ICS8624BYT [ICSI]

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER; 低偏移, 1到5差分至HSTL零延迟缓冲器
ICS8624BYT
型号: ICS8624BYT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
低偏移, 1到5差分至HSTL零延迟缓冲器

文件: 总16页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8624 is a high performance, 1-to-5  
Fully integrated PLL  
ICS  
Differential-to-HSTL zero delay buffer and  
a member of the HiPerClockS™ family of High  
Performance Clock Solutions from ICS. The  
ICS8624 has two selectable clock input pairs.  
5 differential HSTL outputs  
HiPerClockS™  
Selectable differential CLKx, nCLKx input pairs  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, HSTL, SSTL, HCSL  
The CLK0, nCLK0 and CLK1, nCLK1 pair can accept most  
standard differential input levels.The VCO operates at a fre-  
quency range of 250MHz to 700MHz. Utilizing one of the  
outputs as feedback to the PLL, output frequencies up to  
700MHz can be regenerated with zero delay with respect to  
the input. Dual reference clock inputs support redundant clock  
or multiple reference applications.  
Output frequency range: 31.25MHz to 700MHz  
Input frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
External feedback for “zero delay” clock regeneration  
Cycle-to-cycle jitter: 25ps (maximum)  
Output skew: 25ps (maximum)  
Static phase offset: 100ps  
3.3V core, 1.8V output operating supply  
0°C to 70°C ambient operating temperature  
Lead-Free package available  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
PLL_SEL  
Q1  
nQ1  
÷4, ÷8  
0
1
32 31 30 29 28 27 26 25  
CLK0  
nCLK0  
Q2  
nQ2  
0
1
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
CLK1  
nCLK1  
Q3  
nQ3  
CLK0  
nQ3  
Q2  
PLL  
nCLK0  
CLK1  
Q4  
nQ4  
CLK_SEL  
ICS8624  
nQ2  
Q1  
nCLK1  
CLK_SEL  
MR  
FB_IN  
nFB_IN  
nQ1  
VDDO  
9
10 11 12 13 14 15 16  
SEL0  
SEL1  
MR  
32-Lead LQFP  
7mm x 7mm x 1.4mm body package  
Y Package  
TopView  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
1
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pulldown  
Description  
Determines the input and output frequency range noted in Table 3.  
LVCMOS / LVTTL interface levels.  
Determines the input and output frequency range noted in Table 3.  
LVCMOS / LVTTL interface levels.  
1
SEL0  
Input  
Input  
2
SEL1  
Pulldown  
3
4
5
6
CLK0  
nCLK0  
CLK1  
Input  
Input  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
nCLK1  
Pullup  
Inverting differential clock input.  
Clock select input. When LOW, selects CLK0, nCLK0. When HIGH, selects  
CLK1, nCLK1 inputs. LVCMOS / LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs nQx  
to go high. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS / LVTTL interface levels.  
7
CLK_SEL  
MR  
Input  
Pulldown  
8
Input  
Pulldown  
9, 32  
10  
VDD  
Power  
Input  
Input  
Core supply pins.  
nFB_IN  
FB_IN  
Pullup  
Feedback input to phase detector for regenerating clocks with "zero delay".  
11  
Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
12, 13  
28, 29  
GND  
Power  
Output  
Power  
Output  
Output  
Output  
Power supply ground.  
Differential clock outputs. 50typical output impedance.  
HSTL interface levels.  
14, 15  
nQ0, Q0  
VDDO  
16, 17,  
24, 25  
Output supply pins.  
Differential clock outputs. 50typical output impedance.  
HSTL interface levels.  
Differential clock outputs. 50typical output impedance.  
HSTL interface levels.  
Differential clock outputs. 50typical output impedance.  
HSTL interface levels.  
18, 19  
20, 21  
22, 23  
nQ1, Q1  
nQ2, Q2  
nQ3, Q3  
Differential clock outputs. 50typical output impedance.  
HSTL interface levels.  
26, 27  
30  
nQ4, Q4  
VDDA  
Output  
Power  
Analog supply pin.  
Selects between the PLL and clock as the input to the dividers.  
31  
PLL_SEL  
Input  
Pullup  
When HIGH, selects PLL. When LOW, selects reference clock.  
LVCMOS / LVTTL interface levels.  
NOTE 1: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
2
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
K  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 1  
PLL Enable Mode  
SEL1  
SEL0  
Reference Frequency Range (MHz)*  
Q0:Q4, nQ0:nQ4  
0
0
1
1
0
1
0
1
250 - 700  
125 - 350  
÷ 1  
÷ 1  
÷ 1  
÷ 1  
62.5 - 175  
31.25 - 87.5  
*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Outputs  
Inputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
1
1
0
1
0
1
÷ 4  
÷ 4  
÷ 4  
÷ 8  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
3
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
VDDA  
VDDO  
IDD  
Core Supply Voltage  
3.135  
3.135  
1.6  
3.3  
3.3  
1.8  
3.465  
3.465  
2.0  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
V
120  
mA  
mA  
mA  
IDDA  
IDDO  
15  
No Load  
0
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
SEL0, SEL1,  
CLK_SEL, MR  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
PLL_SEL  
SEL0, SEL1,  
CLK_SEL, MR  
V
-5  
IIL  
Input Low Current  
PLL_SEL  
VDD = 3.465V, VIN = 0V  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
CLK0, CLK1, FB_IN  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
V
-5  
-150  
0.1  
IIL  
Input Low Current  
nCLK0, nCLK1, nFB_IN VDD = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
0.5  
VDD - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLKx, nCLKx is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
4
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
TABLE 4D. HSTL DC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
1.0  
0
1.4  
0.4  
60  
V
V
VOL  
Output Low Voltage; NOTE 1  
VOX  
Output Crossover Voltage; NOTE 2  
Peak-to-Peak Output Voltage Swing  
40  
0.6  
V
VSWING  
1.1  
NOTE 1: Outputs terminated with 50to ground.  
NOTE 2: Defined with respect to output voltage swing at a given condition.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
31.25  
700  
700  
MHz  
MHz  
CLK0, nCLK0,  
CLK1, nCLK1  
TABLE 6A. AC CHARACTERISTICS, VDD = VDDA = 3.3V 5ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
700  
4.4  
Units  
MHz  
ns  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
ƒ700MHz  
PLL_SEL = 3.3V  
3.4  
3.9  
t(Ø)  
tsk(o)  
tjit(cc)  
tjit(Ø)  
tL  
-100  
100  
25  
ps  
ps  
25  
ps  
50  
ps  
1
ms  
ps  
tR  
Output Rise Time  
20ꢀ to 80ꢀ @ 50MHz  
20ꢀ to 80ꢀ @ 50MHz  
300  
300  
700  
700  
tF  
Output Fall Time  
ps  
tPW  
Output Pulse Width  
tcycle/2 - 85 tcycle/2 tcycle/2 + 85  
ps  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal  
across all conditions, when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
TABLE 6B. AC CHARACTERISTICS, VDD = VDDA = 3.3V 10ꢀ, VDDO = 1.8V 0.2V, TA = 0°C TO 70°C  
Symbol Parameter  
tjit(cc) Cycle-to-Cycle Jitter; NOTE 1  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
35  
ps  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
5
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
S
KEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
3.3V 5ꢀ or 10ꢀ  
1.8V 0.2V  
VDD  
SCOPE  
,
VDD  
VDDA  
Qx  
nCLK0,  
nCLK1  
VDDO  
VPP  
VCMR  
Cross Points  
HSTL  
CLK0,  
CLK1  
GND  
nQx  
GND  
0V  
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
nQx  
nQ  
tcycle n  
tcycle n+1  
nQy  
Qy  
t
jit(cc) =  
t
cycle n –tcycle n+1  
tsk(o)  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nCLK0,  
VOH  
VOL  
nCLK1  
CLK0,  
CLK1  
VOH  
VOL  
nFB_IN  
80ꢀ  
tF  
80ꢀ  
VOD  
FB_IN  
Clock  
20ꢀ  
t(Ø)  
20ꢀ  
Outputs  
tjit(Ø) = t(Ø) — t(Ø) mean = Phase Jitter  
tR  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
OUTPUT RISE/FALL TIME  
PHASE JITTER AND STATIC PHASE OFFSET  
nQ0:nQ4  
nCLK0,  
nCLK1  
VDDO  
2
VDDO  
2
VDDO  
2
Q0:Q4  
CLK0,  
CLK1  
Pulse Width  
nQ0:nQ4  
tPERIOD  
Q0:Q4  
tPD  
OUTPUT PULSE WIDTH/PERIOD  
PROPAGATION DELAY  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
6
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS8624 provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VDD, VDDA, and VDDO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 1 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VDDA pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10µF  
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF = VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
7
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 3A to 3E show inter- For example in Figure 3A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 3B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
8
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
LAYOUT GUIDELINE  
The schematic of the ICS8624 layout example is shown in will depend on the selected component types, the density of  
Figure 4A. The ICS8624 recommended PCB board layout for the components, the density of the traces, and the stack up  
this example is shown in Figure 4B. This layout example is of the P.C. board.  
used as a general guideline. The layout in the actual system  
VDD  
SP = Space (i.e. not intstalled)  
R7  
VDD  
VDDA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
10  
C11  
0.01u  
VDD=3.3V  
C16  
10u  
VDDO=1.8V  
CLK_SEL  
PLL_SEL  
SEL0  
SEL1  
Zo = 50 Ohm  
Zo = 50 Ohm  
155.5 MHz  
DIV_SEL[1:0] = 01  
+
-
VDDO  
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
LVHSTL_input  
1K  
VDD  
U1  
R4A  
50  
R4B  
50  
3.3V  
(155.5 MHz)  
Zo = 50 Ohm  
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
nQ3  
Q2  
nQ2  
Q1  
nQ1  
VDDO  
CLK0  
nCLK0  
CLK1  
nCLK2  
CLK_SEL  
MR  
Bypass capacitor located near the power pins  
Zo = 50 Ohm  
CLK_SEL  
VDD  
(U1-9)  
(U1-32)  
3.3V PECL Driver  
C1  
0.1uF  
C6  
0.1uF  
R8  
50  
R9  
50  
8624  
VDDO  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
R10  
50  
R2B  
50  
R2A  
50  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
FIGURE 4A. ICS8624 HSTL ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
9
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50output traces should have same  
Place the decoupling capacitors C1, C6, C2, C4, and C5, as  
close as possible to the power pins. If space allows, placement  
of the decoupling capacitor on the component side is preferred.  
This can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
length.  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
GND  
R7  
C16  
C11  
C7  
VDDO  
C6  
C5  
VDD  
U1  
Pin 1  
VDDA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
FIGURE 4B. PCB BOARD LAYOUT FOR ICS8624  
www.icst.com/products/hiperclocks.html  
8624BY  
REV. C JUNE 15, 2004  
10  
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8624.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8624 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 120mA = 416mW  
Power (outputs)MAX = 32.8mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 32.8mW = 164mW  
Total Power_MAX (3.465V, with all outputs switching) = 416mW + 164mW = 580mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.580W * 42.1°C/W = 94.4°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
11  
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
HSTL output driver circuit and termination are shown in Figure 5.  
VDDO  
Q1  
VOUT  
RL  
50  
FIGURE 5. HSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
- V  
)
)
OH_MIN  
L
DD_MAX  
OH_MIN  
/R ) * (V  
OL_MAX  
L
DD_MAX  
OL_MAX  
Pd_H = (1V/50) * (2V - 1V) = 20mW  
Pd_L = (0.4V/50) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
12  
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8624 is: 1565  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
12  
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEADD LQFP  
TABLE 9. PACKAGE DIMENISIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
0
°
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
13  
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
ICS8624BY  
Marking  
Package  
Count  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8624BY  
ICS8624BY  
32 Lead LQFP  
250 per tray  
1000  
ICS8624BYT  
32 Lead LQFP on Tape and Reel  
32 Lead "Lead Free" LQFP  
ICS8624BYLF  
ICS8624BYLFT  
ICS8624BYLF  
ICS8624BYLF  
250 per tray  
1000  
32 Lead "Lead Free" LQFP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for  
use in life support devices or critical medical instruments.  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
14  
ICS8624  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-5  
D
IFFERENTIAL  
-
TO-HSTL ZERO  
DELAY  
BUFFER  
REVISION HISTORY SHEET  
Rev  
A
Table  
Page  
Description of Change  
Date  
8
10  
Switched labels on Figure 8, odc & tPERIOD diagram.  
Revised label on Figure 11 to read ICS8624 LVHSTL... from ICS8634 LVDS...  
10/30/01  
10/31/01  
8/13/02  
A
1
Revised Block Diagram  
7 - 8  
Updated Phase Jitter Diagram and Output Rise & Fall Time Diagram.  
A
11 - 12 Revised Figures 3A & 3B.  
T1  
2
Pin Description table - revised MR & VDD descriptions.  
T4A  
4
Power Supply table - revised VDD parameter description to correspond with the  
Pin Description table.  
B
T4C  
4
9
Differential DC Charc. table - changed VPP limit from 0.15V minimum to 0.1V  
minimum.  
2/12/03  
Revised Single Ended Signal diagram.  
Updated format.  
T2  
3
4
5
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - updated Output rating.  
HSTL DC Characteristics Table - changed VOX to 40% min. - 60% max. and  
added note.  
T4D  
T6B  
C
C
2/19/04  
6/15/04  
5
Added Table 6B AC Characteristics Table with VDD = VDDA = 3.3V 10%.  
Changed LVHSTL to HSTL throughout the data sheet.  
Added Differential Clock Input Interface section.  
8
T10  
14  
Added "Lead Free" part number to Ordering Information table.  
8624BY  
www.icst.com/products/hiperclocks.html  
REV. C JUNE 15, 2004  
16  

相关型号:

ICS8624I

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
IDT

ICS8633AF-01

PLL Based Clock Driver, 8633 Series, 3 True Output(s), 0 Inverted Output(s), PDSO28, 5.30 X 10.20 MM, 1.75 MM HEIGHT, MO-150, SSOP-28
IDT

ICS8633AF-01LF

PLL Based Clock Driver, 8633 Series, 3 True Output(s), 0 Inverted Output(s), PDSO28, 5.30 X 10.20 MM, 1.75 MM HEIGHT, ROHS COMPLIANT, MO-150, SSOP-28
IDT

ICS8633AF-01LFT

PLL Based Clock Driver, 8633 Series, 3 True Output(s), 0 Inverted Output(s), PDSO28, 5.30 X 10.20 MM, 1.75 MM HEIGHT, ROHS COMPLIANT, MO-150, SSOP-28
IDT

ICS8634BK-01

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS8634BK-01LF

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS8634BK-01LFT

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS8634BK-01T

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), 5 X 5 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS8634BY-01

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8634BY-01LF

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, LQFP-32
IDT

ICS8634BY-01LFT

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026BBA, LQFP-32
IDT

ICS8634BY-01T

PLL Based Clock Driver, 8634 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT