ICS84330AV02L [ICSI]

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER; 700MHZ ,低抖动,水晶- TO- 3.3V的差分LVPECL频率合成器
ICS84330AV02L
型号: ICS84330AV02L
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
700MHZ ,低抖动,水晶- TO- 3.3V的差分LVPECL频率合成器

文件: 总17页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS84330-02 is a general purpose, single Fully integrated PLL, no external loop filter requirements  
ICS  
output high frequency synthesizer and a  
member of the HiPerClockS™ family of High  
1 differential 3.3V LVPECL output  
Crystal oscillator interface: 10MHz to 25MHz  
Output frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
Parallel or serial interface for programming M and N dividers  
during power-up  
HiPerClockS™  
Performance Clock Solutions from ICS. The  
VCO operates at a frequency range of  
250MHz to 700MHz. The VCO and output frequency can  
be programmed using the serial or parallel inter-  
faces to the configuration logic. The output can be config-  
ured to divide the VCO frequency by 1, 2, 4, and 8. Output  
frequency steps from 250kHz to 2MHz can be achiev-  
ed using a 16MHz crystal depending on the output divid-  
er setting.  
RMS Period jitter: 5ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
Industrial temperature information available upon request  
PIN ASSIGNMENT  
BLOCK DIAGRAM  
25 24 23 22 21 20 19  
OE  
XTAL_IN  
S_CLOCK  
26  
18  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
1
0
OSC  
S_DATA  
S_LOAD  
VCCA  
27  
28  
1
17  
16  
15  
14  
13  
12  
XTAL_OUT  
FREF_EXT  
ICS84330-02  
28-Lead PLCC  
V Package  
11.6mm x 11.4mm x 4.1mm  
body package  
÷ 16  
FREF_EXT  
XTAL_SEL  
2
XTAL_SEL  
3
TopView  
XTAL_IN  
4
PLL  
PHASE DETECTOR  
÷2  
÷4  
÷8  
÷1  
5
6
7
8
9 10 11  
1
0
FOUT  
nFOUT  
VCO  
÷ 2  
÷ M  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
M0:M8  
N0:N1  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
1
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes op-  
eration using a 16MHz crystal. Valid PLL loop divider values  
for different crystal or input frequencies are defined in the In-  
put Frequency Characteristics, Table 6, NOTE 1.  
divider.On the LOW-to-HIGH transition of the nP_LOAD input,  
the data is latched and the M divider remains loaded until the  
next LOW transition on nP_LOAD or until a serial event occurs.  
The TEST output is Mode 000 (shift register out) when operat-  
ing in the parallel input mode.The relationship between theVCO  
frequency, the crystal frequency and the M divider is defined as  
The ICS84330-02 features a fully integrated PLL and there-  
fore requires no external components for setting the loop band-  
width. A quartz crystal is used as the input to the on-chip  
oscillator.The output of the oscillator is divided by 16 prior to  
the phase detector.With a 16MHz crystal this provides a 1MHz  
reference frequency. The VCO of the PLL operates over a  
range of 250MHz to 700MHz. The output of the M divider is  
also applied to the phase detector.  
fxtal  
16  
follows:  
x
fVCO =  
2M  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table. Valid M values for which the PLL will achieve lock are  
defined as 125 M 350. The frequency out is defined as  
follows:  
fVCO fxtal  
2M  
N
fout  
x
=
=
The phase detector and the M divider force the VCO output fre-  
quency to be 2M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock.The output of the  
VCO is scaled by a divider prior to being sent to each of the LVPECL  
output buffers.The divider provides a 50% output duty cycle.  
N
16  
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW.The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the  
shift register are loaded into the M divider when S_LOAD tran-  
sitions from LOW-to-HIGH.The M divide and N output divide  
values are latched on the HIGH-to-LOW transition of S_LOAD.  
If S_LOAD is held HIGH, data at the S_DATA input is passed  
directly to the M divider on each rising edge of S_CLOCK.  
The serial mode can be used to program the M and N bits and  
test bits T2:T0.The internal registersT2:T0 determine the state  
of the TEST output as follows:  
The programmable features of the ICS84330-02 support two  
input modes to program the M divider and N output divider.The  
two input operational modes are parallel and serial. Figure 1  
shows the timing diagram for each mode. In parallel mode the  
nP_LOAD input is LOW.The data on inputs M0 through M8 and  
N0 through N1 is passed directly to the M divider and N output  
T2  
0
T1  
0
T0  
0
TEST Output  
fOUT  
fOUT  
Shift Register Out  
0
0
0
1
0
1
1
0
1
0
1
0
High  
fOUT  
fOUT  
fOUT  
PLL Reference Xtal ÷ 16  
(VCO ÷ M) /2 (non 50% Duty Cycle M divider)  
fOUT  
fOUT  
LVCMOS Output Frequency < 200MHz  
1
1
1
0
1
1
1
0
1
Low  
(S_CLOCK ÷ M) /2 (non 50% Duty Cycle M divider)  
fOUT ÷ 4  
fOUT  
S_CLOCK ÷ N divider  
fOUT  
SERIAL LOADING  
S_CLOCK  
S_DATA  
T2  
T1  
T0  
N1  
N0  
M8  
M7  
M6  
M5  
M4 M3  
M2  
M1  
M0  
t
t
H
S
S_LOAD  
nP_LOAD  
t
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
NOTE: nP_LOAD is designed to eliminate runt pulses when changing M and N bits.  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
2
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Name  
Type  
Description  
VCCA  
Power  
Analog supply pin.  
XTAL_IN,  
XTALOUT  
Crystal oscillator interface. XTAL_IN is an oscillator input.  
XTAL_OUT is an oscillator output.  
Selects between the crystal oscillator or FREF_EXT inputs as the PLL reference  
source. Selects XTAL inputs when HIGH. Selects FREF_EXT when LOW.  
LVCMOS / LVTTL interface levels.  
XTAL_SEL  
OE  
Input  
Input  
Input  
Pullup  
Pullup  
Pullup  
Output enable. LVCMOS / LVTTL interface levels.  
Parallel load input. Determines when data present at M8:M0 is loaded into  
M divider, and when data present at N1:N0 sets the N output divide value.  
LVCMOS / LVTTL interface levels.  
nP_LOAD  
M0, M1, M2  
M3, M4, M5  
M6, M7, M8  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input.  
LVCMOS / LVTTL interface levels.  
Input  
Pullup  
Pullup  
Determines N output divider value as defined in Table 3C Function Table.  
LVCMOS / LVTTL interface levels.  
N0, N1  
VEE  
Input  
Power  
Output  
Negative supply pins.  
Test output which is used in the serial mode of operation.  
LVCMOS / LVTTL interface levels.  
TEST  
VCC  
nFOUT, FOUT  
nc  
Power  
Output  
Unused  
Input  
Core supply pins.  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Do not connect.  
FREF_EXT  
Pulldown PLL reference input. LVCMOS / LVTTL interface levels.  
Clocks the serial data present at S_DATA input into the shift register on the  
rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS / LVTTL interface levels.  
Controls transition of data from shift register into the M divider.  
LVCMOS / LVTTL interface levels.  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
Pulldown  
Pulldown  
S_LOAD  
Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
3
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
Data on M and N inputs passed directly to M divider and  
N output divider. TEST mode 000.  
L
Data Data  
Data Data  
X
L
L
X
X
L
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the M divider  
and N output divider.  
X
H
H
X
X
X
X
Data  
Data  
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divide and N output divide values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
0
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
250  
252  
254  
256  
125  
126  
127  
128  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
696  
698  
700  
348  
349  
350  
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to a crystal frequency of 16MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
N0  
0
Minimum  
125  
Maximum  
350  
0
0
1
1
2
4
8
1
1
62.5  
175  
0
31.25  
250  
87.5  
1
700  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
4
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θJA 37.8°C/W (0 lfpm)  
StorageTemperature, T -65°C to 150°C  
STG  
TABLE 4A. DC POWER SUPPLY CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
3.465  
3.465  
130  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
M0-M8, N0, N1,  
OE, nP_LOAD,  
XTAL_SEL  
S_LOAD, S_CLOCK  
FREF_EXT, S_DATA  
M0-M8, N0, N1,  
OE, nP_LOAD,  
XTAL_SEL  
S_LOAD, S_CLOCK  
FREF_EXT, S_DATA  
VCC = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
V
CC = VIN = 3.465V  
150  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
-150  
IIL  
Input Low Current  
-5  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
2.6  
V
V
0.5  
NOTE 1: Outputs terminated with 50Ω to VCC/2.  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
5
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
25  
70  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
fIN  
Test Conditions  
Minimum Typical Maximum Units  
XTAL; NOTE 1  
10  
25  
50  
25  
MHz  
MHz  
MHz  
Input Frequency S_CLOCK  
FREF_EXT; NOTE 2  
10  
NOTE 1: For the crystal frequency range the M value must be set to achieve the minimum or maximum VCO frequency  
range of 250MHz to 700MHz. Using the minimum frequency of 10MHz, valid values of M are 200 M 511.  
Using the maximum frequency of 25MHz, valid values of M are 80 M 224.  
NOTE 2: Maximum frequency on FREF_EXT is dependent on the internal M counter limitations. See Application  
Information Section for recommendations on optimizing the performance using the FREF_EXT input.  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
700  
5
MHz  
ps  
tjit(per)  
tjit(cc)  
tR / tF  
Period Jitter, RMS; NOTE 1, 2  
Cycle-to-Cycle Jitter; NOTE 1, 2  
40  
ps  
Output Rise/Fall Time  
Input  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
200  
600  
ps  
tnP_LOAD  
Parallel Data Load Time  
50  
ns  
Rise Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ms  
tS  
Setup Time  
S_DATA to S_CLOCK  
M, N to nP_LOAD  
tH  
tL  
Hold Time  
PLL Lock Time  
10  
55  
55  
N 1  
45  
45  
N = 1, fOUT 250MHz  
odc  
Output Duty Cycle  
N = 1,  
40  
60  
250MHz < fOUT 500MHz  
See Parameter Measurement Information section.  
Characterized using a XTAL input.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65  
NOTE 2: See Applications section.  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
6
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VOH  
SCOPE  
VREF  
VCC,  
VCCA  
Qx  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
LVPECL  
VEE  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
nQx  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
-1.3V 0.165V  
PERIOD JITTER  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
nFOUT  
FOUT  
80%  
80%  
VSWING  
20%  
20%  
tcycle n+1  
tcycle n  
Clock Outputs  
t
t
F
R
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT RISE/FALL TIME  
nFOUT  
FOUT  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
7
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84330-02 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 3A and 3B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
8
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept single ended LVCMOS signal  
through an AC couple capacitor. A general interface diagram  
is shown in Figure 4.The XTAL_OUT input can be left floating.  
ance trace may be required. The input can function with half  
swing amplitude. Reducing amplitude from full swing of 3.3V  
to half swing of about 1.65V can prevent signal interfere with  
The edge rate can be as slow as 10ns. If the incoming signal power rail and may reduce noise. Please refer to the LVCMOS  
has sharp edge rate and the signal path is a long trace, proper driver data sheet and application note for amplitude reduction  
termination for the driver and controlled characteristic imped- and termination approach.  
3.3V  
C1  
XTAL_I N  
0.1uF  
LVCMOS_Driv er  
XTAL_OU T  
Crystal Interf ace  
Figure 4. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
50  
40  
30  
Spec Limit  
N = 1  
20  
10  
0
200  
300  
400  
500  
600  
700  
Output Frequency (MHz)  
FIGURE 5. CYCLE-TO-CYCLE JITTER VS. fOUT (using a 16MHz XTAL)  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
9
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
LAYOUT GUIDELINE  
The schematic of the ICS84330-02 layout example used in  
line. The layout in the actual system will depend on the  
this layout guideline is shown in Figure 6A. The ICS84330-02 selected component types, the density of the components,  
recommended PCB board layout for this example is shown the density of the traces, and the stack up of the P.C. board.  
in Figure 6B. This layout example is used as a general guide-  
C1  
X1  
C2  
SP  
SP  
16MHz, 18pF  
VCC  
R7  
10  
M4  
M5  
M6  
M7  
M8  
N2  
N1  
12  
13  
14  
15  
16  
17  
18  
4
M4  
M5  
M6  
M7  
M8  
N0  
N1  
X_I N  
3
VCC=3.3V  
XTAL_SEL  
2
1
28  
27  
26  
FREF_EXT  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
VCCA  
SP = Space (i.e. not intstalled)  
C11  
0.01u  
C16  
10u  
M [8:0]= 110010000 (400)  
N[1:0] =00 (Divide by 2)  
U1  
ICS84330-02  
C3  
VCC  
0.1uF  
Zo = 50 Ohm  
RU0  
SP  
RU1  
SP  
RU7  
1K  
RU8  
1K  
RU9  
SP  
RU10  
1K  
RU11  
SP  
RU12  
1K  
Fout = 200 M Hz  
+
-
C4  
0.1u  
Zo = 50 Ohm  
R2  
50  
R1  
50  
RD0  
1K  
RD1  
1K  
RD7  
SP  
RD8  
SP  
RD9  
1K  
RD10  
SP  
RD6  
1K  
RD12  
SP  
R3  
50  
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
10  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
• The differential 50Ω output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C3 and C4, as close as pos-  
sible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to theVCCA pin as possible.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure.The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
4 (XTAL_IN) and 5 (XTAL_OUT).The trace length between the  
X1 and U1 should be kept to a minimum to avoid unwanted para-  
sitic inductance and capacitance. Other signal traces should not  
be routed near the crystal traces.  
X1  
C1  
C2  
U1  
GND  
VCC  
PIN 2  
PIN 1  
C16  
C11  
R7  
VCCA  
VIA  
VCCA  
Signals  
Traces  
C3  
C4  
50 Ohm  
Traces  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS84330-02  
www.icst.com/products/hiperclocks.html  
84330AV-02  
REV. A MAY 31, 2005  
11  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
JITTER REDUCTION FOR FREF_EXT SINGLE END INPUT  
If the FREF_EXT input is driven by a 3.3V LVCMOS driver, the  
jitter performance can be improved by reducing the amplitude  
swing and slowing down the edge rate. Figure 7A shows an  
amplitude reduction approach for a long trace. The swing will  
be approximately 0.85V for logic low and 2.5V for logic high  
(instead of 0V to 3.3V). Figure 7B shows amplitude reduction  
approach for a short trace. The circuit shown in Figure 7C  
reduces amplitude swing and also slows down the edge rate  
by increasing the resistor value.  
VDD  
R1  
VDD  
100  
Zo = 50 Ohm  
Td  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
43  
R2  
Driver_LVCMOS  
100  
FREF_EXT  
FIGURE 7A. AMPLITUDE REDUCTION FOR A LONG TRACE  
VDD  
VDD  
R1  
200  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
100  
R2  
200  
FREF_EXT  
Driver_LVCMOS  
FIGURE 7B. AMPLITUDE REDUCTION FOR A SHORT TRACE  
VDD  
VDD  
R1  
400  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
200  
R2  
400  
FREF_EXT  
Driver_LVCMOS  
FIGURE 7C. EDGE RATE REDUCTION BY INCREASING THE RESISTOR VALUE  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
12  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84330-02.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84330-02 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 145mA = 502.4mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
Total Power_MAX (3.465V, with all outputs switching) = 502.4mW + 30mW = 532.4mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W perTable 9 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.532W * 31.1°C/W = 86.6°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θJA FOR 28-PIN PLCC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
13  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in the Figure 8.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
Pd_L = [(V – (V - 2V))/R ] * (V  
))  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
14  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 10. θJAVS. AIR FLOW PLCC TABLE FOR 28 LEAD PLCC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84330-02 is: 4442  
Pin compatible with the MC12430  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
15  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - V SUFFIX FOR 28 LEAD PLCC  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
28  
4.19  
2.29  
4.57  
3.05  
A1  
A2  
b
1.57  
2.11  
0.33  
0.53  
c
0.19  
0.32  
D
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
D1  
D2  
E
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
E1  
E2  
Reference Document: JEDEC Publication 95, MS-018  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
16  
ICS84330-02  
700MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS84330AV-02  
Marking  
Package  
Shipping Packaging Temperature  
ICS84330AV-02  
ICS84330AV-02  
ICS84330AV02L  
ICS84330AV02L  
28 Lead PLCC  
tube  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS84330AV-02T  
ICS84330AV-02LF  
ICS84330AV-02LFT  
28 Lead PLCC  
500 tape & reel  
tube  
28 Lead "Lead-Free" PLCC  
28 Lead "Lead-Free" PLCC  
500 tape & reel  
NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84330AV-02  
www.icst.com/products/hiperclocks.html  
REV. A MAY 31, 2005  
17  

相关型号:

ICS84330AVLF

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40, 4.10 MM HEIGHT, PLASTIC, LCC-28
IDT

ICS84330AVT

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40, 4.10 MM HEIGHT, PLASTIC, LCC-28
IDT

ICS84330AVT-01LF

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

ICS84330AY

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS84330AY-03

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330AY-03

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

ICS84330AY-03LF

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330AY-03LFT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330AY-03T

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330AY03

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330AYLF

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT

ICS84330AYLFT

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32
IDT