ICS853016 [ICSI]

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT BUFFER; 低偏移, 1到2差分至3.3V , 5V LVPECL / ECL扇出缓冲器
ICS853016
型号: ICS853016
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT BUFFER
低偏移, 1到2差分至3.3V , 5V LVPECL / ECL扇出缓冲器

文件: 总13页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853016 is a low skew, high perfor- (1) Differential 3.3V, 5V LVPECL / ECL output pair and  
ICS  
mance 1-to-2 Differential-to-3.3V, 5V LVPECL/  
ECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS853016  
(1) Single-ended 3.3V, 5V LVPECL / ECL output  
HiPerClockS™  
(1) Differential D, nD input pair  
D, nD pair can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 3.3V or a 5V  
power supply. Guaranteed duty cycle skew character-  
istic makes the ICS853016 ideal for those clock distri-  
bution applications demanding well defined perfor-  
mance and repeatability.  
Output frequency: >3GHz (typical)  
Translates any single ended input signal to 3.3V to 5V  
LVPECL levels with resistor bias on nD input  
Duty cycle skew: 10ps (typical)  
Propagation delay: 400ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 3.0V to 5.5V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -5.5V to -3.0V  
-40°C to 85°C ambient operating temperature  
Pin compatible with MC100EP16VCD and MC100EP16VCDT  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
nQ  
D
VBB/nD  
Vcc  
QHG  
nQHG  
VEE  
1
2
3
4
8
7
6
5
nQ  
VCC  
nEN  
ICS853016  
8-Lead SOIC  
D
QHG  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
ICS853016  
8-LeadTSSOP, 118mil  
3mm x 3mm x 0.95mm package body  
G Package  
VBB/nD  
nQHG  
OE  
VBB  
LEN  
Q
TopView  
LATCH  
nEN  
VEE  
D
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
1
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
nQ  
Type  
Description  
Single-ended clock output. LVPECL interface levels.  
1
2
Output  
Input  
D
Pulldown Non-inverting differential clock input. LVPECL interface levels.  
Reference voltage output/Inverting differential clock input.  
LVPECL interface levels.  
3
VBB/nD  
Input  
4
5
nEN  
VEE  
Input  
Power  
Output  
Power  
Pulldown Enable input. Default LOW when left open. LVCMOS/LVTTL interface levels.  
Negative supply pin.  
6, 7  
8
nQHG, QHG  
VCC  
Differential clock outputs. LVPECL interface levels.  
Positive supply pin.  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
RPULLDOWN Input Pulldown Resistor  
75  
K  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
2
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
-6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5V  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 112.7°C/W (0 lfpm)  
(Junction-to-Ambient) for 8 Lead SOIC  
PackageThermal Impedance, θJA 101.7°C/W (0 m/s)  
(Junction-to-Ambient) for 8 Lead TSSOP  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.0V TO 5.5V;VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.0  
5.5  
V
30  
mA  
TABLE 3B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
2.175 2.275 2.38 2.225 2.295 2.37 2.295 2.33 2.365  
1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage (Single-Ended)  
Input Low Voltage (Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
2.075  
1.43  
1.86  
150  
2.36 2.075  
1.765 1.43  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1.98  
VIL  
1.98  
1.86  
150  
1.98  
1.86  
150  
VBB  
VPP  
800  
1200  
800  
1200  
800  
1200  
m
V
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
VCMR  
150  
150  
150  
µA  
µA  
IIH  
IIL  
Input High Current  
Input Low Current  
D
D
-10  
-10  
-10  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for D is VCC + 0.3V.  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
3
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 5.0V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
3.875 3.975 4.08 3.925 3.995 4.07 3.995 4.03 4.065  
3.105 3.245 3.38 3.125 3.22 3.315 3.14 3.235 3.33  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage (Single-Ended)  
Input Low Voltage (Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
3.775  
3.13  
3.56  
150  
4.06 3.775  
3.465 3.13  
4.06 3.775  
3.465 3.13  
4.06  
3.465  
3.68  
VIL  
3.68  
3.56  
150  
3.68  
3.56  
150  
VBB  
VPP  
800  
1200  
800  
1200  
800  
1200  
m
V
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
5
1.2  
5
1.2  
5
V
VCMR  
150  
150  
150  
µA  
µA  
IIH  
IIL  
Input High Current  
Input Low Current  
D
D
-10  
-10  
-10  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for D is VCC + 0.3V.  
TABLE 3D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.5V TO -3.0V  
-40°C  
Typ Max  
25°C  
Typ Max  
85°C  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
-1.44  
150  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
-1.44  
150  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
-1.44  
150  
Typ Max  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
-1.32  
1200  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-1.535  
-1.32  
1200  
-0.97  
-0.935  
-1.67  
-0.94  
-1.535  
-1.32  
1200  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
-1.765  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
VIL  
VBB  
VPP  
800  
800  
800  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
150  
150  
150  
µA  
µA  
IIH  
IIL  
Input High Current  
Input Low Current  
D
D
-10  
-10  
-10  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for D is VCC + 0.3V.  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
4
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 4. AC CHARACTERISTICS, VCC = 0V;VEE = -5.5V TO -3.0V OR VCC = 3.0V TO 5.5V;VEE = 0V  
-40°C 25°C  
Min Typ Max Min Typ  
85°C  
Symbol Parameter  
Units  
Max Min Typ Max  
fMAX  
Output Frequency  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
>3  
350  
400  
400  
450  
10  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
GHz  
ps  
(Differential) nQ  
Propagation  
Delay;  
NOTE 1  
(Differential) QHG, nQHG  
(Single-Ended) nQ  
ps  
tPLH  
tPHL  
ps  
(Single-Ended) QHG, nQHG  
ps  
tsk(odc) Duty Cycle Skew; NOTE 2, 3  
ps  
Output Rise/  
Fall Time  
20% to 80%  
nQ  
HG, nQHG  
300  
ps  
tR/tF  
Q
TBD  
150  
TBD  
ps  
All parameters are measured at f 1.7GHz, unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured for only differential operation from the cross point of the inputs to the cross point of the outputs.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
5
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nQHG  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
QHG  
nQx  
VEE  
-3.5V to -1.0V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nD  
D
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
nQ  
Outputs  
tR  
nQHG  
QHG  
tpLH  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
Part 1  
nQHG  
QHG  
Part 2  
nQHG  
QHG  
tsk(odc)  
DUTY CYCLE SKEW  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
6
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
APPLICATION INFORMATION  
WIRING THE INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS  
Figure 1 shows an example of the input that can be wired to  
accept single ended LVPECL levels.  
VCC  
C1  
0.1u  
CLK_IN  
D
VBB/nD  
FIGURE 1. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
7
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
TERMINATION FOR 5V LVPECL OUTPUT  
This section shows examples of 5V LVPECL output termina- VCC - 2V = 3V at the receiver.Figure 3B showsThevenin equiva-  
tion.Figure 3A shows standard termination for 5V LVPECL.The  
lence of Figure 3A. In actual application where the 3V DC power  
termination requires matched load of 50resistors pull down to  
supply is not available, this approached is normally used.  
5V  
5V  
5V  
5V  
R3  
84  
R4  
84  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
PECL  
PECL  
R1  
125  
R2  
125  
R1  
50  
R2  
50  
3V  
FIGURE 3A. STANDARD 5V PECL OUTPUT TERMINATION  
FIGURE 3B. 5V PECL OUTPUT TERMINATION EXAMPLE  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
8
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853016.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853016 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 5.5V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 5.5V * 30mA = 165mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.94mW = 61.88mW  
Total Power_MAX (3.8V, with all outputs switching) = 165mW + 61.88mW = 226.88mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W perTable 5A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.227W * 103.3°C/W = 108.4°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5A. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 5B. THERMAL RESISTANCE θJA FOR 8-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
9
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CC_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
(V  
- V  
= 1.67V  
CCO_MAX  
OL_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC _MAX  
OH_MAX  
L
CC  
L
[(2V - 0.935V)/50] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
10  
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
RELIABILITY INFORMATION  
TABLE 6A. θJAVS. AIR FLOW TABLE FOR 8 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 6B. θJAVS. AIR FLOW TABLE FOR 8 LEAD TSSOP  
θJA byVelocity (Meters per Second)  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS853016 is: 163  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
11  
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL  
-
TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP  
TABLE 7A. PACKAGE DIMENSIONS  
TABLE 7B. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Millimeters  
SYMBOL  
Minimum  
Maximum  
MINIMUN  
MAXIMUM  
N
A
8
N
A
A1  
B
C
D
E
e
8
--  
1.10  
0.15  
0.97  
0.38  
0.23  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
A1  
A2  
b
0
0.79  
0.22  
0.08  
c
D
3.00 BASIC  
4.90 BASIC  
3.00 BASIC  
0.65 BASIC  
1.95 BASIC  
E
1.27 BASIC  
E1  
e
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e1  
L
L
0.40  
0°  
0.80  
8°  
α
α
Reference Document: JEDEC Publication 95, MS-012  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-187  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
12  
PRELIMINARY  
ICS853016  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-2  
D
IFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS853016AM  
Marking  
853016A  
Package  
Count  
96 per tube  
2500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
8 lead SOIC  
ICS853016AMT  
ICS853016AG  
853016A  
016A  
8 lead SOIC on Tape and Reel  
8 lead TSSOP  
100 per tube -40°C to 85°C  
2500 -40°C to 85°C  
ICS853016AGT  
016A  
8 lead TSSOP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853016AM  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 30, 2004  
13  

相关型号:

ICS853016AG

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853016AGLF

Low Skew Clock Driver, 853016 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8
IDT

ICS853016AGLFT

Low Skew Clock Driver, 853016 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, MO-187, TSSOP-8
IDT

ICS853016AGT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853016AM

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853016AMLF

Low Skew Clock Driver, 853016 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

ICS853016AMLFT

Low Skew Clock Driver, 853016 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

ICS853016AMT

LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-3.3V, 5V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853017

QUAD, 1-TO-1, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL RECEIVER
IDT

ICS853017

QUAD, 1-TO-1 DIFFERENTIAL-TO-2.5V/3.3V/5V LVPECL/ECL RECEIVER
ICSI

ICS853017AM

QUAD, 1-TO-1, DIFFERENTIAL-TO-2.5V, 3.3V, 5V LVPECL RECEIVER
IDT

ICS853017AM

QUAD, 1-TO-1 DIFFERENTIAL-TO-2.5V/3.3V/5V LVPECL/ECL RECEIVER
ICSI