ICS85310AYI-01 [ICSI]

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER; 低偏移, 1到10差分至2.5V / 3.3V ECL / LVPECL扇出缓冲器
ICS85310AYI-01
型号: ICS85310AYI-01
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
低偏移, 1到10差分至2.5V / 3.3V ECL / LVPECL扇出缓冲器

文件: 总15页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85310I-01 is a low skew, high perfor- Ten differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
HiPerClockS™  
mance 1-to-10 Differential-to-2.5V/3.3V ECL/  
Two selectable differential input pairs  
LVPECL Fanout Buffer and a member of the  
HiPerClockSfamily of High Performance  
Clock Solutions from ICS. The CLKx, nCLKx  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
pairs can accept most standard differential input levels. The  
ICS85310I-01 is characterized to operate from either a  
2.5V or a 3.3V power supply. Guaranteed output and part-  
to-part skew characteristics make the ICS85310I-01 ideal  
for those clock distribution applications demanding well  
defined performance and repeatability.  
Maximum output frequency: 700MHz  
Translates any single ended input signal to  
3.3V LVPECL levels with resistor bias on nCLK input  
Output skew: 30ps (typical)  
Part-to-part skew: 140ps (typical)  
Propagation delay: 2ns (typical)  
Additive phase jitter, RMS: <0.13ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.8V  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
CLK0  
nCLK0  
0
1
CLK1  
nCLK1  
Q1  
nQ1  
32 31 30 29 28 27 26 25  
Q2  
nQ2  
VCC  
CLK_SEL  
CLK0  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
Q3  
CLK_SEL  
nQ3  
Q4  
Q3  
nQ3  
nCLK0  
nc  
nQ4  
Q5  
Q4  
nQ4  
ICS85310I-01  
CLK1  
nQ5  
Q6  
Q5  
nQ5  
nCLK1  
nQ6  
VEE  
Q6  
nQ6  
9
10 11 12 13 14 15 16  
Q7  
nQ7  
Q8  
nQ8  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
TopView  
Q9  
nQ9  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
1
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCC  
Power  
Input  
Positive supply pin.  
Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW,  
selects CLK0, nCLK0 inputs. LVCMOS / LVTTL interface levels.  
2
CLK_SEL  
Pulldown  
3
4
CLK0  
nCLK0  
nc  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup  
Inverting differential clock input.  
No connect.  
5
Unused  
Input  
6
CLK1  
Pulldown Non-inverting differential clock input.  
7
nCLK1  
VEE  
Input  
Pullup  
Inverting differential clock input.  
8
Power  
Power  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Negative supply pin.  
9, 16, 25, 32  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
VCCO  
Output supply pins.  
nQ9, Q9  
nQ8, Q8  
nQ7, Q7  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
nQ1, Q1 Output  
nQ0, Q0 Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
2
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
3.3  
Maximum Units  
VCC  
VCCO  
IEE  
Positive Supply Voltage  
3.8  
3.8  
120  
V
V
Output Supply Voltage  
Power Supply Current  
2.375  
3.3  
mA  
Table 3B. LVCMOS/LVTTL DC Characteristics, VCC = VCCO = 2.375V to 3.8V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
CLK_SEL  
CLK_SEL  
2
-0.3  
-5  
VCC + 0.3  
0.8  
V
V
Input High Current CLK_SEL  
Input Low Current CLK_SEL  
VCC = VIN = 3.8V  
µA  
µA  
IIL  
VCC = 3.8V, VIN = 0V  
150  
TABLE 3C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK0, CLK1  
nCLK0, nCLK1  
CLK0, CLK1  
V
CC = VIN = 3.8V  
CC = VIN = 3.8V  
150  
5
µA  
µA  
µA  
µA  
V
V
V
CC = 3.8V, VIN = 0V  
CC = 3.8V, VIN = 0V  
-5  
-150  
IIL  
Input Low Current  
nCLK0, nCLK1  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is VCC + 0.3V.  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
3
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC, VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
VCCO - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.0  
VCCO - 1.7  
0.85  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCCO - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
TABLE 4. AC CHARACTERISTICS, VCC = VCCO = 2.375V TO 3.8V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
700  
2.5  
55  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
ƒ500MHz  
2
tsk(o)  
tsk(pp)  
30  
ps  
Part-to-Part Skew; NOTE 3, 4  
140  
340  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
<0.13  
ps  
tR  
Output Rise Time  
Output Fall Time  
Output Duty Cycle  
20% to 80%  
20% to 80%  
200  
200  
47  
700  
700  
53  
ps  
ps  
%
tF  
odc  
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
4
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
Additive Phase Jitter, RMS  
@ 155.52MHz = <0.13ps typical  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
5
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCO  
nCLK0, nCLK1  
VPP  
LVPECL  
VCMR  
Cross Points  
CLK0, CLK1  
nQx  
VEE  
VEE  
-0.375V to -1.8V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK0,  
nCLK1  
80%  
tF  
80%  
CLK0,  
CLK1  
VSWING  
20%  
nQ0:nQ9  
Clock  
20%  
Outputs  
tR  
Q0:Q9  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0:nQ9  
Q0:Q9  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
6
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF ~ VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
OUTPUTS:  
INPUTS:  
LVPECL OUTPUT  
CLK/nCLK INPUT:  
All unused LVPECL outputs can be left floating. We  
recommend that there is no trace attached. Both sides of the  
differential output pair should either be left floating or  
terminated.  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required,  
but for additional protection, a 1kΩ resistor can be tied from  
CLK to ground.  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
7
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals.BothVSWING andVOH must meet the  
VPP and VCMR input requirements. Figures 2A to 2E show inter-  
face examples for the HiPerClockS CLK/nCLK input driven by  
the most common driver types.The input interfaces suggested  
here are examples only. Please consult with the vendor of the  
driver component to confirm the driver termination requirements.  
For example in Figure 2A, the input termination applies for ICS  
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 2A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 2B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 2E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
8
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
ance techniques should be used to maximize operating  
frequency and minimize signal distortion. Figures 3A and  
3B show two different layouts which are recommended only  
as guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
designed to drive 50Ω transmission lines. Matched imped-  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUTT ERMINATION  
FIGURE 3B. LVPECL OUTPUTTERMINATION  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
9
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85310I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85310I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 120mA = 456mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 10 * 30.2mW = 302mW  
Total Power_MAX (3.8V, with all outputs switching) = 456mW + 302mW = 758mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.758W * 42.1°C/W = 117°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θ
by Velocity (Linear Feet per Minute)  
0
JA  
200  
55.9°C/W  
500  
50.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
10  
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO _MAX  
OH_MAX  
L
L
[(2V - 1V)/50Ω] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
11  
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85310I-01 is: 1034  
Pin compatible with MC100LVEP111  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
12  
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 7. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
13  
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS85310AYI-01  
Marking  
Package  
Shipping Packaging Temperature  
ICS85310AYI01  
ICS85310AYI01  
ICS5310AI01L  
ICS5310AI01L  
ICS5310AI01N  
ICS5310AI01N  
32 lead LQFP  
tray  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS85310AYI-01T  
ICS85310AYI-01LF  
ICS85310AYI-01LFT  
ICS85310AYI-01LN  
ICS85310AYI-01LNT  
32 lead LQFP  
1000 tape & reel  
tray  
32 lead "Lead Free" LQFP  
32 lead "Lead Free" LQFP  
32 lead (Lead Free/Annealed) LQFP  
32 lead (Lead Free/Annealed) LQFP  
1000 tape & reel  
tray  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
14  
ICS85310I-01  
LOW SKEW, 1-TO-10  
DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
B
Table  
Page  
Description of Change  
AC Characterisitics table - tPD row, revised value from 2.25ns Max. to  
2.5ns Max.  
Date  
T4  
4
4/29/02  
5/29/02  
B
8
4
Added Termination for LVPECL Outputs.  
T3D  
Added LVPECL DC Characterisitics table.  
C
D
Changed part number from ICS85310-01 to ICS85310I-01 in title and all  
subsequent areas throughout the datasheet.  
Power Supply table - increased max. value for IEE to 120mA from 30mA max.  
7/26/02  
T3A  
T2  
3
7
2
3
6
10/22/02  
Power Considerations have re-adjusted to the increased IEE value.  
Pin Characteristics - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - updated Outputs.  
Updated Single Ended Signal Driving Differential Input Drawing and LVPECL  
Output Termination Drawings.  
E
6/14/04  
7
Added Differential Clock Input Interface section.  
12  
1
5
Added Lead Free/Annealed part number.  
Features Section - added Additive Phase Jitter bullet.  
Added Additive Phase Jitter Section.  
F
F
6/22/05  
1/16/06  
T8  
T8  
13  
7
14  
Ordering Information Table - added Lead-Free Note.  
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - added lead-free part number and marking.  
85310AYI-01  
www.icst.com/products/hiperclocks.html  
REV.F JANUARY16, 2006  
15  

相关型号:

ICS85310AYI-01LF

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-01LFT

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-01LN

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-01LNT

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-01T

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-11

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-11LF

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-11LFT

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-11T

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-21

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI

ICS85310AYI-21

Low Skew Clock Driver, 85310 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

ICS85310AYI-21LN

LOW SKEW, DUAL, 1-TO-5 DIFFERENTIAL-TO-2.5V/3.3V ECL/LVPECL FANOUT BUFFER
ICSI