL and other gested here are examples only. If the driver is from another  
differential signals. Both VSWING and VOH must meet the VPP and vendor, use their termination recommendation. Please con-  
sult with the vendor of the driver component to confirm the  
driver termination requirements.  
VCMR input requirements. Figures 5A to 5E show interface  
examples for the HiPerClockS PCLKx/nPCLKx input driven  
by the most common driver types. The input interfaces sug-  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
120  
R2  
120  
FIGURE 5A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 5B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
Zo = 50 Ohm  
Zo = 50 Ohm  
C1  
C2  
LVDS  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 5E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
10  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
SCHEMATIC EXAMPLE  
This application note provides general design guide using  
ICS853014 LVPECL buffer.Figure 6shows a schematic example  
of the ICS853014 LVPECL clock buffer.In this example, the in-  
put is driven by an LVPECL driver.CLK_SEL is set at logic high  
to select PCLK1/nPCLK1 input.  
Zo = 50  
+
Zo = 50  
-
R2  
50  
R1  
50  
U1  
3.3V  
R12 1K  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
9
8
7
6
5
4
3
2
R3  
50  
VEE  
nQ4  
Q4  
nQ3  
Q3  
nQ2  
Q2  
nQ1  
Q1  
3.3V  
C3  
0.1u  
CLK_SEL  
PCLK0  
nPCLK0  
VBB  
PCLK1  
nPCLK1  
VCC  
Zo = 50  
Zo = 50  
3.3V  
Zo = 50  
Zo = 50  
C2  
nEN  
VCC  
nQ0  
Q0  
+
3.3V  
1
0.1u  
LVPECL Driv er  
R9  
50  
R10  
50  
C1  
0.1u ICS853014  
-
R5  
50  
R4  
50  
C5  
0.1u  
R11  
1K  
R7  
50  
R6  
50  
C4  
0.1u  
FIGURE 6. EXAMPLE ICS853014 LVPECL CLOCK OUTPUT BUFFER SCHEMATIC  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
11  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853014.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853014 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 75mA = 285mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30.94mW = 154.7mW  
Total Power_MAX (3.8V, with all outputs switching) = 285mW + 154.7mW = 439.7mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θ
JA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.440W * 66.6°C/W = 114.3°C. This is well below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
12  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.935V  
CC_MAX  
OH_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
13  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853014 is: 373  
Pin compatible with MC100LVEP14 and SY100EP14U  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
14  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
15  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS853014BG  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853014BG  
ICS853014BG  
ICS853014BGL  
ICS853014BGL  
20 lead TSSOP  
ICS853014BGT  
ICS853014BGLF  
ICS853014BGLFT  
20 lead TSSOP  
2500 tape & reel  
tube  
20 lead "Lead-Free" TSSOP  
20 lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The ICS logo is a registered trademark, and HiPerClockS is a trademark of Integrated Circuit Systems, Inc. All other trademarks are the property of their respective owners and  
may be registered in certain jurisdictions.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
16  
ICS853014  
LOW SKEW, 1-TO-5  
2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
T4B  
T4C  
T4D  
pg. 4  
• 3.3V LVPECL table - VOH values changed @ 85° to 2.22V min. and  
2.295V typical from 2.295V min. and 2.33V typical.  
pg. 5  
pg. 5  
• 3.3V LVPECL table - VOH values changed @ 85° to 2.22V min. and  
2.295V typical from 2.295V min. and 2.33V typical.  
B
9/10/03  
• 3.3V LVPECL table - VOH values changed @ 85° to 2.22V min. and  
2.295V typical from 2.295V min. and 2.33V typical.  
pg. 8  
pg. 10  
• Revised LVPECL Output Termination drawings.  
• Revised Figure 5D.  
T4B - T4D  
T9  
LVPECL & ECL tables - deleted VPP row.  
pgs. 4-5  
C
C
3/18/04  
5/13/05  
• AC Table - added VPP row and changed max. value from 1200mV to 1800mV.  
pg. 6  
1
16  
Features Section - added Lead-Free bullet.  
Ordering Information Table - added Lead-Free part number.  
853014BG  
www.icst.com/products/hiperclocks.html  
REV. C MAY 13, 2005  
17  

相关型号:

ICS853014AG

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014AGLF

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014AGLFT

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014AGT

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS853014BG

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014BG

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853014BGL

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853014BGLF

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014BGLF

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853014BGLFT

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014BGT

LOW SKEW, 1-TO-5 2.5V/3.3V DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER
ICSI

ICS853014BGT

LOW SKEW, 1-TO-5, DIFFERENTIAL-TO- 2.5V, 3.3V LVPECL/ECL FANOUT BUFFER
IDT