ICS858012AKT [ICSI]

LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER; 低偏移, 1对2 ,差分至2.5V , 3.3V LVPECL扇出缓冲器
ICS858012AKT
型号: ICS858012AKT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER
低偏移, 1对2 ,差分至2.5V , 3.3V LVPECL扇出缓冲器

文件: 总15页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS858012 is a high speed 1-to-2 Differential- Two differential LVPECL outputs  
ICS  
HiPerClockS™  
to-2.5V, 3.3V LVPECL Fanout Buffer and is a  
One differential LVPECL clock input  
member of the HiPerClockS™ family of high  
performance clock solutions from ICS. The  
ICS858012 is optimized for high speed and very  
IN, nIN pair can accept the following differential input  
levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
low output skew, making it suitable for use in demanding  
applications such as SONET, 1 Gigabit and 10 Gigabit  
Ethernet, and Fibre Channel. The internally terminated  
differential input andVREF_AC pin allow other differential signal  
families such as LVPECL, LVDS, LVHSTL and HCSL to be  
easily interfaced to the input with minimal use of external  
components. The ICS858012 is packaged in a small 3mm x  
3mm 16-pin VFQFN package which makes it ideal for use in  
space-constrained applications.  
Output frequency: 2GHz (typical)  
Output skew: <15ps (typical)  
Part-to-part skew: TBD  
Additive phase jitter, RMS: TBD  
Propagation delay: 350ps (typical)  
Operating voltage supply range:  
VCC = 2.375V to 3.63V, VEE = 0V  
-40°C to 85°C ambient operating temperature  
Availabe in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
16 15 14 13  
IN  
VT  
1
2
3
4
12 Q0  
11 nQ0  
10 nQ1  
VREF_AC  
Q0  
nQ0  
IN  
VT  
nIN  
9
Q1  
5
6
7
8
nIN  
Q1  
nQ1  
VREF_AC  
ICS858012  
16-LeadVFQFN  
3mm x 3mm x 0.95 package body  
K Package  
TopView  
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on  
initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications  
without notice.  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
1
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
IN  
Type  
Description  
1
2
Input  
Input  
Non-inverting LVPECL differential clock input.  
Termination input.  
VT  
Reference voltage for AC-coupled applications.  
VREF_AC = to VCC - 1.38V.  
3
VREF_AC  
Output  
4
nIN  
VCC  
Input  
Power  
Power  
Output  
Output  
Inverting differential LVPECL clock input.  
Positive supply pins.  
5, 8, 13, 16  
6, 7, 14, 15  
9, 10  
VEE  
Negative supply pin.  
Q1, nQ1  
nQ0, Q0  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
11, 12  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
2
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-0.5V toVCC + 0.5 V  
Inputs, VI  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Input Current, IN, nIN  
VT Current, IVT  
50mA  
100mA  
0.5mA  
Input Sink/Source, IREF_AC  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature, TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 51.5°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 2A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.63V; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.63  
V
Max., VCC, No Load  
30  
mA  
TABLE 2B. DC CHARACTERISTICS, VCC = 2.375V TO 3.63V; VEE = 0V  
Symbol Parameter Test Conditions  
Minimum  
Typical  
Maximum Units  
RIN  
Differential Input Resistance (IN, nIN)  
40  
1.2  
0
50  
60  
VCC  
Ω
V
V
V
V
V
V
VIH  
Input High Voltage  
(IN, nIN)  
(IN, nIN)  
VIL  
Input Low Voltage  
VIH - 0.15  
1.7  
VIN  
Input Voltage Swing; NOTE 1  
0.1  
0.3  
VDIFF_IN  
IN to VT  
VREF_AC  
Differential Input Voltage Swing  
1.28  
Output Reference Voltage  
VCC - 1.525 VCC - 1.4 VCC - 1.325  
NOTE 1: Refer to Parameter Measurement Information, Input Voltage Swing Diagram  
TABLE 2C. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 3.63V; VEE = 0V  
Symbol Parameter  
Conditions  
Minimum  
VCC - 1.145  
VCC - 1.945  
550  
Typical  
Maximum Units  
VOH  
VOL  
Output High Voltage; NOTE 1  
VCC - 0.895  
VCC - 1.695  
V
V
Output Low Voltage; NOTE 1  
Output Voltage Swing  
VOUT  
800  
mV  
VDIFF_OUT Differential Output Voltage Swing  
NOTE 1: Outputs terminated with 100Ω across differential output pair.  
1100  
1600  
mV  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
3
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
TABLE 3. AC CHARACTERISTICS, VCC = 0V; VEE = -3.63V TO -2.375V OR VCC = 2.375 TO 3.63V; VEE = 0V  
Symbol Parameter  
fMAX Output Frequency  
fIN  
Condition  
Minimum Typical Maximum Units  
2
GHz  
GHz  
Input Frequency  
2.5  
Propagation Delay; (Differential);  
NOTE 1  
tPD  
350  
ps  
tsk(o)  
Output Skew; NOTE 2, 4  
<15  
ps  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
TBD  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
TBD  
152  
fs  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
ps  
All parameters characterized at 1GHz unless otherwise noted.  
RL = 100Ω after each output pair.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
4
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nIN  
LVPECL  
VEE  
VIN  
VIH  
Cross Points  
VIL  
IN  
nQx  
VEE  
-0.375V to -1.63V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nIN  
IN  
VDIF_IN  
VIN  
VIN, VOUT  
VDIFF_IN, VDIFF_OUT  
nQ0, nQ1  
800mV  
(typical)  
1.6V  
(typical)  
Q0, Q1  
tPD  
PROPAGATION DELAY  
SINGLE ENDED & DIFFERENTIAL INPUT VOLTAGE SWING  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
Outputs  
tR  
OUTPUT RISE/FALL TIME  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
5
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
APPLICATION INFORMATION  
LVPECL INPUT WITH BUILT-IN 50Ω TERMINATION INTERFACE (2.5V)  
The IN/nIN with built-in 50Ω terminations accepts LVDS,  
LVPECL, LVHSTL, CML, SSTL and other differential signals.  
Both VSWING and VOH must meet the VPP and VCMR input require-  
by the most common driver types. The input interfaces sug-  
gested here are examples only.If the driver is from another ven-  
dor, use their termination recommendation. Please consult with  
ments. Figures 1A to 1E show interface examples for the the vendor of the driver component to confirm the driver termi-  
HiPerClockS IN/nIN input with built-in 50Ω terminations driven  
nation requirements.  
2.5V  
2.5V  
3.3V or 2.5V  
2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
Built-In  
50 Ohm  
2.5V LVPECL  
LVDS  
R1  
18  
Built-In  
50 Ohm  
FIGURE 1A. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 1B. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN LVDS DRIVER  
BUILT-IN 50Ω DRIVEN BY AN LVPECL DRIVER  
2.5V  
2.5V  
2.5V  
2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
VT  
Zo = 50 Ohm  
Zo = 50 Ohm  
nIN  
nIN  
Receiver  
Receiver  
With  
With  
CML - Built-in 50 Ohm Pull-up  
CML - Open Collector  
Built-In  
Built-In  
50 Ohm  
50 Ohm  
FIGURE 1D. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 1C. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY A CML DRIVER  
WITH BUILT-IN 50Ω PULLUP  
BUILT-IN 50Ω DRIVEN BY AN OPEN COLLECTOR  
CML DRIVER  
2.5V  
2.5V  
Zo = 50 Ohm  
R1  
R2  
25  
IN  
VT  
Zo = 50 Ohm  
nIN  
25  
Receiver With Built-In 50Ω  
SSTL  
FIGURE 1E. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN SSTL DRIVER  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
6
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
LVPECL INPUT WITH BUILT-IN 50Ω TERMINATION INTERFACE (3.3V)  
The IN /nIN with built-in 50Ω terminations accepts LVDS,  
LVPECL, LVHSTL, CML, SSTL and other differential signals.  
Both VSWING and VOH must meet the VPP and VCMR input require-  
ments. Figures 2A to 2E show interface examples for the  
by the most common driver types. The input interfaces sug-  
gested here are examples only. If the driver is from another ven-  
dor, use their termination recommendation. Please consult with  
the vendor of the driver component to confirm the driver termi-  
HiPerClockS IN/nIN input with built-in 50Ω terminations driven nation requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
Built-In  
50 Ohm  
LVPECL  
LVDS  
R1  
50  
Built-In  
50 Ohm  
FIGURE 2A. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 2B. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN LVDS DRIVER  
BUILT-IN 50Ω DRIVEN BY AN LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
VT  
Zo = 50 Ohm  
Zo = 50 Ohm  
nIN  
nIN  
Receiver  
Receiver  
With  
With  
CML- Built-in 50 Ohm Pull-Up  
CML- Open Collector  
Built-In  
Built-In  
50 Ohm  
50 Ohm  
FIGURE 2D. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 2C. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY A CML DRIVER  
WITH BUILT-IN 50Ω PULLUP  
BUILT-IN 50Ω DRIVEN BY A CML DRIVER  
WITH OPEN COLLECTOR  
3.3V  
3.3V  
R1  
25  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
VT  
nIN  
Receiver  
With  
SSTL  
R2  
25  
Built-In  
50 Ohm  
FIGURE 2E. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN SSTL DRIVER  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
7
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
2.5V DIFFERENTIAL INPUT WITH BUILT-IN 50Ω TERMINATION UNUSED INPUT HANDLING  
To prevent oscillation and to reduce noise, it is recommended to  
have pullup and pulldown connect to true and compliment of the  
unused input as shown in Figure 3.  
2.5V  
2.5V  
R1  
680  
IN  
VT  
nIN  
Receiver  
with  
Built-In  
50 Ohm  
R2  
680  
FIGURE 3. UNUSED INPUT HANDLING  
3.3V DIFFERENTIAL INPUT WITH BUILT-IN 50Ω TERMINATION UNUSED INPUT HANDLING  
To prevent oscillation and to reduce noise, it is recommended to  
have pullup and pulldown connect to true and compliment of the  
unused input as shown in Figure 4.  
3.3V  
3.3V  
R1  
1K  
IN  
VT  
nIN  
Receiver  
with  
Built-In  
50 Ohm  
R2  
1K  
FIGURE 4. UNUSED INPUT HANDLING  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
8
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
RECOMMENDATIONS FOR UNUSED OUTPUT PINS  
OUTPUTS:  
LVPECL OUTPUT  
All unused LVPECL outputs can be left floating.We recommend  
that there is no trace attached. Both sides of the differential  
output pair should either be left floating or terminated.  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- 50Ω transmission lines. Matched impedance techniques should  
tion for LVPECL outputs.The two different layouts mentioned be used to maximize operating frequency and minimize signal  
are recommended only as guidelines.  
distortion. Figures 5A and 5B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
9
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 6A and Figure 6B show examples of termination for 2.5V ground level. The R3 in Figure 6B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 6C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 6A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 6B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 6C. 2.5V LVPECL TERMINATION EXAMPLE  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
10  
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS858012.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS858012 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.63V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.63V * 30mA = 108.9mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.63V, with all outputs switching) = 108.9mW + 60.4mW = 169.3mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θ
JA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 0 linear feet per minute and a multi-layer board, the appropriate value is 51.5°C/W per Table 4 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.169W * 51.5°C/W = 93.7°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 4. THERMAL RESISTANCE θJA FOR 16 LEAD VFQFN, FORCED CONVECTION  
θ
JA at 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
11  
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT ANDT ERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.895V  
OH_MAX  
CC_MAX  
)
= 0.895V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.695V  
OL_MAX  
CC_MAX  
)
= 1.695V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.895V)/50Ω] * 0.895V = 19.78mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.695V)/50Ω] * 1.695V = 10.34mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
12  
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 5. θJAVS. AIR FLOW TABLE FOR 16 LEAD VFQFN  
θJA at 0 Air Flow (Linear Feet per Minute)  
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
TRANSISTOR COUNT  
The transistor count for ICS858012 is: 113  
Pin compatible with SY58012U  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
13  
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
PACKAGE OUTLINE - K SUFFIX FOR 16 LEAD VFQFN  
TABLE 6. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
16  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
4
4
3.0  
D2  
E
0.25  
1.25  
3.0  
E2  
L
0.25  
0.30  
1.25  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
14  
PRELIMINARY  
ICS858012  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, 1-TO-2, DIFFERENTIAL-TO-  
2.5V, 3.3V LVPECL FANOUT BUFFER  
TABLE 7.ORDERING INFORMATION  
Part/Order Number  
ICS858012AK  
Marking  
012A  
012A  
TBD  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
16 Lead VFQFN  
ICS858012AKT  
ICS858012AKLF  
ICS858012AKLFT  
16 Lead VFQFN  
2500 tape & reel  
tube  
16 Lead "Lead-Free" VFQFN  
16 Lead "Lead-Free" VFQFN  
TBD  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark. HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
858012AK  
www.icst.com/products/hiperclocks.html  
REV.A NOVEMBER 28, 2005  
15  

相关型号:

ICS858018AKLF

Low Skew Clock Driver, 858018 Series, 1 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS858018AKLFT

Low Skew Clock Driver, 858018 Series, 1 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS858018AKT

Low Skew Clock Driver, 858018 Series, 1 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
IDT

ICS858020

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-CML FANOUT BUFFER
IDT

ICS858020AK

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-CML FANOUT BUFFER
IDT

ICS858020AKLF

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-CML FANOUT BUFFER
IDT

ICS858020AKLFT

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-CML FANOUT BUFFER
IDT

ICS858020AKT

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-CML FANOUT BUFFER
IDT

ICS86004-02

62.5MHZ TO 250MHZ, 1-TO-4 LVCMOS/LVTTL ZERO DELAY CLOCK BUFFER
IDT

ICS86004BG

PLL Based Clock Driver, 86004 Series, 4 True Output(s), 0 Inverted Output(s), PDSO16, 4.40 X 5 MM, 0.925 MM HEIGHT, MO-153, TSSOP-16
IDT

ICS86004BG-01

PLL Based Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, MO-153, TSSOP-16
IDT

ICS86004BG-01LF

PLL Based Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-16
IDT