ICS853111A [ICSI]

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER; 低偏移, 1到10差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器
ICS853111A
型号: ICS853111A
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
低偏移, 1到10差分至2.5V / 3.3V LVPECL / ECL扇出缓冲器

文件: 总18页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS853111A is a low skew, high perfor- 10 differential 2.5V/3.3V LVPECL / ECL outputs  
ICS  
mance 1-to-10 Differential-to-2.5V/3.3V LVPECL/  
2 selectable differential input pairs  
HiPerClockS™  
ECL Fanout Buffer and a member of the  
HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The ICS853111A  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
is characterized to operate from either a 2.5V, 3.3V or a  
5V power supply. Guaranteed output and part-to-part  
skew characteristics make the ICS853111A ideal for  
those clock distribution applications demanding well de-  
fined performance and repeatability.  
Maximum output frequency: >3GHz  
Translates any single ended input signal to 3.3V  
LVPECL levels with resistor bias on nPCLK input  
Output skew: 23ps (typical)  
Part-to-part skew: 85ps (typical)  
Propagation delay: 705ps (typical)  
Jitter, RMS: < 0.03ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 5.25V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -5.25V to -2.375V  
-40°C to 85°C ambient operating temperature  
Pin compatible with MC100EP111 and MC100LVEP111  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PCLK0  
nPCLK0  
0
1
PCLK1  
nPCLK1  
Q1  
nQ1  
24 23 22 21 20 19 18 17  
VCCO  
nQ2  
Q2  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VCCO  
Q7  
Q2  
nQ2  
nQ7  
Q8  
CLK_SEL  
VBB  
Q3  
nQ3  
nQ1  
Q1  
ICS853111A  
nQ8  
Q9  
Q4  
nQ4  
nQ0  
Q0  
nQ9  
Q5  
nQ5  
VCCO  
VCCO  
1
2
3
4
5
6
7
8
Q6  
nQ6  
Q7  
nQ7  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Q8  
nQ8  
Y Package  
TopView  
Q9  
nQ9  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
1
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VCC  
Power  
Core supply pin.  
Clock select input. When HIGH, selects PCLK1, nPCLK1 inputs.  
When LOW, selects PCLK0, nPCLK0 inputs.  
LVCMOS / LVTTL interface levels.  
2
CLK_SEL Input  
Pulldown  
Pulldown  
3
4
PCLK0  
Input  
Non-inverting differential clock input.  
Inverting differential LVPECL clock input.  
VCC/2 default when left floating.  
nPCLK0  
Input Pullup/Pulldown  
Output  
5
6
VBB  
Bias voltage.  
PCLK1  
Input  
Pulldown  
Non-inverting differential clock input.  
Inverting differential LVPECL clock input.  
VCC/2 default when left floating.  
7
nPCLK1  
Input Pullup/Pulldown  
8
9, 16, 25, 32  
10, 11  
12, 13  
14, 15  
17, 18  
19, 20  
21, 22  
23, 24  
26, 27  
28, 29  
30, 31  
VEE  
Power  
Power  
Negative supply pin.  
VCCO  
Output supply pins.  
nQ9, Q9 Output  
nQ8, Q8 Output  
nQ7, Q7 Output  
nQ6, Q6 Output  
nQ5, Q5 Output  
nQ4, Q4 Output  
nQ3, Q3 Output  
nQ2, Q2 Output  
nQ1, Q1 Output  
nQ0, Q0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLDOWN Input Pulldown Resistor  
75  
K  
Pullup/Pulldown Resistors  
50  
KΩ  
RVCC/  
2
TABLE 3A. CLOCK INPUT FUNCTION TABLE  
TABLE 3B. CONTROL INPUT  
FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
Inputs  
PCLKx nPCLKx Q0:Q9 nQ0:Q9  
CLK_SEL Selected Source  
0
1
1
0
LOW  
HIGH  
LOW  
Differential to Differential  
Differential to Differential  
Non Inverting  
Non Inverting  
0
1
PCLK0, nPCLK0  
PCLK1, nPCLK1  
HIGH  
Biased;  
NOTE 1  
Biased;  
NOTE 1  
0
1
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Single Ended to Differential Non Inverting  
Single Ended to Differential Non Inverting  
Biased;  
NOTE 1  
Biased;  
NOTE 1  
0
1
Single Ended to Differential  
Single Ended to Differential  
Inverting  
Inverting  
NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to  
Accept Single Ended Levels".  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
2
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
6V (LVPECL mode, VEE = 0)  
-6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
VBB Sink/Source, IBB  
0.5mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 37.8°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V; VEE = 0V  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
5.25  
85  
V
mA  
TABLE 4B. LVPECL DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
2.175 2.275 2.38 2.225 2.295 2.37 2.295 2.33 2.365  
1.405 1.545 1.68 1.425 1.52 1.615 1.44 1.535 1.63  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
2.075  
1.43  
1.86  
150  
2.36 2.075  
1.765 1.43  
2.36 2.075  
1.765 1.43  
2.36  
1.765  
1.98  
VIL  
1.98  
1.86  
150  
1.98  
1.86  
150  
VBB  
VPP  
800  
1200  
800  
1200  
800  
1200  
m
V
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
VCMR  
IIH  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
High Current nPCLK0, nPCLK1  
-10  
-10  
µA  
µA  
PCLK0, PCLK1  
-10  
Input  
Low Current  
IIL  
-150  
-150  
nPCLK0, nPCLK1  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
3
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
1.375 1.475 1.58 1.425 1.495 1.57 1.495 1.53 1.565  
0.605 0.745 0.88 0.625 0.72 0.815 0.64 0.735 0.83  
V
V
V
V
VOH  
VOL  
VIH  
VIL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Peak-to-Peak Input Voltage  
1.275  
0.63  
150  
1.56 1.275  
0.965 0.63  
1.56 1.275  
0.965 0.63  
-0.83  
0.965  
1200  
800  
1200  
2.5  
150  
1.2  
800  
1200  
2.5  
150  
1.2  
800  
VPP  
mV  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
1.2  
2.5  
V
VCMR  
IIH  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
High Current nPCLK0, nPCLK1  
-10  
-10  
-10  
µA  
µA  
PCLK0, PCLK1  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK0, nPCLK1  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 5V; VEE = 0V  
-40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
3.875 3.975 4.08 3.925 3.995 4.07 3.995 4.03 4.065  
3.105 3.245 3.38 3.125 3.22 3.315 3.14 3.235 3.33  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
3.775  
3.13  
3.56  
150  
4.06 3.775  
3.465 3.13  
4.06 3.775  
3.465 3.13  
4.06  
3.465  
3.68  
VIL  
3.68  
3.56  
150  
3.68  
3.56  
150  
VBB  
VPP  
800  
1200  
800  
1200  
800  
1200  
m
V
Input High Voltage  
Common Mode Range; NOTE 3, 4  
1.2  
5
1.2  
5
1.2  
5
V
VCMR  
IIH  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
High Current nPCLK0, nPCLK1  
-10  
-10  
µA  
µA  
PCLK0, PCLK1  
-10  
Input  
Low Current  
IIL  
-150  
-150  
nPCLK0, nPCLK1  
-150  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
4
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 4C. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V  
-40°C  
25°C  
Typ Max  
85°C  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
-1.225  
-1.87  
-1.44  
150  
Typ Max  
Min  
-1.075  
-1.875  
-1.225  
-1.87  
-1.44  
150  
Min  
-1.005  
-1.86  
-1.225  
-1.87  
-1.44  
150  
Typ Max  
-1.025  
-1.755  
-0.92  
-1.62  
-0.94  
-1.535  
-1.32  
1200  
-1.005  
-1.78  
-0.93  
-1.685  
-0.94  
-1.535  
-1.32  
1200  
-0.97  
-0.935  
-1.67  
-0.94  
-1.535  
-1.32  
1200  
V
V
V
V
V
VOH  
VOL  
VIH  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage(Single-Ended)  
Input Low Voltage(Single-Ended)  
Output Voltage Reference; NOTE 2  
Peak-to-Peak Input Voltage  
-1.765  
VIL  
VBB  
VPP  
800  
800  
800  
mV  
Input High Voltage  
Common Mode Range; NOTE 3, 4  
VEE+1.2V  
0
VEE+1.2V  
0
VEE+1.2V  
0
V
VCMR  
IIH  
Input  
PCLK0, PCLK1  
150  
150  
150  
µA  
High Current nPCLK0, nPCLK1  
-10  
-10  
-10  
µA  
µA  
PCLK0, PCLK1  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nPCLK0, nPCLK1  
Input and output parameters vary 1:1 with VCC. VEE can vary +0.925V to -0.5V.  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
NOTE 2: Single-ended input operation is limited. VCC 3V in LVPECL mode.  
NOTE 3: Common mode voltage is defined as VIH.  
NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1  
is VCC + 0.3V.  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -5.25V TO -2.375V OR VCC = 2.375V TO 5.25V; VEE = 0V  
-40°C  
Min Typ  
25°C  
Max Min Typ  
85°C  
Max Min Typ  
Symbol Parameter  
Units  
Max  
fMAX  
Output Frequency  
>3  
570 670  
23  
>3  
605 705  
23  
>3  
665 765  
23  
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
770  
35  
805  
35  
875  
35  
tsk(o)  
tsk(pp)  
ps  
Part-to-Part Skew; NOTE 3, 4  
85  
150  
85  
150  
85  
150  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
0.03  
0.03  
0.03  
ps  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
85  
200  
315  
100 200  
285  
85  
200  
315  
All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
5
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Input/Output Additive  
Phase Jitter at 155.52MHz  
= 0.03ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
140  
-
-150  
160  
-
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
6
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCO  
nPCLK0, nPCLK1  
VPP  
LVPECL  
VCMR  
Cross Points  
PCLK0, PCLK1  
nQx  
VEE  
VEE  
-3.25V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nPCLK0,  
nPCLK1  
80%  
tF  
80%  
PCLK0,  
PCLK1  
VSWING  
20%  
Clock  
20%  
nQ0:nQ9  
Outputs  
tR  
Q0:Q9  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
7
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS LEVELS  
Figure 2A shows an example of the differential input that can  
be wired to accept single ended LVCMOS levels.The reference  
voltage level VBB generated from the device is connected to  
the negative input.The C1 capacitor should be located as close  
as possible to the input pin.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2A. SINGLE ENDED LVCMOS SIGNAL DRIVING DIFFERENTIAL INPUT  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS  
Figure 2B shows an example of the differential input that can  
be wired to accept single ended LVPECL levels.The reference  
voltage level VBB generated from the device is connected to  
the negative input.The C1 capacitor should be located as close  
as possible to the input pin.  
VDD(or VCC)  
CLK_IN  
+
VBB  
-
C1  
0.1uF  
FIGURE 2B. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT  
www.icst.com/products/hiperclocks.html  
853111AY  
REV. B MAY 14, 2004  
8
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- 50transmission lines. Matched impedance techniques should  
tion for LVPECL outputs.The two different layouts mentioned be used to maximize operating frequency and minimize signal  
are recommended only as guidelines.  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
9
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for 2.5V ground level. The R3 in Figure 4B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 4C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
F
IGURE 4A. 2.5V LVPECL DRIVER  
T
ERMINATION  
E
XAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER  
T
ERMINATION  
E
XAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
10  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with  
and VCMR input requirements. Figures 5A to 5F show interface the vendor of the driver component to confirm the driver ter-  
examples for the HiPerClockS PCLK/nPCLK input driven by mination requirements.  
the most common driver types.The input interfaces suggested  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
R1  
100  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 5A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 5B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
R3  
84  
R4  
84  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
F
IGURE 5D. H  
I
P
ER  
C
LOCKS PCLK/nPCLK INPUT  
D
RIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
3.3V  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
R3  
120  
R4  
120  
C1  
C2  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 5E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 5F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
11  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
SCHEMATIC EXAMPLE  
This application note provides general design guide using the input is driven by an LVPECL driver.CLK_SEL is set at logic  
ICS853111A LVPECL buffer. Figure 6 shows a schematic ex- low to select PCLK0/nPCLK0 input.  
ample of the ICS853111A LVPECL clock buffer.In this example,  
Zo = 50  
+
Zo = 50  
-
R2  
50  
R1  
50  
VCC  
C6 (Option)  
0.1u  
R3  
50  
VCC  
Zo = 50 Ohm  
Zo = 50 Ohm  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
Q3  
nQ3  
Q4  
nQ4  
Q5  
nQ5  
Q6  
nQ6  
CLK_SEL  
PCLK0  
nPCLK0  
VBB  
PCLK1  
nPCLK1  
VEE  
R4  
1K  
3.3V LVPECL  
R9  
50  
R10  
50  
U1  
C8 (Option)  
0.1u  
R11  
50  
ICS853111  
VCC  
Zo = 50  
+
-
VCC=3.3V  
Zo = 50  
(U1-9)  
(U1-16)  
(U1-25) (U1-32) (U1-1)  
VCC  
R8  
50  
R7  
50  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7 (Option)  
0.1u  
R13  
50  
FIGURE 6. EXAMPLE ICS853111A LVPECL CLOCK OUTPUT BUFFER SCHEMATIC  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
12  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853111A.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853111A is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 5.25V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 5.25V * 85mA = 446.3mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 10 * 30.94mW = 309.4mW  
Total Power_MAX (3.8V, with all outputs switching) = 446.3mW + 309.4mW = 755.7mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.756W * 42.1°C/W = 116.8°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
13  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
RL  
50  
VCCO - 2V  
Figure 7. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.935V  
OH_MAX  
CCO_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
CCO_MAX  
OL_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CCO_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO _MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V - 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
14  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θ byVelocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853111A is: 1340  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
15  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
16  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
250 per tray  
1000  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS853111AY  
ICS853111AYT  
ICS853111AY  
ICS853111AY  
32 lead LQFP  
32 lead LQFP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
17  
ICS853111A  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-10  
D
IFFERENTIAL  
-
TO-2.5V/3.3V LVPECL/ECL FANOUT  
B
UFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
11  
Corrected Figure 5C.  
13 & 14 Power Considerations - corrected Power(outputs)MAX from 30.2mW to  
30.94mW, and revised Junction Temperature and Worse Case Power  
Dissipation equations.  
A
10/31/03  
1
3
4
5
Features section - increased voltage range to 5.25V.  
Power Supply table - increased maximum VCC to 5.25V.  
T4A  
T4D  
T5  
Added 5V LVPECL DC Characteristics table.  
AC Characteristics table - increased VEE range to -5.25V to 2.375V, and VCC  
to 2.375V to 5.25V.  
B
B
4/28/04  
5/14/04  
7
Corrected Output Load AC Test Circuit Diagram, VEE range from" -1.8V to -  
0.375V" to "-3.25V to -0.375V".  
11  
LVPECL clock Input Interface - added another CML driver diagram.  
13 & 14 Power Considerations - changed Power(core)max from 3.8V to 5.25V and  
recalculated equations.  
3
Absolute Maximum Ratings, corrected Supply Voltage & Negative Supply  
Voltage from 4.6V & -4.6V to 6V & -6V.  
853111AY  
www.icst.com/products/hiperclocks.html  
REV. B MAY 14, 2004  
18  

相关型号:

ICS853111A02

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111A02L

LOW SKEW, 1-TO-10 DIFFERENTIAL-TO-2.5V/3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111AT-02LFT

Low Skew Clock Driver, 853111 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABA-HD, TQFP-32
IDT

ICS853111AV-01

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111AV-01

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853111AV-01LF

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111AV-01LF

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853111AV-01LFT

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111AV-01LFT

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853111AV-01T

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
ICSI

ICS853111AV-01T

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
IDT

ICS853111AV01L

LOW SKEW, 1-TO-9 DIFFERENTIAL-TO-3.3V LVPECL/ECL FANOUT BUFFER
IDT