ICS8534-01 [ICSI]

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER; 低偏移, 1到22差分至3.3V的LVPECL扇出缓冲器
ICS8534-01
型号: ICS8534-01
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
低偏移, 1到22差分至3.3V的LVPECL扇出缓冲器

文件: 总17页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8534-01 is a low skew, 1-to-22 Differen- 22 differential LVPECL outputs  
ICS  
tial-to-3.3V LVPECL Fanout Buffer and a member  
Selectable differential CLK, nCLK or LVPECL clock inputs  
HiPerClockS™  
of the HiPerClockS™Family of High Performance  
Clock Solutions from ICS.The ICS8534-01 has two  
selectable clock inputs. The CLK, nCLK pair can  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
accept most standard differential input levels.The PCLK, nPCLK  
pair can accept LVPECL, CML, or SSTL input levels. The de-  
vice is internally synchronized to eliminate runt pulses on the  
outputs during asynchronous assertion/deassertion of the OE  
pin. The ICS8534-01’s low output and part-to-part skew char-  
acteristics make it ideal for workstation, server, and other high  
performance clock distribution applications.  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency: 500MHz  
Output skew: 100ps (maximum)  
Translates any single-ended input signal (LVCMOS, LVTTL,  
GTL) to LVPECL levels with resistor bias on nCLK input  
Additive phase jitter, RMS: 0.04ps (typical)  
3.3V supply mode  
0°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK_SEL  
CLK  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCCO  
Q14  
VCCO  
nQ6  
Q6  
0
1
nCLK  
22  
22  
nQ14  
Q15  
Q0:Q21  
nQ0:nQ21  
nQ5  
Q5  
PCLK  
nPCLK  
nQ15  
Q16  
nQ4  
Q4  
LE  
D
nQ16  
Q17  
Q
nQ3  
Q3  
ICS8534-01  
OE  
nQ17  
Q18  
nQ2  
Q2  
nQ18  
Q19  
nQ1  
Q1  
nQ19  
Q20  
nQ0  
Q0  
nQ20  
VCCO  
VCCO  
1
2
3
4
5
6
7 8 9 10 11 12 13 14 15 16  
64-LeadTQFP E-Pad  
10mm x 10mm x 1.0mm package body  
Y package  
TopView  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
1
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 16, 17, 32,  
33, 48, 49, 64  
VCCO  
Power  
Output supply pins.  
2, 3, 12, 13  
nc  
VCC  
CLK  
Unused  
Power  
Input  
No connect.  
4
5
Core supply pin.  
Pulldown Non-inverting differential clock input pair.  
Pullup/  
Pulldown  
6
nCLK  
Input  
Inverting differential clock input pair. Pulled to 2/3 VCC.  
Clock select input. When HIGH, selects PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK inputs.  
7
CLK_SEL  
Input  
Pullup  
LVCMOS / LVTTL interface levels.  
8
9
PCLK  
nPCLK  
VEE  
Input  
Input  
Pulldown Non-inverting differential LVPECL clock input pair.  
Pullup/  
Pulldown  
Inverting differential LVPECL clock input pair. Pulled to 2/3 VCC.  
10  
Power  
Power supply ground.  
Output enable. When logic HIGH, the outputs are enabled (default).  
When logic LOW, the outputs are disabled and drive differential low:  
Qx = LOW, nQx = HIGH. LVCMOS / LVTTL interface levels.  
11  
OE  
Input  
Pullup  
14, 15  
18, 19  
20, 21  
22, 23  
24, 25  
26, 27  
28, 29  
30, 31  
34, 35  
36, 37  
38, 39  
40, 41  
42, 43  
44, 45  
46, 47  
50, 51  
52, 53  
54, 55  
56, 57  
58, 59  
60, 61  
62, 63  
nQ21, Q21  
nQ20, Q20  
nQ19, Q19  
nQ18, Q18  
nQ17, Q17  
nQ16, Q16  
nQ15, Q15  
nQ14, Q14  
nQ13, Q13  
nQ12, Q12  
nQ11, Q11  
nQ10, Q10  
nQ9, Q9  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
nQ8, Q8  
nQ7, Q7  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
2
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
K  
KΩ  
RPULLUP  
37  
75  
RPULLDOWN Input Pulldown Resistor  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
nQ0:nQ21  
HIGH  
OE  
0
CLK_SEL  
Q0:Q21  
LOW  
0
1
0
1
0
LOW  
HIGH  
1
CLK  
nCLK  
1
PCLK  
nPCLK  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
OE  
nQ0:nQ21  
Q0:Q21  
FIGURE 1. OE TIMING DIAGRAM  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
3
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
22.3°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, TA=0°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCO  
IEE  
Core Supply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
230  
V
V
Ouptut Power Supply Voltage  
Power Supply Current  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, TA=0°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
VCC + 0.3  
V
V
Input Low Voltage  
-0.3  
0.8  
5
Input High Current OE, CLK_SEL  
Input Low Current OE, CLK_SEL  
µA  
µA  
IIL  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, TA=0°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
CLK  
150  
5
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
-5  
-150  
IIL  
Input Low Current  
nCLK  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK and nCLK is VCC + 0.3V.  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
4
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, TA=0°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
PCLK  
150  
5
µA  
µA  
µA  
µA  
V
nPCLK  
PCLK  
-5  
-150  
IIL  
Input Low Current  
nPCLK  
VPP  
Peak-to-Peak Input Voltage  
0.3  
1
VCC  
VCMR  
VOH  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
VEE + 1.5  
VCC - 1.4  
VCC - 2.0  
0.6  
V
VCC - 0.9  
VCC -1.7  
1.0  
V
VOL  
Output Low Voltage; NOTE 3  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50to VCCO - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, TA=0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
fMAX  
Output Frequency  
500  
3.0  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 5  
f 500MHz  
2.0  
tsk(o)  
tsk(pp)  
100  
700  
ps  
Part-to-Part Skew; NOTE 3, 5  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section;  
NOTE 4  
tjit  
(12KHz to 20MHz)  
20ꢀ to 80ꢀ  
0.04  
ps  
tR / tF  
tS  
Output Rise/Fall Time  
Setup Time  
200  
1.0  
0.5  
48  
700  
ps  
ns  
ns  
tH  
Hold Time  
f 266MHz  
52  
54  
odc  
Output Duty Cycle  
266 < f 500MHz  
46  
All parameters measured at fMAX unless noted otherwise.  
Special thermal considerations may be required. See Applications Section.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions at the same temperature. Using the same type of inputs on each device,  
the outputs are measured at the differential cross points.  
NOTE 4: Driving only one input clock.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
5
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Additive Phase Jitter, RMS  
@ 156.25MHz (12KHz - 20MHz)  
= 0.04ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
140  
-
-150  
160  
-
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
6
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
Qx  
VCC  
,
VCCO  
nCLK, nPCLK  
VPP  
LVPECL  
VCMR  
Cross Points  
nQx  
CLK, PCLK  
VEE  
VEE  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
nQy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK, nPCLK  
CLK, PCLK  
nQ0:nQ21  
80ꢀ  
80ꢀ  
VSWING  
20ꢀ  
Clock  
20ꢀ  
Outputs  
tF  
tR  
Q0:Q21  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0:nQ21  
Q0:Q21  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
7
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF = VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- 50transmission lines. Matched impedance techniques should  
tion for LVPECL outputs.The two different layouts mentioned be used to maximize operating frequency and minimize signal  
are recommended only as guidelines.  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
8
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
9
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP use their termination recommendation. Please consult with  
and VCMR input requirements. Figures 5A to 5F show interface the vendor of the driver component to confirm the driver ter-  
examples for the HiPerClockS PCLK/nPCLK input driven by mination requirements.  
the most common driver types.The input interfaces suggested  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
R1  
100  
nPCLK  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 5A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 5B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
R3  
84  
R4  
84  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
3.3V  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
R3  
120  
R4  
120  
C1  
C2  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 5E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 5F. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
10  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
T
HERMAL  
R
ELEASE  
P
ATH  
The exposed metal pad provides heat transfer from the device tacted through solder as shown in Figure 6.For further informa-  
to the P.C. board. The exposed metal pad is ground pad con- tion, please refer to the Application Note on Surface Mount As-  
nected to ground plane through thermal via.The exposed pad sembly of Amkor’sThermally /Electrically Enhance Leadframe  
on the device to the exposed metal pad on the PCB is con- Base Package, Amkor Technology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
F
IGURE 6. P.C. BOARD FOR  
E
XPOSED  
P
AD  
T
HERMAL  
R
ELEASE  
P
ATH  
E
XAMPLE  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
11  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8534-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8534-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 230mA = 796.95mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 22 * 30mW = 660mW  
Total Power_MAX (3.465V, with all outputs switching) = 797mW + 660mW = 1457mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 17.2°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 1.457W * 17.2°C/W = 110.1°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 64-PIN TQFP, E-PAD, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
22.3°C/W  
17.2°C/W  
15.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
12  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
13  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 64 LEAD TQFP, E-PAD  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
22.3°C/W  
17.2°C/W  
15.1°C/W  
TRANSISTOR COUNT  
The transistor count for ICS8534-01 is: 1474  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
14  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
SKEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TQFP, E-PAD  
-HD VERSION  
HEAT SLUG DOWN  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
ACD-HD  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
64  
A
--  
--  
1.20  
0.15  
1.05  
0.27  
0.20  
A1  
0.05  
0.95  
0.17  
0.09  
0.10  
1.0  
A2  
b
0.22  
c
--  
D
12.00 BASIC  
10.00 BASIC  
7.50 Ref.  
12.00 BASIC  
10.00 BASIC  
7.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
θ
0.45  
0.75  
--  
0°  
7°  
ccc  
--  
2.0  
--  
0.08  
10.0  
D3 & E3  
--  
Reference Document: JEDEC Publication 95, MS-026  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
15  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
160 per tray  
500  
Temperature  
0°C to 85°C  
0°C to 85°C  
ICS8534AY-01  
ICS8534AY-01T  
ICS8534AY-01  
ICS8534AY-01  
64 lead TQFP, E-Pad  
64 lead TQFP, E-Pad on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
16  
ICS8534-01  
Integrated  
Circuit  
Systems, Inc.  
LOW  
S
KEW, 1-TO-22  
D
IFFERENTIAL  
-
TO-3.3V LVPECL FANOUT  
BUFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
A
15  
Updated Package Outline and Package Dimensions.  
11/19/04  
8534AY-01  
www.icst.com/products/hiperclocks.html  
REV. A NOVEMBER 19, 2004  
17  

相关型号:

ICS8534AY-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8534AY-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01LF

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01LFT

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01T

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8534AY-01T

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534BMI-13LF

Clock Generator, 266MHz, PDSO16, 3.90 X 9.90 MM, 1.375 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-16
IDT

ICS8534BMI-13LFT

Clock Generator, 266MHz, PDSO16, 3.90 X 9.90 MM, 1.375 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-16
IDT

ICS8535-01

LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535-11

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535-21

LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535-31

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI