ICS889831AKT [ICSI]

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER; 低偏移, 1到4路差分LVPECL至LVPECL / ECL扇出缓冲器
ICS889831AKT
型号: ICS889831AKT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-4 DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER
低偏移, 1到4路差分LVPECL至LVPECL / ECL扇出缓冲器

逻辑集成电路 驱动
文件: 总18页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS889831 is a high speed 1-to-4 Differential- 4 differential LVPECL/ECL outputs  
ICS  
to-LVPECL/ECL Fanout Buffer and is a member  
IN, nIN pair can accept the following differential input levels:  
LVPECL, LVDS, CML, SSTL  
HiPerClockS™  
of the HiPerClockS™family of high performance  
clock solutions from ICS. The ICS889831 is  
optimized for high speed and very low output  
50Ω internal input termination toVT  
Maximum output frequency: > 2.1GHz  
Output skew: 30ps (maximum)  
skew, making it suitable for use in demanding applications  
such as SONET, 1 Gigabit and 10 Gigabit Ethernet, and Fibre  
Channel. The internally terminated differential input and  
VREF_AC pin allow other differential signal families such as  
LVDS, LVHSTL and CML to be easily interfaced to the input  
with minimal use of external components.The device also has  
an output enable pin which may be useful for system test  
and debug purposes.The ICS889831 is packaged in a small  
3mm x 3mm 16-pin VFQFN package which makes it ideal  
for use in space-constrained applications.  
Part-to-part skew: 185ps (maximum)  
Additive phase jitter, RMS: 0.27ps (typical)  
Propagation delay: 570ps (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 2.5V 5ꢀ, 3.3V 5ꢀ, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.3V 5ꢀ, 2.5V 5ꢀ  
-40°C to 85°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
16 15 14 13  
EN  
D
Q0  
Q1  
nQ1  
Q2  
1
2
3
4
12 IN  
Q
nQ0  
11 VT  
LE  
10 VREF_AC  
Q1  
50Ω  
50Ω  
IN  
VT  
nIN  
nQ2  
9
nIN  
nQ1  
5
6
7
8
Q2  
nQ2  
ICS889831  
16-LeadVFQFN  
VREF_AC  
Q3  
3mm x 3mm x 0.95 package body  
K Package  
nQ3  
TopView  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
1
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
VCC  
Type  
Description  
Output  
Output  
Output  
Power  
Differential output pair. LVPECL / ECL interface levels.  
Differential output pair. LVPECL / ECL interface levels.  
Differential output pair. LVPECL / ECL interface levels.  
Positive supply pins.  
3, 4  
5, 6  
7, 14  
Synchronizing clock enable. When LOW, Q outputs will go LOW and nQ  
outputs will go HIGH on the next LOW transition at IN inputs. Input  
8
EN  
Input  
Pullup  
threshold is VCC/2V. Includes a 37kΩ pull-up resistor. Default state is  
HIGH when left floating. The internal latch is clocked on the falling edge  
of the input signal IN. LVTTL / LVCMOS interface levels.  
9
10  
nIN  
VREF_AC  
VT  
Input  
Output  
Input  
Inverting differential clock input. 50Ω internal input termination to VT.  
Reference voltage for AC-coupled applications.  
Termination input.  
11  
12  
IN  
Input  
Non-inverting differential clock input. 50Ω internal input termination to VT.  
Negative supply pin.  
13  
VEE  
Power  
Output  
15, 16  
Q0, nQ0  
Differential output pair. LVPECL / ECL interface levels.  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLUP  
Input Pullup Resistor  
37  
kΩ  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
2
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Input  
EN  
0
Outputs  
Q0:Q3  
Disabled; LOW  
Enabled  
nQ0:nQ3  
Disabled; HIGH  
Enabled  
1
After EN switches, the clock outputs are disabled or enabled  
following a falling input clock edge as shown in Figure 1.  
EN  
VCC/2  
VCC/2  
tS  
tH  
nIN  
IN  
VIN  
tPD  
nQx  
Qx  
VOUT Swing  
FIGURE 1. EN TIMING DIAGRAM  
TABLE 3B. TRUTH TABLE  
Inputs  
Outputs  
IN  
0
nIN  
1
EN  
1
Q0:Q3  
nQ0:nQ3  
0
1
1
0
1
1
0
X
X
0
0(1)  
1(1)  
NOTE 1: On next negative transition of the input signal (IN).  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
3
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (ECL mode, VCC = 0)  
-0.5V toVCC + 0.5 V  
Negative SupplyVoltage, VEE  
Inputs,VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Input Current, IN, nIN  
VT Current, IVT  
50mA  
100mA  
0.5mA  
Input Sink/Source, IREF_AC  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature, TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 51.5°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, 3.3V 5ꢀ; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.465  
60  
V
mA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, 3.3V 5ꢀ; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
0
VCC + 0.3  
V
V
Input Low Voltage  
Input High Current  
Input Low Current  
0.8  
5
VCC = VIN = 3.465V  
µA  
µA  
IIL  
VCC = 3.465V, VIN = 0V  
-150  
TABLE 4C. DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, 3.3V 5ꢀ; VEE = 0V  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
RIN  
Differential Input Resistance (IN, nIN)  
IN-to-VT  
40  
1.2  
0
50  
60  
VCC  
Ω
V
VIH  
Input High Voltage  
Input Low Voltage  
Input Voltage Swing  
Reference Voltage  
(IN, nIN)  
(IN, nIN)  
VIL  
VIH - 0.15  
2.8  
V
VIN  
0.15  
V
VREF_AC  
VDIFF_IN  
IIN  
VCC - 1.42 VCC - 1.37 VCC - 1.32  
V
Differential Input Voltage Swing  
Input Current; NOTE 1 (IN, nIN)  
0.3  
3.4  
35  
V
mA  
NOTE 1: Guaranteed by design.  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
4
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 3.465V; VEE = 0V  
Symbol Parameter Conditions  
Minimum  
Typical  
Maximum Units  
VOH  
VOL  
Output High Voltage; NOTE 1  
VCC - 1.125 VCC - 1.005 VCC - 0.935  
V
V
V
V
Output Low Voltage; NOTE 1  
Output Voltage Swing  
VCC - 1.895 VCC - 1.78  
VCC - 1.67  
1.0  
VOUT  
0.6  
1.2  
VDIFF_OUT Differential Output Voltage Swing  
2.0  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -3.3V 5ꢀ, -2.5V 5ꢀ OR VCC = 2.5 5ꢀ, 3.3V 5ꢀ; VEE = 0V  
Symbol Parameter  
fMAX Maximum Output Frequency  
Condition  
Minimum Typical Maximum Units  
Output Swing 450mV  
Input Swing: 100mV  
Input Swing: 800mV  
2.1  
300  
255  
GHz  
ps  
435  
370  
570  
485  
30  
Propagation Delay; (Differential);  
NOTE 1  
tPD  
ps  
tsk(o)  
Output Skew; NOTE 2, 4  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
185  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
155.52MHz, Integration  
Range: 12kHz - 20MHz  
tjit  
0.27  
ps  
tR/tF  
tS  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
100  
300  
300  
250  
ps  
ps  
ps  
Clock Enable Setup Time EN to IN, nIN  
tH  
Clock Enable Hold Time  
EN to IN, nIN  
All parameters characterized at 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
5
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
-50  
Additive Phase Jitter @ 155.52MHz  
(12kHz to 20MHz)  
= 0.27ps typical  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
6
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nIN  
VIN  
VIH  
LVPECL  
Cross Points  
IN  
nQx  
VEE  
VIL  
VEE  
-0.375V to -1.465V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
PART 1  
Qx  
nQx  
Qx  
nQy  
nQy  
PART 2  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nIN  
IN  
80ꢀ  
tF  
80ꢀ  
VSWING  
20ꢀ  
Clock  
20ꢀ  
nQ0:nQ3  
Outputs  
tR  
Q0:Q3  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nIN  
IN  
VIN, VOUT  
VDIFF_IN, VDIFF_OUT  
800mV  
(typical)  
1600mV  
(typical)  
tHOLD  
EN  
tSET-UP  
SINGLE ENDED & DIFFERENTIAL INPUT VOLTAGE SWING  
SETUP & HOLD TIME  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
7
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
8
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
9
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
2.5V LVPECL INPUT WITH BUILT-IN 50Ω TERMINATION INTERFACES  
The IN /nIN with built-in 50Ω terminations accepts LVDS,  
LVPECL, LVHSTL, CML, SSTL and other differential signals.  
Both VOUT and VOH must meet the VPP and VCMR input  
requirements.Figures 4A to 4D show interface examples for the  
by the most common driver types. The input interfaces sug-  
gested here are examples only.If the driver is from another ven-  
dor, use their termination recommendation. Please consult with  
the vendor of the driver component to confirm the driver termi-  
HiPerClockS IN/nIN input with built-in 50Ω terminations driven nation requirements.  
2.5V  
2.5V  
3.3V or 2.5V  
2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
Built-In  
50 Ohm  
2.5V LVPECL  
LVDS  
R1  
18  
Built-In  
50 Ohm  
FIGURE 4A. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 4B. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN LVDS DRIVER  
BUILT-IN 50Ω DRIVEN BY AN LVPECL DRIVER  
2.5V  
2.5V  
2.5V  
2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
VT  
Zo = 50 Ohm  
Zo = 50 Ohm  
nIN  
nIN  
Receiver  
Receiver  
With  
With  
CML - Built-in 50 Ohm Pull-up  
CML - Open Collector  
Built-In  
Built-In  
50 Ohm  
50 Ohm  
FIGURE 4C. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 4D. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN OPEN COLLECTOR  
CML DRIVER  
BUILT-IN 50Ω DRIVEN BY A CML DRIVER  
WITH BUILT-IN 50Ω PULLUP  
2.5V  
2.5V  
Zo = 50 Ohm  
R1  
R2  
25  
IN  
VT  
Zo = 50 Ohm  
nIN  
25  
Receiver With Built-In 50Ω  
SSTL  
FIGURE 4E. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN SSTL DRIVER  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
10  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3.3V LVPECL INPUT WITH BUILT-IN 50Ω TERMINATION INTERFACES  
The IN /nIN with built-in 50Ω terminations accepts LVDS,  
LVPECL, LVHSTL, CML, SSTL and other differential signals.  
Both VOUT and VOH must meet the VPP and VCMR input require-  
ments. Figures 5A to 5E show interface examples for the  
by the most common driver types. The input interfaces sug-  
gested here are examples only. If the driver is from another ven-  
dor, use their termination recommendation. Please consult with  
the vendor of the driver component to confirm the driver termi-  
HiPerClockS IN/nIN input with built-in 50Ω terminations driven nation requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
Built-In  
50 Ohm  
LVPECL  
LVDS  
R1  
50  
Built-In  
50 Ohm  
FIGURE 5A. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 5B. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN LVDS DRIVER  
BUILT-IN 50Ω DRIVEN BY AN LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
VT  
VT  
Zo = 50 Ohm  
Zo = 50 Ohm  
nIN  
nIN  
Receiver  
Receiver  
With  
With  
CML- Built-in 50 Ohm Pull-Up  
CML- Open Collector  
Built-In  
Built-In  
50 Ohm  
50 Ohm  
FIGURE 5D. HIPERCLOCKS IN/nIN INPUT WITH  
FIGURE 5C. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY A CML DRIVER  
WITH BUILT-IN 50Ω PULLUP  
BUILT-IN 50Ω DRIVEN BY A CML DRIVER  
WITH OPEN COLLECTOR  
3.3V  
3.3V  
R1  
25  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
VT  
nIN  
Receiver  
With  
SSTL  
R2  
25  
Built-In  
50 Ohm  
FIGURE 5E. HIPERCLOCKS IN/nIN INPUT WITH  
BUILT-IN 50Ω DRIVEN BY AN SSTL DRIVER  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
11  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3.3V DIFFERENTIAL INPUT WITH BUILT-IN 50Ω TERMINATION UNUSED INPUT HANDLING  
To prevent oscillation and to reduce noise, it is recommended to  
have pullup and pulldown connect to true and compliment of the  
unused input as shown in Figure 6.  
3.3V  
3.3V  
R1  
1K  
IN  
VT  
nIN  
Receiver  
with  
Built-In  
50 Ohm  
R2  
1K  
FIGURE 6. UNUSED INPUT HANDLING  
2.5V DIFFERENTIAL INPUT WITH BUILT-IN 50Ω TERMINATION UNUSED INPUT HANDLING  
To prevent oscillation and to reduce noise, it is recommended to  
have pullup and pulldown connect to true and compliment of the  
unused input as shown in Figure 7.  
2.5V  
2.5V  
R1  
680  
IN  
VT  
nIN  
Receiver  
with  
Built-In  
50 Ohm  
R2  
680  
FIGURE 7. UNUSED INPUT HANDLING  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
12  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
SCHEMATIC EXAMPLE  
Figure 8 shows a schematic example of the ICS889831. This 2.5V LVPECL driver with AC couple. The ICS889831 outputs  
are LVPECL driver. In this example, we assume the traces are  
long transmission line and the receiver is high input impedance  
without built-in matched load.An example of 3.3V LVPECL ter-  
schematic provides examples of input and output handling.The  
ICS889831 input has built-in 50Ω termination resistors.The in-  
put can directly accept various types of differential signal with-  
out AC couple. For AC couple termination, the ICS889831 also mination is shown in this schematic. Additional termination ap-  
provides the VREF_AC pin for proper offset level after the AC proaches are shown in the LVPECLTermination Application Note.  
couple. This example shows the ICS889831 input driven by a  
3.3V  
3.3V  
C2  
R3  
133  
R5  
133  
3.3V  
Zo = 50  
Zo = 50  
0.1u  
-
U1  
ICS889831  
+
2.5V  
C5  
Zo = 50  
Zo = 50  
9
10  
11  
12  
4
3
2
1
R4  
82.5  
R6  
82.5  
nIN  
VREF_AC  
VT  
IN  
nQ2  
Q2  
nQ1  
Q1  
LVPECL  
C6  
3.3V  
R1  
100  
R2  
100  
3.3V  
R7  
R9  
Zo = 50  
Zo = 50  
133  
133  
-
3.3V  
+
C1  
0.1u  
R8  
82.5  
R10  
82.5  
FIGURE 8. ICS889831 APPLICATION SCHEMATIC EXAMPLE  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
13  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS839831.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS889831 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.63V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.63V * 60mA = 217.8mW  
Power (outputs)MAX = 30.94mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30.94mW = 123.8mW  
Power Dissipation at built-in terminations:Assume the input is driven by a 3.3V SSTL driver as shown in Figure 5E  
and estimated approximately 1.75V drop across IN and nIN.  
Total Power Dissipation for the two 50Ω built-in terminations is: (1.75V)2 / (50Ω + 50Ω) = 30.6mW  
Total Power_MAX (3.63V, with all outputs switching) = 217.8mW + 123.8mW + 30.6mW = 372.2mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θ
JA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 0 linear feet per minute and a multi-layer board, the appropriate value is 51.5°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.372W * 51.5°C/W = 104°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 16-PIN VFQFN, FORCED CONVECTION  
θJAvs. 0Velocity (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
14  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 9.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 9. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.935V  
CC_MAX  
OH_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.67V  
OL_MAX  
CC_MAX  
)
= 1.67V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
15  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 16 LEAD VFQFN  
θJA vs. 0 Air Flow (Linear Feet per Minute)  
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
TRANSISTOR COUNT  
The transistor count for ICS889831 is: 234  
Pin compatible with SY89831U  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
16  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - K SUFFIX FOR 16 LEAD VFQFN  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
16  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
4
4
3.0  
D2  
E
0.25  
1.25  
3.0  
E2  
L
0.25  
0.30  
1.25  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
17  
ICS889831  
LOW SKEW, 1-TO-4  
DIFFERENTIAL LVPECL-TO-LVPECL/ECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS889831AK  
Marking  
831A  
831A  
TBD  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
16 Lead VFQFN  
ICS889831AKT  
ICS889831AKLF  
ICS889831AKLFT  
16 Lead VFQFN  
3500 tape & reel  
tube  
16 Lead "Lead-Free" VFQFN  
16 Lead "Lead-Free" VFQFN  
TBD  
3500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
889831AK  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 16, 2005  
18  

相关型号:

ICS889832

LOW SKEW, 1-TO-4 DIFFERENTIAL-TOLVDS FANOUT BUFFER
IDT

ICS889832AK

LOW SKEW, 1-TO-4 DIFFERENTIAL-TOLVDS FANOUT BUFFER
IDT

ICS889832AK

Low Skew Clock Driver, 889832 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
SPECTRUM

ICS889832AKLF

Low Skew Clock Driver, 889832 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
SPECTRUM

ICS889832AKLF

Low Skew Clock Driver, 889832 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM PITCH, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS889832AKLFT

Low Skew Clock Driver, 889832 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
SPECTRUM

ICS889832AKLFT

Low Skew Clock Driver, 889832 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
IDT

ICS889832AKT

LOW SKEW, 1-TO-4 DIFFERENTIAL-TOLVDS FANOUT BUFFER
IDT

ICS889833AK

Low Skew Clock Driver, 889833 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
IDT

ICS889833AKLF

Low Skew Clock Driver, 889833 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS889833AKLFT

Low Skew Clock Driver, 889833 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS889833AKT

Low Skew Clock Driver, 889833 Series, 4 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
IDT