ICS87973I-147 [ICSI]

LOW SKEW, 1-TO-12 LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER; 低偏移, 1到12 LVCMOS / LVTTL时钟乘法器/零延迟缓冲器
ICS87973I-147
型号: ICS87973I-147
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-12 LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER
低偏移, 1到12 LVCMOS / LVTTL时钟乘法器/零延迟缓冲器

时钟
文件: 总16页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS87973I-147 is a LVCMOS/LVTTL clock  
Fully integrated PLL  
ICS  
generator and a member of the HiPerClockS™fam-  
14 LVCMOS/LVTTL outputs; (12) clock, (1) feedback, (1) sync  
Selectable LVCMOS/LVTTL or differential CLK, nCLK inputs  
HiPerClockS™  
ily of High Performance Clock Solutions from ICS.  
The ICS87973I-147 has three selectable inputs  
and provides 14 LVCMOS/LVTTL outputs.  
CLK0, CLK1 can accept the following input levels:  
LVCMOS or LVTTL  
The ICS87973I-147 is a highly flexible device.The three select-  
able inputs (1 differential and 2 single ended inputs) are often  
used in systems requiring redundant clock sources. Up to three  
different output frequencies can be generated among the three  
output banks.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
Output frequency range: 10MHz to 150MHz  
VCO range: 240MHz to 500MHz  
The three output banks and feedback output each have their  
own output dividers which allows the device to generate a  
multitude of different bank frequency ratios and output-to-input  
frequency ratios. In addition, 2 outputs in Bank C (QC2, QC3)  
can be selected to be inverting or non-inverting. The output fre-  
quency range is 10MHz to 150MHz.The input frequency range is  
6MHz to 120MHz.  
Output skew: 200ps (maximum)  
Cycle-to-cycle jitter, (all banks ÷ 4): 55ps (maximum)  
Full 3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Pin compatible with MPC973  
The ICS87973I-147 also has a QSYNC output which can be  
used for system synchronization purposes. It monitors Bank A  
and Bank C outputs and goes low one period prior to coincident  
rising edges of Bank A and Bank C clocks. QSYNC then goes  
high again when the coincident rising edges of Bank A and  
Bank C occur.This feature is used primarily in applications where  
Bank A and Bank C are running at different frequencies, and is  
particularly useful when they are running at non-integer mul-  
tiples of one another.  
Compatible with PowerPCandPentium™ Microprocessors  
PIN ASSIGNMENT  
Example Applications:  
1. System Clock generator: Use a 16.66MHz reference  
clock to generate eight 33.33MHz copies for PCI and  
four 100MHz copies for the CPU or PCI-X.  
39 38 37 36 35 34 33 32 31 30 29 28 27  
FSEL_B1  
FSEL_B0  
FSEL_A1  
FSEL_A0  
QA3  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
FSEL_FB1  
QSYNC  
GNDO  
QC0  
2. Line Card Multiplier: Multiply differential 62.5MHz from  
a back plane to single-ended 125MHz for the line Card  
ASICs and Gigabit Ethernet Serdes.  
VDDO  
VDDO  
QC1  
3. Zero Delay buffer for Synchronous memory: Fan out  
up to twelve 100MHz copies from a memory controller  
reference clock to the memory chips on a memory module  
with zero delay.  
QA2  
FSEL_C0  
FSEL_C1  
QC2  
ICS87973I-147  
GNDO  
QA1  
VDDO  
VDDO  
QA0  
QC3  
GNDO  
VCO_SEL  
GNDO  
INV_CLK  
1
2
3
4
5
6
7
8
9 10 11 12 13  
52-Lead LQFP  
10mm x 10mm x 1.4mm package body  
Y package  
TopView  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
1
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
BLOCK DIAGRAM  
VCO_SEL  
PLL_SEL  
REF_SEL  
CLK  
1
0
nCLK  
SYNC  
FRZ  
D
Q
QA0  
QA1  
QA2  
QA3  
CLK0  
CLK1  
0
1
0
1
SYNC  
FRZ  
PHASE  
DETECTOR  
VCO  
SYNC  
FRZ  
LPF  
CLK_SEL  
EXT_FB  
SYNC  
FRZ  
SYNC  
FRZ  
D
Q
QB0  
QB1  
QB2  
QB3  
SYNC  
FRZ  
SYNC  
FRZ  
SYNC  
FRZ  
FSEL_FB2  
nMR/OE  
D
D
D
Q
Q
Q
QC0  
QC1  
QC2  
QC3  
QFB  
POWER-ON  
RESET  
SYNC  
FRZ  
÷4, ÷6, ÷8, ÷12  
÷4, ÷6, ÷8, ÷10  
÷2, ÷4, ÷6, ÷8  
SYNC  
FRZ  
SYNC  
FRZ  
2
2
2
3
0
1
÷4, ÷6, ÷8, ÷10  
SYNC PULSE  
FSEL_A0:1  
÷2  
FSEL_B0:1  
FSEL_C0:1  
FSEL_FB0:2  
SYNC  
SYNC  
FRZ  
FRZ  
D
Q
QSYNC  
DATA GENERATOR  
FRZ_CLK  
OUTPUT DISABLE  
CIRCUITRY  
12  
FRZ_DATA  
INV_CLK  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
2
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
SIMPLIFIED BLOCK DIAGRAM  
nMR/OE  
FSEL_A[0:1]  
2
CLK  
1
0
nCLK  
CLK0  
FSEL_  
A1 A0  
SYNC  
FRZ  
QA0  
QA1  
QA2  
QA3  
0
1
QAx  
÷4  
÷6  
÷8  
PLL  
0
0
1
1
0
1
0
1
CLK1  
SYNC  
FRZ  
VCO RANGE  
240MHz - 500MHz  
CLK_SEL  
REF_SEL  
SYNC  
FRZ  
0
1
÷12  
SYNC  
FRZ  
÷2  
÷1  
0
1
EXT_FB  
FSEL_B[0:1]  
2
SYNC  
FRZ  
QB0  
QB1  
QB2  
QB3  
FSEL_  
B1 B0  
QBx  
÷4  
÷6  
÷8  
VCO_SEL  
PLL_SEL  
0
0
1
1
0
1
0
1
SYNC  
FRZ  
SYNC  
FRZ  
÷10  
SYNC  
FRZ  
FSEL_C[0:1]  
2
FSEL_  
QC0  
QC1  
QC2  
QC3  
C1 C0 QCx  
0
0
1
1
0
1
0
1
÷2  
÷4  
÷6  
÷8  
SYNC  
FRZ  
SYNC  
FRZ  
0
1
SYNC  
FRZ  
INV_CLK  
FSEL_FB[0:2]  
3
FSEL_  
FB2 FB1 FB0 QFB  
QFB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷4  
÷6  
÷8  
÷10  
÷8  
÷12  
÷16  
÷20  
FRZ_CLK  
FRZ_DATA  
O
UTPUT  
D
ISABLE  
SYNC  
FRZ  
QSYNC  
CIRCUITRY  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
3
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
GNDI  
Power  
Input  
Power supply ground.  
Master reset and output enable. When HIGH, enables the outputs. When  
LOW, resets the outputs to tristate and resets output divide circuitry.  
Enables and disables all outputs. LVCMOS / LVTTL interface levels.  
2
nMR/OE  
Pullup  
3
4
FRZ_CLK  
Input  
Input  
Pullup  
Pullup  
Clock input for freeze circuitry. LVCMOS / LVTTL interface levels.  
Configuration data input for freeze circuitry.  
LVCMOS / LVTTL interface levels.  
FRZ_DATA  
FSEL_FB2,  
FSEL_FB1, Input  
FSEL_FB0  
Select pins control Feedback Divide value.  
LVCMOS / LVTTL interface levels.  
5, 26, 27  
Pullup  
Pullup  
Pullup  
Pullup  
Selects between the PLL and reference clocks as the input to the output  
dividers. When HIGH, selects PLL. When LOW, bypasses the PLL.  
LVCMOS / LVTTL interface levels.  
Selects between CLK0 or CLK1 and CLK, nCLK inputs.  
When HIGH, selects CLK, nCLK. When LOW, selects CLK0 or CLK1.  
LVCMOS / LVTTL interface levels.  
Clock select input. Selects between CLK0 and CLK1 as phase detector  
reference. When LOW, selects CLK0. When HIGH, selects CLK1.  
LVCMOS / LVTTL interface levels.  
6
7
PLL_SEL  
REF_SEL  
CLK_SEL  
Input  
Input  
8
Input  
Input  
CLK0,  
CLK1  
9, 10  
Pullup  
Pullup  
Reference clock inputs. LVCMOS / LVTTL interface levels.  
11  
12  
13  
CLK  
nCLK  
VDDA  
Input  
Input  
Non-inverting differential clock input.  
Inverting differential clock input. VDD/2 default when left floating.  
Analog supply pin.  
Power  
Inverted clock select for QC2 and QC3 outputs.  
LVCMOS / LVTTL interface levels.  
14  
INV_CLK  
GNDO  
Input  
Power  
Output  
Power  
Input  
Pullup  
15, 24, 30,  
35, 39, 47, 51  
16, 18,  
21, 23  
17, 22, 33,  
37, 45, 49  
Power supply ground.  
QC3, QC2,  
QC1, QC0  
Bank C clock outputs. 7typical output impedance.  
LVCMOS / LVTTL interface levels.  
VDDO  
Output supply pins.  
FSEL_C1,  
FSEL_C0  
19, 20  
25  
Pullup  
Pullup  
Select pins for Bank C outputs. LVCMOS / LVTTL interface levels.  
Synchronization output for Bank A and Bank C. Refer to Figure 1,  
Timing Diagrams. LVCMOS / LVTTL interface levels.  
QSYNC  
Output  
28  
29  
31  
VDD  
QFB  
Power  
Output  
Input  
Core supply pins.  
Feedback clock output. LVCMOS / LVTTL interface levels.  
Extended feedback. LVCMOS / LVTTL interface levels.  
EXT_FB  
32, 34,  
36, 38  
QB3, QB2,  
QB1, QB0  
FSEL_B1,  
FSEL_B0  
FSEL_A1,  
FSEL_A0  
QA3, QA2,  
QA1, QA0  
Bank B clock outputs.7typical output impedance.  
Output  
Input  
LVCMOS / LVTTL interface levels.  
40, 41  
42, 43  
Pullup  
Pullup  
Select pins for Bank B outputs. LVCMOS / LVTTL interface levels.  
Select pins for Bank A outputs. LVCMOS / LVTTL interface levels.  
Input  
44, 46,  
48, 50  
Bank A clock outputs.7typical output impedance.  
LVCMOS / LVTTL interface levels.  
Selects VCO. When HIGH, selects VCO ÷ 1.  
When LOW, selects VCO ÷ 2. LVCMOS / LVTTL interface levels.  
Output  
Input  
52  
VCO_SEL  
Pullup  
NOTE: Pullup refer to internal input resistors. See table 2, Pin Characteristics, for typical values.  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
4
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
RPULLUP  
RPULLDOWN  
,
Input Pullup/Pulldown Resistor  
51  
K  
Power Dissipation Capacitance  
(per output)  
CPD  
VDD, VDDA, VDDO = 3.465V  
18  
12  
pF  
ROUT  
Output Impedance  
5
7
TABLE 3A. OUTPUT BANK CONFIGURATION SELECT FUNCTION TABLE  
Inputs  
Outputs  
QA  
Inputs  
Outputs  
QB  
Inputs  
Outputs  
QC  
÷2  
FSEL_A1 FSEL_A0  
FSEL_B1  
FSEL_B0  
FSEL_C1  
FSEL_C0  
0
0
1
1
0
1
0
1
÷4  
0
0
1
1
0
1
0
1
÷4  
0
0
1
1
0
1
0
1
÷6  
÷6  
÷4  
÷8  
÷8  
÷6  
÷12  
÷10  
÷8  
TABLE 3B. FEEDBACK CONFIGURATION SELECT FUNCTION TABLE  
Inputs  
Outputs  
FSEL_FB2  
FSEL_FB1  
FSEL_FB0  
QFB  
÷4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷6  
÷8  
÷10  
÷8  
÷12  
÷16  
÷20  
TABLE 3C. CONTROL INPUT SELECT FUNCTION TABLE  
Control Pin  
VCO_SEL  
REF_SEL  
CLK_SEL  
PLL_SEL  
nMR/OE  
Logic 0  
VCO/2  
Logic 1  
VCO  
CLK0 or CLK1  
CLK0  
CLK, nCLK  
CLK1  
BYPASS PLL  
Enable PLL  
Enable Outputs  
Inverted QC2, QC3  
Master Reset/Output Hi Z  
Non-Inverted QC2, QC3  
INV_CLK  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
5
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
fVCO  
1:1 MODE  
2:1 MODE  
3:1 MODE  
3:2 MODE  
4:1 MODE  
4:3 MODE  
6:1 MODE  
QA  
QC  
QSYNC  
QA  
QC  
QSYNC  
QC(÷2)  
QA(÷4)  
QSYNC  
QC(÷2)  
QA(÷8)  
QSYNC  
QC(÷2)  
QA(÷8)  
QSYNC  
QA(÷6)  
QC(÷8)  
QSYNC  
QA(÷12)  
QC(÷2)  
QSYNC  
FIGURE 1. TIMING DIAGRAMS  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
6
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VDD  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Inputs, VI  
-0.5V to VDD + 0.5 V  
-0.5V to VDDO + 0.5V  
Outputs, VO  
PackageThermal Impedance, θJA 42.3°C/W (0 lfpm)  
StorageTemperature, TSTG -65°C to 150°C  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
VDDA  
VDDO  
IDD  
Core Supply Voltage  
3.135  
2.935  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
225  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
IDDA  
20  
NOTE: Special thermal handling may be required in some configurations.  
TABLE 4B. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
LVCMOS Inputs  
LVCMOS Inputs  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
Input Current  
-0.3  
IIN  
120  
µA  
V
VOH  
VOL  
VPP  
VCMR  
Output High Voltage  
Output Low Voltage  
IOH = -20mA  
IOL = 20mA  
CLK, nCLK  
CLK, nCLK  
2.4  
0.5  
1
V
Peak-to-Peak Input Voltage; NOTE 1, 2  
Common Mode Input Voltage; NOTE 1, 2  
0.3  
V
VDD - 2V  
VDD - 0.6V  
V
NOTE 1: Common mode voltage is defined as VIH of the differential signal.  
NOTE 2. For single ended applications, the maximum input voltage for CLK and nCLK is VDD + 0.3V.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, CLK1,  
CLK, nCLK; NOTE 1  
120  
MHz  
FRZ_CLK  
20  
MHz  
NOTE 1: Input frequency depends on the feedback divide ratio to ensure "clock * Feedback Divide" is in the VCO range of  
240MHz to 500MHz.  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
7
ICS87973I-147  
Integrated  
Circuit  
Systems, Inc.  
L
OW  
SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK  
M
ULTIPLIER/ZERO  
DELAY  
BUFFER  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V±±5, TA = -40°C TO 8±°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
1±0  
Units  
MHz  
MHz  
MHz  
÷2  
÷4  
÷6  
÷8  
12±  
fMAX  
Output Frequency  
83.33  
62.±  
300  
24±  
16±  
200  
±±  
MHz  
ps  
CLK0  
-10  
-6±  
14±  
90  
QFB ÷8  
In Frequency = ±0MHz  
Static Phase Offset;  
NOTE 1  
t(Ø)  
CLK1  
ps  
CLK, nCLK  
-130  
18  
ps  
tsk(o)  
tjit(cc)  
fVCO  
Output Skew; NOTE 2  
ps  
Cycle-to-Cycle Jitter; NOTE 3, 4  
PLL VCO Lock Range  
PLL Lock Time; NOTE 3  
Output Rise/Fall Time  
Output Duty Cycle  
All Banks ÷ 4  
0.8V to 2V  
ps  
240  
±00  
10  
MHz  
mS  
ps  
tLOCK  
tR / tF  
odc  
1±0  
4±  
2
700  
±±  
5
tPZL, tPZH Output Enable Time; NOTE 3  
tPLZ, tPHZ Output Disable TIme; NOTE 3  
10  
ns  
2
8
ns  
NOTE 1: Defined as the time difference between the input reference clock and the average feedback input signal  
when the PLL is locked and the input reference frequency is stable.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VDDO/2.  
NOTE 3: These parameters are guaranteed by characterization. Not tested in production.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 6±.  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
8
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
1.65V 5ꢀ  
VDD  
SCOPE  
VDD  
,
V
DDA, VDDO  
nCLK  
Qx  
LVCMOS  
VPP  
VCMR  
Cross Points  
CLK  
GND  
GND  
-1.65V 5ꢀ  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
VDDO  
VDDO  
2
VDDO  
VDDO  
2
Qx  
2
QA0:QA3,  
QB0:QB3,  
QC0:QC3,  
QSYNC,  
QFB  
2
tcycle n  
tcycle n+1  
VDDO  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
Qy  
2
tsk(o)  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nCLK  
CLK  
VDD  
2
CLK0,  
CLK1  
VDD  
VDD  
2
2
EXT_FB  
EXT_FB  
t(Ø)  
t(Ø)  
t(Ø) mean = Static Phase Offset  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
STATIC PHASE OFFSET (LVCMOS)  
STATIC PHASE OFFSET (DIFFERENTIAL)  
VDDO  
2
QA0:QA3,  
QB0:QB3,  
QC0:QC3,  
QSYNC,  
2V  
2V  
Pulse Width  
tPERIOD  
0.8V  
0.8V  
QFB  
Clock  
tR  
tF  
Outputs  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/ PULSE WIDTH PERIOD  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
9
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
USING THE OUTPUT FREEZE CIRCUITRY  
OVERVIEW  
To enable low power states within a system, each output of edge of the FRZ_CLK signal. To place an output in the freeze  
ICS87973I-147 (Except QC0 and QFB) can be individually fro- state, a logic “0” must be written to the respective freeze enable  
zen (stopped in the logic “0” state) using a simple serial inter- bit in the shift register.To unfreeze an output, a logic “1” must be  
face to a 12 bit shift register. A serial interface was chosen to written to the respective freeze enable bit. Outputs will not be-  
eliminate the need for each output to have its own Output En- come enabled/disabled until all 12 data bits are shifted into the  
able pin, which would dramatically increase pin count and pack- shift register.When all 12 data bits are shifted in the register, the  
age cost. Common sources in a system that can be used to next rising edge of FRZ_CLK will enable or disable the outputs.  
drive the ICS87973I-147 serial interface are FPGA’s and ASICs. If the bit that is following the 12th bit in the register is a logic “0”,  
it is used for the start bit of the next cycle;otherwise, the device  
PROTOCOL  
will wait and won’t start the next cycle until it sees a logic “0” bit.  
The Serial interface consists of two pins, FRZ_Data (Freeze Freezing and unfreezing of the output clock is synchronous (see  
Data) and FRZ_CLK (Freeze Clock). Each of the outputs which the timing diagram below).When going into a frozen state, the  
can be frozen has its own freeze enable bit in the 12 bit shift output clock will go LOW at the time it would normally go LOW,  
register.The sequence is started by supplying a logic “0” start and the freeze logic will keep the output low until unfrozen. Like-  
bit followed by 12NRZ freeze enable bits. The period of each wise, when coming out of the frozen state, the output will go  
FRZ_DATA bit equals the period of the FRZ_CLK signal. The HIGH only when it would normally go HIGH. This logic, there-  
FRZ_DATA serial transmission should be timed so the fore, prevents runt pulses when going into and out of the frozen  
ICS87973I-147 can sample each FRZ_DATA bit with the rising state.  
FRZ_DATA  
QA0 QA1 QA2 QA3 QB0 QB1 QB2 QB3 QC1 QC2 QC3 QSYNC  
FRZ_CLK  
FIGURE 2A. FREEZE DATA INPUT PROTOCOL  
Qx FREEZE Internal  
Qx Internal  
Qx Out  
FIGURE 2B. OUTPUT DISABLE TIMING  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
10  
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS87973I-147 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VDD, VDDA, and VDDO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 3 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VDDA pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10 µF  
FIGURE 3. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 4 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 4. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
11  
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 5A to 5D show inter- For example in Figure 5A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers.If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 5B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
12  
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
SCHEMATIC EXAMPLE  
Figure 6 shows a schematic example of using ICS87973I-147. logic control input pull up/down and power supply filtering. In  
This example shows general design of input, output termination, this example, the clock input is driven by an LVCMOS driver.  
R1  
43  
Zo = 50  
VDD  
U1  
VDD  
R9  
1K  
Serial Clcok  
R8  
1K  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GNDI  
GNDO  
QB0  
VDDO  
QB1  
GNDO  
QB2  
VDDO  
QB3  
EXT_FB  
GNDO  
QFB  
VDD  
FSEL_FB0  
nMR/OE  
FRZ_CLK  
FRZ_DATA  
FSEL_FB2  
PLL_SEL  
REF_SEL  
CLK_SEL  
CLK0  
CLK1  
CLK  
nCLK  
VDDA  
R10 1K  
Zo = 50  
Serial Data  
RS  
VDD  
LVCMOS CLOCK  
R7  
VDD  
10 - 15  
C16  
10u  
R5  
1K  
R6  
1K  
C11  
0.01u  
ICS87973I-147  
R2  
43  
Zo = 50  
Logic Input Pin Examples  
Set Logic  
R4  
1K  
Set Logic  
Input to  
'0'  
VDD  
VDD  
Input to  
'1'  
RU1  
1K  
RU2  
Not Install  
R3  
43  
Zo = 50  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
(U1-17)  
C3  
(U1-22)  
(U1-28)  
(U1-33)  
(U1-37)  
(U1-45)  
(U1-49)  
VDD  
RD1  
RD2  
1K  
C4  
0.1uF  
C5  
0.1uF  
C6  
0.1uF  
C7  
0.1uF  
C8  
0.1uF  
C9  
0.1uF  
VDD=3.3V  
Not Install  
0.1uF  
FIGURE 6. ICS87973I-147 SCHEMATIC EXAMPLE  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
13  
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 52 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
47.1°C/W  
36.4°C/W  
500  
42.0°C/W  
34.0°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
58.0°C/W  
42.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87973I-147 is: 8364  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
14  
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - Y SUFFIX FOR 52 LEAD LQFP  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BCC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
52  
--  
--  
1.60  
0.15  
1.45  
0.38  
0.20  
A1  
A2  
b
0.05  
1.35  
0.22  
0.09  
--  
1.40  
0.32  
c
--  
D
12.00 BASIC  
10.00 BASIC  
12.00 BASIC  
10.00 BASIC  
0.65 BASIC  
--  
D1  
E
E1  
e
L
0.45  
0.75  
θ
--  
0
°
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
15  
ICS87973I-147  
LOW SKEW, 1-TO-12  
LVCMOS / LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS87973DYI-147  
ICS87973DYI-147T  
Marking  
Package  
52 Lead LQFP  
Count  
160 per tray  
500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS7973DI147  
ICS7973DI147  
52 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without  
additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices  
or critical medical instruments.  
87973DYI-147  
www.icst.com/products/hiperclocks.html  
REV. A AUGUST 26, 2003  
16  

相关型号:

ICS87974AY

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01LF

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01LFT

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01T

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-T

PLL BASED CLOCK DRIVER, 14 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-T-LF

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), CMOS, PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI-01

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI-01LF

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI-01LFT

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYILF

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT