5T2110NLGI8 [IDT]

PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PQCC68, GREEN, PLASTIC, VFQFP-68;
5T2110NLGI8
型号: 5T2110NLGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PQCC68, GREEN, PLASTIC, VFQFP-68

驱动 逻辑集成电路
文件: 总24页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT5T2110  
2.5V ZERO DELAY PLL  
DIFFERENTIAL CLOCK  
DRIVER TERACLOCK™  
FEATURES:  
DESCRIPTION:  
• 2.5VDD  
The IDT5T2110 is a 2.5V PLL differential clock driver intended for high  
performance computing and data-communications applications. The  
IDT5T2110hassixdifferentialoutputsinsixbanks, includingadedicated  
differential feedback. The redundant input capability allows for a smooth  
change over to a secondary clock source when the primary clock source  
isabsent.  
• 6 differential outputs  
• Low skew: 100ps all outputs  
• Selectable positive or negative edge synchronization  
• Tolerant of spread spectrum input clock  
• Synchronous output enable  
• Selectable inputs  
The feedback bank allows divide-by-functionality from 1 to 12 through  
the use of the DS[1:0] inputs. This provides the user with frequency  
multiplication1to12withoutusingdividedoutputsforfeedback. Eachoutput  
bank also allows for a divide-by functionality of 2 or 4.  
The5T2110featuresauser-selectable,single-endedordifferentialinputto  
sixdifferentialoutputs. Thedifferentialclockdriveralsoactsasatranslatorfrom  
a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended  
1.8V/2.5V LVTTL input to HSTL, eHSTL, or 1.8V/2.5V LVTTL outputs.  
Selectableinterfaceiscontrolledby3-levelinputsignalsthatmaybehard-wired  
toappropriatehigh-mid-lowlevels. Thedifferentialoutputscanbesynchro-  
nouslyenabled/disabled.  
• Input frequency: 4.17MHz to 250MHz  
• Output frequency: 12.5MHz to 250MHz  
• 1.8V / 2.5V LVTTL: up to 250MHz  
• HSTL / eHSTL: up to 250MHz  
• Hot insertable and over-voltage tolerant inputs  
• 3-level inputs for selectable interface  
• 3-level inputs for feedback divide selection with multiply ratios  
of(1-6, 8, 10, 12)  
• Selectable HSTL, eHSTL, 1.8V/2.5V LVTTL, or LVEPECL input  
interface  
• Selectable differential or single-ended inputs and six differen-  
tial outputs  
• PLL bypass for DC testing  
Furthermore,whenPEisheldhigh,alltheoutputsaresynchronizedwith  
thepositiveedgeoftheREFclockinput.WhenPEisheldlow,alltheoutputs  
are synchronized with the negative edge of REF.  
• External differential feedback, internal loop filter  
• Low Jitter: <75ps cycle-to-cycle  
• Power-down mode  
• Lock indicator  
• Available in BGA and VFQFPN package  
TxS  
FUNCTIONALBLOCKDIAGRAM  
1sOE  
1Q  
OMODE  
Divide  
Select  
1Q  
1F2:1  
2sOE  
PE  
2Q  
PD  
FS LOCK  
Divide  
Select  
PLL_EN  
2Q  
FB  
/N  
2F2:1  
3sOE  
3
3
FB/  
VREF2  
3Q  
3Q  
DS1:0  
Divide  
Select  
PLL  
0
1
REF0  
3F2:1  
4sOE  
5sOE  
REF0/  
VREF0  
0
1
4Q  
4Q  
Divide  
Select  
RxS  
4F2:1  
REF1  
REF1/  
VREF1  
REF_SEL  
Divide  
Select  
5Q  
5Q  
5F2:1  
QFB  
Divide  
Select  
QFB  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
FBF2:1  
INDUSTRIAL TEMPERATURE RANGE  
NOVEMBER 2004  
1
c
2004 Integrated Device Technology, Inc.  
DSC 5982/29  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
PINCONFIGURATION  
2
4
6
8
11  
1
3
5
7
9
10  
12  
VDD  
1F2  
1sOE  
1Q  
GND  
GND  
2Q  
2Q  
2sOE  
2F2  
VDDQ  
1Q  
A
B
A
B
VDD  
VDD  
VDD  
NC  
1F1  
GND  
GND  
2F1  
NC  
VDDQ  
VDDQ  
VDDQ  
3F2  
OMODE VDD  
VDD  
VDD  
NC  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
NC  
3sOE  
3Q  
C
D
E
F
C
D
E
F
REF_  
GND  
SEL  
VDD  
VDD  
VDD  
GND  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
REF1  
REF1  
3F1  
3Q  
/VREF1  
REF0  
REF0  
VDD  
VDDQ  
VDDQ  
/VREF0  
FB  
FB  
VDD  
PE  
VDD  
GND  
GND  
GND  
GND  
FBF1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
4Q  
G
H
G
H
/VREF2  
PLL_  
PD  
EN  
VDD  
VDD  
VDD  
NC  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
4F1  
NC  
GND  
GND  
GND  
5F1  
RxS  
LOCK  
VDD  
TxS  
VDD  
VDD  
VDD  
VDD  
FS  
4Q  
J
J
K
K
VDDQ  
VDDQ  
4sOE  
4F2  
L
L
DS1  
FBF2  
QFB  
QFB  
GND  
GND  
5Q  
5Q  
5sOE  
5F2  
VDDQ  
M
DS0  
M
1
3
4
5
6
7
8
9
10  
11  
12  
2
BGA  
TOP VIEW  
2
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
PINCONFIGURATION  
VDD  
3F2  
51  
50  
49  
48  
47  
46  
1
REF_SEL  
VDD  
2
REF1  
3sOE  
VDDQ  
3
4
REF1/VREF1  
REF0  
VDDQ  
5
3Q  
REF0/VREF0  
6
45  
3Q  
7
FB  
3F1  
VDD  
44  
43  
42  
FB/VREF2  
8
GND  
9
VDD  
PE  
10  
11  
12  
13  
14  
15  
16  
17  
4F1  
4Q  
41  
40  
39  
PD  
PLL_EN  
VDD  
4Q  
VDDQ  
38  
VDDQ  
4sOE  
4F2  
RxS  
TxS  
37  
36  
35  
LOCK  
VDD  
VDD  
VFQFPN  
TOP VIEW  
3
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ABSOLUTEMAXIMUMRATINGS(1)  
CAPACITANCE(TA = +25°C, f = 1MHz, VIN = 0V)  
Parameter Description  
Min.  
2.5  
Typ. Max.  
Unit  
pF  
Symbol  
Description  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDDQ +0.5  
–0.5 to +3.6  
150  
Unit  
V
VDDQ, VDD Power Supply Voltage(2)  
CIN  
InputCapacitance  
OutputCapacitance  
3
3.5  
7
VI  
Input Voltage  
V
COUT  
6.3  
pF  
VO  
Output Voltage  
V
NOTE:  
1. Capacitance applies to all inputs except RxS, TxS, nF[2:1], FBF[2:1],and DS[1:0].  
VREF  
TJ  
Reference Voltage(3)  
Junction Temperature  
Storage Temperature  
V
°C  
°C  
TSTG  
–65 to +165  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. VDDQ and VDD internally operate independently. No power sequencing requirements  
need to be met.  
3. Not to exceed 3.6V.  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
(1)  
VDD  
HSTL Output Power Supply Voltage  
Extended HSTL and 1.8V LVTTL Output Power Supply Voltage  
1.4  
1.65  
1.5  
1.8  
1.6  
1.95  
V
V
(1)  
VDDQ  
2.5VLVTTLOutputPowerSupplyVoltage  
TerminationVoltage  
VDD  
V
V
VT  
VDDQ / 2  
NOTE:  
1. All power supplies should operate in tandem. If VDD or VDDQ is at maximum, then VDDQ or VDD (respectively) should be at maximum, and vice-versa.  
PINDESCRIPTION  
Symbol  
I/O  
Type  
Description  
REF[1:0]  
I
I
Adjustable(1) Clockinput. REF[1:0] isthe"true"sideofthedifferentialclockinput. Ifoperatinginsingle-endedmode, REF[1:0] istheclockinput.  
Adjustable(1)  
REF[1:0]/  
VREF[1:0]  
Complementaryclockinput. REF[1:0]/VREF[1:0] isthe"complementary"sideofREF[1:0] iftheinputisindifferentialmode. Ifoperating  
insingle-endedmode,REF[1:0]/VREF[1:0] isleftfloating. Forsingle-endedoperationindifferentialmode,REF[1:0]/VREF[1:0] shouldbeset  
tothedesiredtogglevoltageforREF[1:0]:  
2.5VLVTTL  
1.8VLVTTL,eHSTL  
HSTL  
VREF =1250mV(SSTL2compatible)  
VREF = 900mV  
VREF = 750mV  
LVEPECL  
VREF = 1082mV  
FB  
I
I
Adjustable(1) Clockinput. FBisthe"true"sideofthedifferentialfeedbackclockinput. Ifoperatinginsingle-endedmode,FBisthedifferentialfeedback  
clockinput.  
FB/VREF2  
Adjustable(1) Complementaryfeedbackclockinput. FB/VREF2isthe"complementary"sideofFBiftheinputisindifferentialmode. Ifoperatinginsingle-  
endedmode,FB/VREF2isleftfloating. Forsingle-endedoperationindifferentialmode, FB/VREF2shouldbesettothedesiredtogglevoltage  
for FB:  
2.5VLVTTL  
1.8VLVTTL,eHSTL  
HSTL  
VREF =1250mV(SSTL2compatible)  
VREF = 900mV  
VREF = 750mV  
LVEPECL  
VREF = 1082mV  
NOTE:  
1. Inputs are capable of translating the following interface standards. User can select between:  
Single-ended 2.5V LVTTL levels  
Single-ended 1.8V LVTTL levels  
or  
Differential 2.5V/1.8V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL levels  
4
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
PINDESCRIPTION,CONTINUED  
Symbol  
REF_SEL  
nsOE  
I/O  
Type  
Description  
I
I
LVTTL(1)  
LVTTL(1)  
Reference clock select. When LOW, selects REF0 and REF0/VREF0. When HIGH, selects REF1 and REF1/VREF1.  
Synchronousoutputenable. WhennsOEisHIGH,nQandnQaresynchronouslystopped. OMODEselectswhethertheoutputsare  
gatedLOW/HIGHortri-stated. WhenOMODEisHIGH,PEdeterminesthelevelatwhichtheoutputsstop. WhenPEisLOW/HIGH,  
the nQ is stopped in a HIGH/LOW state, while the nQ is stopped at a LOW/HIGH state. When OMODE is LOW, the outputs are tri-  
stated. SetnsOELOWfornormaloperation.  
QFB  
QFB  
nQ  
O
O
O
O
I
Adjustable(2) Feedbackclockoutput  
Adjustable(2) Complementaryfeedbackclockoutput  
Adjustable(2) Clockoutputs  
nQ  
RxS  
Adjustable(2) Complementaryclockoutputs  
3-Level(3)  
3-Level(3)  
Selects single-ended 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) REF clock input or differential (LOW) REF clock input  
TxS  
I
Setsthedrivestrengthoftheoutputdriversandfeedbackinputstobe2.5VLVTTL(HIGH),1.8VLVTTL(MID)oreHSTL/HSTL(LOW)  
compatible. UsedinconjuctionwithVDDQ tosettheinterfacelevels.  
PE  
I
LVTTL(1)  
Selectablepositiveornegativeedgecontrol. WhenLOW/HIGHtheoutputsaresynchronizedwiththenegative/positiveedgeofthereference  
clock(hasinternalpull-up).  
nF[2:1]  
FBF[2:1]  
FS  
I
I
I
I
I
I
LVTTL(1)  
LVTTL(1)  
LVTTL(1)  
3-Level(3)  
LVTTL(1)  
LVTTL(1)  
Function select inputs for divide-by-2, divide-by-4, zero delay, or invert on each bank. (See Control Summary table.)  
Functionselectinputsfordivide-by-2, divide-by-4, zerodelay, orinvertonthefeedbackbank(SeeControlSummarytable)  
Selectsappropriateoscillatorcircuitbasedonanticipatedfrequencyrange(SeeVCOFrequencyRangeSelecttable)  
3-levelinputsforfeedbackinputdividerselection(SeeDivideSelectiontable)  
DS[1:0]  
PLL_EN  
PD  
PLLenable/disablecontrol. SetLOWfornormaloperation. WhenPLL_ENisHIGH,thePLLisdisabledandREF[1:0] goestoalloutputs.  
Powerdowncontrol. WhenPDisLOW,theinputsaredisabledandinternalswitchingisstopped. OMODEselectswhethertheoutputs  
are gated LOW/HIGH or tri-stated. When OMODE is HIGH, PE determines the level at which the outputs stop. When PE is LOW/  
HIGH, thenQandQFBarestoppedinaHIGH/LOWstate, whilethenQandQFB arestoppedinaLOW/HIGHstate. WhenOMODE  
is LOW, the outputs are tri-stated. Set PD HIGH for normal operation.  
LOCK  
OMODE  
VDDQ  
O
I
LVTTL  
LVTTL(1)  
PWR  
PLLlockindicationsignal. HIGHindicateslock. LOWindicatesthatthePLLisnotlockedandoutputsmaynotbesynchronizedtothe  
inputs. Theoutputwillbe2.5VLVTTL. (FormoreinformationonapplicationspecificuseoftheLOCKpin,pleaseseeAN237.)  
Outputdisablecontrol. Determinestheoutputs'disablestate. UsedinconjunctionwithnsOEandPD. (SeeOutputEnable/Disableand  
Powerdowntables.)  
Powersupplyforoutputbuffers. Whenusing2.5VLVTTL,VDDQshouldbeconnectedtoVDD.  
VDD  
GND  
PWR  
PWR  
Powersupplyforphaselockedloop,lockoutput,inputs,andotherinternalcircuitry  
Ground  
NOTES:  
1. Pins listed as LVTTL inputs will accept 2.5V signals under all conditions. If the output is operating at 1.8V or 1.5V, the LVTTL inputs will accept 1.8V LVTTL signals as well.  
2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQ voltage.  
3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.  
OUTPUTENABLE/DISABLE  
nsOE  
OMODE  
Output  
NormalOperation  
Tri-State  
VCOFREQUENCYRANGESELECT  
FS(1)  
LOW  
Min.  
50  
Max.  
125  
Unit  
MHz  
MHz  
L
H
H
X
L
H
Gated(1)  
HIGH  
100  
250  
NOTE:  
NOTE:  
1. The level to be set on FS is determined by the nominal operating frequency of the  
VCO. The VCO frequency (FNOM) always appears at nQ and nQ outputs when they  
are operated in their undivided modes. The frequency appearing at the REF[1:0] and  
REF[1:0] /VREF[1:0] and FB and FB/VREF2 inputs will be FNOM when the QFB and QFB  
are undivided and DS[1:0] = MM. The frequency of REF[1:0] and REF[1:0] /VREF[1:0]  
and FB and FB/VREF2 inputs will be FNOM/2 or FNOM/4 when the part is configured for  
frequency multiplication by using a divided QFB and QFB and setting DS[1:0] = MM.  
Using the DS[1:0] inputs allows a different method for frequency multiplication (see  
Divide Selection table).  
1. PE determines the level at which the outputs stop. When PE is LOW/HIGH, the nQ  
is stopped in a HIGH/LOW state while the nQ is stopped at a LOW/HIGH state.  
POWERDOWN  
PD  
H
OMODE  
Output  
NormalOperation  
Tri-State  
X
L
L
L
H
Gated(1)  
NOTE:  
1. PE determines the level at which the outputs stop. When PE is LOW/HIGH, the nQ  
and QFB are stopped in a HIGH/LOW state, while the nQ and QFB are stopped in a  
LOW/HIGH state.  
5
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
EXTERNALDIFFERENTIALFEEDBACK  
By providing a dedicated external differential feedback, the IDT5T2110  
An internal loop filter moderates the response of the VCO to the  
gives users flexibility with regard to divide selection. The FB and FB/ phase detector. The loop filter transfer function has been chosen to  
VREF2 signals are compared with the input REF[1:0] and REF[1:0]/VREF[1:0] provide minimal jitter (or frequency variation) while still providing accu-  
signals at the phase detector in order to drive the VCO. Phase differ- rate responses to input frequency changes.  
ences cause the VCO of the PLL to adjust upwards or downwards  
accordingly.  
DIVIDESELECTIONTABLE  
(1)  
DS [1:0]  
LL  
Divide-by-n  
Permitted Output Divide-by-n connected to FB and FB/VREF2  
2
3
1, 2  
1
LM  
LH  
4
1, 2  
1, 2  
1, 2, 4  
1, 2  
1
ML  
5
MM  
M H  
HL  
1
6
8
H M  
H H  
10  
12  
1
1
NOTE:  
1. Permissible output division ratios connected to FB and FB/VREF2. The frequencies of the REF[1:0] and REF[1:0]/VREF[1:0] inputs will be FNOM/N when the parts are configured for  
frequency multiplication by using an undivided output for FB and FB/VREF2 and setting DS[1:0] to N (N = 1-6, 8, 10, 12).  
CONTROLSUMMARYTABLEFORALL  
OUTPUTS  
nF2/FBF2  
nF1/FBF1  
Output Skew  
Divide by 2  
ZeroDelay  
Inverted  
L
L
L
H
L
H
H
H
Divide by 4  
6
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INPUT/OUTPUTSELECTION(1)  
Input  
Output  
Input  
Output  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
eHSTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
2.5VLVTTL  
HSTL DSE  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
HSTL DIF  
HSTL DIF  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
HSTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
1.8VLVTTL  
HSTL DSE  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
HSTL DIF  
HSTL DIF  
NOTE:  
1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the  
REF[1:0]/VREF[1:0] and FB/VREF2 pins to be left floating. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring VREF[1:0] and VREF2. Differential  
(DIF) inputs are used only in differential mode.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
VIHH  
Parameter  
Test Conditions  
Min.  
Max  
Unit  
V
Input HIGH Voltage Level(1)  
Input MID Voltage Level(1)  
InputLOWVoltageLevel(1)  
3-Level Inputs Only  
3-Level Inputs Only  
3-Level Inputs Only  
VIN = VDD  
VDD – 0.4  
VIMM  
VDD/2 – 0.2 VDD/2 + 0.2  
V
VILL  
0.4  
200  
+50  
V
HIGH Level  
MID Level  
LOW Level  
I3  
3-LevelInputDCCurrent  
(RxS, TxS, DS[1:0])  
VIN = VDD/2  
–50  
–200  
–100  
µA  
µA  
VIN = GND  
IPU  
Input Pull-Up Current (PE)  
VDD = Max., VIN = GND  
NOTE:  
1. These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected inputs to VDD/2. If these inputs are switched dynamically after powerup,  
the function and timing of the outputs may be glitched, and the PLL may require additional tLOCK time before all datasheet limits are achieved.  
7
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORHSTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(7)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
InputLOWCurrent  
VIK  
ClampDiodeVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DCInputVoltage  
- 0.3  
0.2  
V
DCDifferentialVoltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-EndedReferenceVoltage(4,8)  
V
680  
750  
750  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
VOX  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100µA  
IOL = 8mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
0.4  
OutputLOWVoltage  
IOL = 100µA  
0.1  
Qn/Qn and FB/FB Output Crossing Point  
VDDQ/2 - 150  
VDDQ/2  
VDDQ/2 + 150  
mV  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQ = 1.5V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
8
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
POWERSUPPLYCHARACTERISTICSFORHSTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQ = Max., CL = 0pF  
15  
25  
mA  
IDDQQ  
Quiescent VDDQ Power Supply Current(3)  
0.7  
50  
µA  
IDDPD  
Power Down Current  
0.8  
13  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
20  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
VDD = Max., VDDQ = Max., CL = 0pF  
16  
25  
µA/MHz  
mA  
CurrentperOutput  
Total Power VDD Supply Current(4)  
VDDQ = 1.5V, FVCO = 100MHz, CL = 15pF  
VDDQ = 1.5V, FVCO = 250MHz, CL = 15pF  
VDDQ = 1.5V, FVCO = 100MHz, CL = 15pF  
VDDQ = 1.5V, FVCO = 250MHz, CL = 15pF  
35  
55  
45  
80  
55  
85  
ITOTQ  
Total Power VDDQ Supply Current(4)  
70  
mA  
120  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS = HIGH.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
Parameter  
Value  
Units  
InputSignalSwing(1)  
1
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
750  
VTHI  
CrossingPoint  
1
tR, tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
9
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOReHSTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(7)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
InputLOWCurrent  
VIK  
ClampDiodeVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DCInputVoltage  
- 0.3  
0.2  
V
DCDifferentialVoltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-EndedReferenceVoltage(4,8)  
V
800  
900  
900  
1000  
mV  
mV  
mV  
mV  
VREF + 100  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
VOX  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100µA  
IOL = 8mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
0.4  
OutputLOWVoltage  
V
IOL = 100µA  
0.1  
V
Qn/Qn and FB/FB Output Crossing Point  
VDDQ/2 - 150  
VDDQ/2  
VDDQ/2 + 150  
mV  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in a differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
POWERSUPPLYCHARACTERISTICSFOReHSTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQ = Max., CL = 0pF  
15  
25  
mA  
IDDQQ  
Quiescent VDDQ Power Supply Current(3)  
1.7  
50  
µA  
IDDPD  
Power Down Current  
0.8  
13  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
20  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
CurrentperOutput  
Total Power VDD Supply Current(4)  
VDD = Max., VDDQ = Max., CL = 0pF  
20  
30  
µA/MHz  
mA  
VDDQ = 1.8V, FVCO = 100MHz, CL = 15pF  
VDDQ = 1.8V, FVCO = 250MHz, CL = 15pF  
VDDQ = 1.8V, FVCO = 100MHz, CL = 15pF  
VDDQ = 1.8V, FVCO = 250MHz, CL = 15pF  
35  
55  
55  
85  
ITOTQ  
Total Power VDDQ Supply Current(4)  
50  
75  
mA  
115  
175  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS = HIGH  
10  
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
1
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
900  
mV  
V
VTHI  
CrossingPoint  
1
tR, tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR  
LVEPECL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VDD = 2.3V, IIN = -18mA  
VI = VDDQ/GND  
±5  
±5  
µA  
InputLOWCurrent  
VI = GND/VDDQ  
VIK  
ClampDiodeVoltage  
- 0.7  
- 1.2  
3.6  
V
VIN  
VCM  
VREF  
VIH  
VIL  
DCInputVoltage  
- 0.3  
915  
V
DC Common Mode Input Voltage(3,5)  
Single-EndedReferenceVoltage(4,5)  
DC Input HIGH  
1082  
1082  
1248  
mV  
mV  
mV  
mV  
1275  
555  
1620  
875  
DC Input LOW  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation while in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
11  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIALINPUTACTESTCONDITIONSFORLVEPECL  
Symbol  
VDIF  
Parameter  
Value  
Units  
mV  
mV  
V
InputSignalSwing(1)  
732  
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
1082  
CrossingPoint  
1
VTHI  
tR, tF  
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR2.5V  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(8)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
InputLOWCurrent  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
VIK  
VIN  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
- 0.3  
Single-Ended Inputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.7  
V
V
VIL  
0.7  
DifferentialInputs  
VDIF  
VCM  
VIH  
DCDifferentialVoltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-EndedReferenceVoltage(5,9)  
0.2  
1150  
1350  
V
1250  
1250  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -12mA  
IOH = -100µA  
IOL = 12mA  
IOL = 100µA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
OutputLOWVoltage  
0.4  
0.1  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. For 2.5V LVTTL single-ended operation, the RxS pin is tied HIGH and REF[1:0]/VREF[1:0] is left floating. If TxS is HIGH, FB/VREF2 should be left floating.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQ = VDD, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
12  
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
POWERSUPPLYCHARACTERISTICSFOR2.5VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQ = Max., CL = 0pF  
15  
25  
mA  
IDDQQ  
Quiescent VDDQ Power Supply Current(3)  
12  
50  
µA  
IDDPD  
Power Down Current  
0.5  
15  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
25  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
CurrentperOutput  
Total Power VDD Supply Current(4)  
VDD = Max., VDDQ = Max., CL = 0pF  
30  
40  
µA/MHz  
mA  
VDDQ = 2.5V., FVCO = 100MHz, CL = 15pF  
VDDQ = 2.5V., FVCO = 250MHz, CL = 15pF  
VDDQ = 2.5V., FVCO = 100MHz, CL = 15pF  
VDDQ = 2.5V., FVCO = 250MHz, CL = 15pF  
40  
60  
60  
90  
ITOTQ  
Total Power VDDQ Supply Current(4)  
80  
120  
300  
mA  
200  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS = HIGH.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL  
Symbol  
VDIF  
Parameter  
Value  
VDD  
Units  
InputSignalSwing(1)  
V
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
VDD/2  
VTHI  
CrossingPoint  
2.5  
V
tR, tF  
V/ns  
NOTES:  
1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF  
(AC) specification under actual use conditions.  
2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL  
Symbol  
VIH  
Parameter  
Value  
VDD  
0
Units  
V
Input HIGH Voltage  
VIL  
InputLOWVoltage  
V
VTHI  
InputTimingMeasurementReferenceLevel(1)  
InputSignalEdgeRate(2)  
VDD/2  
2
V
tR, tF  
V/ns  
NOTES:  
1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
2. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
13  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR1.8V  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(8)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
InputLOWCurrent  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
VIK  
VIN  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
V
V
- 0.3  
VDDQ + 0.3  
Single-Ended Inputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.073(10)  
0.683(11)  
V
V
VIL  
DifferentialInputs  
VDIF  
VCM  
VIH  
DCDifferentialVoltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-EndedReferenceVoltage(5,9)  
0.2  
825  
975  
V
900  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -6mA  
IOH = -100µA  
IOL = 6mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
OutputLOWVoltage  
0.4  
0.1  
IOL = 100µA  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. For 1.8V LVTTL single-ended operation, the RxS pin is MID and REF[1:0]/VREF[1:0] is left floating. If TxS is MID, FB/VREF2 should be left floating.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. The input is guaranteed to toggle within ±200mV of VREF[1:0] when VREF[1:0]  
is constrained within +600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the REF[1:0] input. To guarantee switching in voltage range  
specified in the JEDEC 1.8V LVTTL interface specification, VREF[1:0] must be maintained at 900mV with appropriate tolerances.  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
10. This value is the worst case minimum VIH over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIH = 0.65 * VDD where VDD is 1.8V ± 0.15V.  
However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated  
worst case value ( VIH = 0.65 * [1.8 - 0.15V]) rather than reference against a nominal 1.8V supply.  
11. This value is the worst case maximum VIL over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIL = 0.35 * VDD where VDD is 1.8V ± 0.15V.  
However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated  
worst case value ( VIL = 0.35 * [1.8 + 0.15V]) rather than reference against a nominal 1.8V supply.  
14  
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
POWERSUPPLYCHARACTERISTICSFOR1.8VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] =LH,Outputsenabled,Alloutputsunloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQ = Max., CL = 0pF  
15  
25  
mA  
IDDQQ  
Quiescent VDDQ Power Supply Current(3)  
1.5  
50  
µA  
IDDPD  
Power Down Current  
0.5  
16  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
25  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
VDD = Max., VDDQ = Max., CL = 0pF  
22  
30  
µA/MHz  
mA  
CurrentperOutput  
Total Power VDD Supply Current(4)  
VDDQ = 1.8V., FVCO = 100MHz, CL = 15pF  
VDDQ = 1.8V., FVCO = 250MHz, CL = 15pF  
VDDQ = 1.8V., FVCO = 100MHz, CL = 15pF  
VDDQ = 1.8V., FVCO = 250MHz, CL = 15pF  
40  
70  
60  
105  
85  
ITOTQ  
Total Power VDDQ Supply Current(4)  
55  
mA  
135  
205  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS = HIGH.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL  
Symbol  
VDIF  
Parameter  
Value  
VDDI  
Units  
InputSignalSwing(1)  
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
VDDI/2  
VTHI  
CrossingPoint  
1.8  
tR, tF  
V/ns  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable  
results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.  
2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL  
Symbol  
VIH  
Parameter  
Value  
VDDI  
0
Units  
V
Input HIGH Voltage(1)  
VIL  
InputLOWVoltage  
V
VTHI  
InputTimingMeasurementReferenceLevel(2)  
InputSignalEdgeRate(3)  
VDDI/2  
2
mV  
V/ns  
tR, tF  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input.  
2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
15  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
FNOM  
tRPW  
Parameter  
Min.  
Typ.  
Max  
Unit  
VCO Frequency Range  
see VCO Frequency Range Select Table  
Reference Clock Pulse Width HIGH or LOW  
Feedback Input Pulse Width HIGH or LOW  
OutputSkew(Rise-Rise,Fall-Fall,Nominal)(1,2)  
MultipleFrequencySkew(Rise-Rise,Fall-Fall,Nominal-Divided,Divided-Divided)(1,2,3)  
MultipleFrequencySkew(Rise-Fall,Nominal-Divided,Divided-Divided)(1,2,3)  
InvertingSkew(Nominal-Inverted)(1,2)  
InvertingSkew(Rise-Rise,Fall-Fall,Rise-Fall,Inverted-Divided)(1,2,3)  
Process Skew(1,2,4)  
REF Input to FB Static Phase Offset(5)  
1
1
50  
ns  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tFPW  
tSK(O)  
-100  
-375  
-275  
100  
100  
300  
300  
300  
300  
100  
375  
275  
1.2  
1
tSK1(ω)  
tSK2(ω)  
tSK1(INV)  
tSK2(INV)  
tSK(PR)  
t(φ)  
tODCV  
Output Duty Cycle Variation from 50%(11,12) 1.8VLVTTL  
2.5VLVTTL  
tORISE  
tOFALL  
OutputRiseTime(6)  
OutputFallTime(6)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
ns  
ns  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
1.2  
1
tL  
Power-upPLLLockTime(7)  
1
ms  
ms  
ms  
µs  
ms  
ps  
tL(ω)  
tL(PD)  
PLLLockTimeAfterInputFrequencyChange(7)  
PLL Lock Time After Asserting PD Pin(7)  
PLL Lock Time After Change in REF_SEL(7,9)  
PLLLockTimeAfterChangeinREF_SEL(REF1 andREF0 aredifferentfrequency)(7)  
Cycle-to-CycleOutputJitter(peak-to-peak)(2,8)  
PeriodJitter(peak-to-peak)(2,8)  
HalfPeriodJitter(peak-to-peak)(2,8,10)  
1
1
tL(REFSEL1)  
tL(REFSEL2)  
tJIT(CC)  
tJIT(PER)  
tJIT(HP)  
100  
1
75  
75  
ps  
125  
100  
ps  
tJIT(DUTY)  
DutyCycleJitter(peak-to-peak)(2,8)  
ps  
VOX  
HSTLandeHSTLDifferentialTrueandComplementaryOutputCrossingVoltageLevel  
VDDQ/2 - 150 VDDQ/2 VDDQ/2 + 150 mV  
NOTES:  
1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.  
2. For differential LVTTL outputs, the measurement is made at VDDQ/2, where the true outputs are only compared with other true outputs and the complementary outputs are only  
compared to other complementary outputs. For differential HSTL/eHSTL outputs, the measurement is made at the crossing point (VOX) of the true and complementary signals.  
3. There are three classes of outputs: nominal (zero delay), inverted, and divided (divide-by-2 or divide-by-4 mode).  
4. tSK(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQ, ambient temperature, air flow, etc.).  
5. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For TxS/RxS = MID or HIGH, the measurement is taken from VTHI on REF to VTHI on  
FB. For TxS/RxS = LOW, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to zero delay, FB input divider is set to  
divide-by-one, and FS = HIGH.  
6. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.  
7. tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDQ is stable and  
within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified  
limits.  
8. The jitter parameters are measured with all outputs selected for zero delay, FB input divider is set to divide-by-one, and FS = HIGH.  
9. Both REF inputs must be the same frequency, but up to ±180° out of phase.  
10. For HSTL/eHSTL outputs only.  
11. For LVTTL outputs only.  
12. tODCV is measured with all outputs selected for zero delay.  
16  
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
t W  
Reference/FeedbackInputClockPulseWidthHIGHorLOW(HSTL/eHSTLoutputs)(2)  
Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)(2)  
1
1
ns  
HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL  
VDIF  
VIH  
ACDifferentialVoltage(3)  
AC Input HIGH(4,5)  
AC Input LOW(4,6)  
400  
Vx + 200  
mV  
mV  
mV  
VIL  
Vx - 200  
LVEPECL  
VDIF  
ACDifferentialVoltage(3)  
AC Input HIGH(4)  
AC Input LOW(4)  
400  
1275  
mV  
mV  
mV  
VIH  
VIL  
875  
NOTES:  
1. For differential input mode, RxS is tied to GND.  
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined  
by VDIF has been met or exceeded.  
3. Differential mode only. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level.  
The AC differential voltage must be achieved to guarantee switching to a new state.  
4. For single-ended operation, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. Refer to each input interface's DC specification for the correct VREF[1:0] range.  
5. Voltage required to switch to a logic HIGH, single-ended operation only.  
6. Voltage required to switch to a logic LOW, single-ended operation only.  
17  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
AC TIMING DIAGRAM(1)  
tRPWL  
tRPWH  
REF  
REF  
tFPWH  
tFPWL  
FB  
FB  
tODCV  
tODCV  
Q
Q
tSK(O)  
tSK(O)  
OTHER Q  
OTHER Q  
tSK1(INV)  
tSK1(INV)  
INVERTED Q  
INVERTED Q  
tSK2(ω),  
tSK2(INV)  
tSK2(INV)  
tSK2(ω)  
tSK1(ω)  
Q DIVIDED BY 2  
Q DIVIDED BY 2  
tSK1(ω),  
tSK2(INV)  
Q DIVIDED BY 4  
Q DIVIDED BY 4  
NOTE:  
1. The AC TIMING DIAGRAM applies to PE = VDD. For PE = GND, the negative edge of FB aligns with the negative edge of REF[1:0], divided outputs change on the negative  
edge of REF[1:0], and the positive edges of the divide-by-2 and divide-by-4 signals align.  
18  
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
JITTERANDOFFSETTIMINGWAVEFORMS  
nQ, QFB  
nQ, QFB  
tcycle n  
tcycle n + 1  
=
tjit(cc) tcycle n  
tcycle n+1  
Cycle-to-Cycle jitter  
REF[1:0]  
REF[1:0]  
FB  
FB  
t(Ø)n + 1  
t(Ø)n  
n = N  
1
(N is a large number of samples)  
t(Ø)n  
=
t(Ø)  
N
Static Phase Offset  
NOTE:  
1. Diagram for PE = H and TxS/RxS = L.  
19  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
JITTERANDOFFSETTIMINGWAVEFORMS  
nQ, QFB  
nQ, QFB  
tW(MIN)  
tW(MAX)  
tJIT(DUTY) = tW(MAX) - tW(MIN)  
Duty-Cycle Jitter  
nQ, QFB  
nQ, QFB  
tcycle n  
nQ, QFB  
nQ, QFB  
1
f
o
1
=
tjit(per)  
tcycle n  
f
o
Period jitter  
nQ, QFB  
nQ, QFB  
thalf period n+1  
thalf period n  
nQ, QFB  
nQ, QFB  
1
f
o
1
2*f  
=
tjit(hper) thalf period n  
Half-Period jitter  
20  
o
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
TESTCIRCUITSANDCONDITIONS  
VDDI  
R1  
R2  
3 inch, ~50  
Transmission Line  
VIN  
VDDQ  
VDD  
VDDI  
REF[1:0]  
D.U.T.  
Pulse  
Generator  
R1  
R2  
3 inch, ~50Ω  
Transmission Line  
REF[1:0]  
VIN  
Test Circuit for Differential Input(1)  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
R1  
100  
100  
R2  
VDDI  
VCM*2  
V
HSTL: Crossing of REF[1:0] and REF[1:0]  
eHSTL: Crossing of REF[1:0] and REF[1:0]  
LVEPECL: Crossing of REF[1:0] and REF[1:0]  
1.8V LVTTL: VDDI/2  
VTHI  
V
2.5V LVTTL: VDD/2  
NOTE:  
1. This input configuration is used for all input interfaces. For single-ended testing,  
the REF[1:0] must be left floating. For testing single-ended in differential input  
mode, the VIN should be floating.  
21  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
VDDQ  
VDD  
VDDQ  
VDDQ  
VDDQ  
REF[1:0]  
R1  
R1  
nQ  
R2  
R1  
R2  
VDDQ  
VDD  
CL  
D.U.T.  
R2  
CL  
REF[1:0]  
nQ  
VDDQ  
QFB  
D.U.T.  
FB  
FB  
QFB  
QFB  
R1  
R2  
CL  
FB  
FB  
QFB  
CL  
SW1  
SW1  
Test Circuit for Differential Feedback  
Test Circuit for Differential Outputs  
DIFFERENTIALFEEDBACKTEST  
CONDITIONS  
DIFFERENTIALOUTPUTTEST  
CONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
VDDQ = Interface Specified  
15  
Unit  
Symbol  
VDD = 2.5V ± 0.2V  
VDDQ = Interface Specified  
15  
Unit  
CL  
R1  
pF  
V
CL  
R1  
pF  
100  
100  
V
R2  
100  
R2  
100  
VOX  
HSTL: Crossing of QFB and QFB  
eHSTL: Crossing of QFB and QFB  
1.8V LVTTL: VDDQ/2  
2.5V LVTTL: VDDQ/2  
TxS = MID or HIGH  
TxS = LOW  
VOX  
HSTL: Crossing of nQ and nQ  
eHSTL: Crossing of nQ and nQ  
1.8V LVTTL: VDDQ/2  
2.5V LVTTL: VDDQ/2  
TxS = MID or HIGH  
TxS = LOW  
VTHO  
V
VTHO  
SW1  
V
SW1  
Open  
Open  
Closed  
Closed  
22  
IDT5T2110  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
RECOMMENDEDLANDINGPATTERN  
NL 68 pin  
NOTE: All dimensions are in millimeters.  
23  
IDT5T2110  
2.5VZERODELAYPLLDIFFERENTIALCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ORDERINGINFORMATION  
X
XXXXX  
XX  
Package Package  
IDT  
Device Type  
I
-40°C to +85°C (Industrial)  
Plastic Ball Grid Array  
BB  
NL  
Thermally Enhanced Plastic Very Fine  
Pitch Quad Flat No Lead Package  
VFQFPN - Green  
NLG  
2.5V Zero Delay PLL Differential Clock  
Driver Teraclock  
5T2110  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
for Tech Support:  
logichelp@idt.com  
(408) 654-6459  
24  

相关型号:

5T2110NLI8

Clock Driver, PQCC68
IDT

5T32011

Peripheral IC
ETC

5T40140M-10NR

BUCHSE CENTRONICS PCB GERADE 14POL
ETC

5T40166PGG

Clock Generator, 125MHz, PDSO20, 0.173 INCH, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

5T40166PGG8

Clock Generator, 125MHz, PDSO20, 0.173 INCH, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

5T40240M-10NR

BUCHSE CENTRONICS PCB GERADE 24POL
ETC

5T40360M-10NR

BUCHSE CENTRONICS PCB GERADE 36POL
ETC

5T40500M-10NR

BUCHSE CENTRONICS PCB GERADE 50POL
ETC

5T5.12CD

Analog IC
ETC

5T9010BBGI8

PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, LEAD FREE, PLASTIC, BGA-144
IDT

5T9050PGI

Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28
IDT

5T905PGI

Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28
IDT