5T93GL061PFGI [IDT]

Low Skew Clock Driver, 5T Series, 6 True Output(s), 0 Inverted Output(s), PQFP32, GREEN, TQFP-32;
5T93GL061PFGI
型号: 5T93GL061PFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 5T Series, 6 True Output(s), 0 Inverted Output(s), PQFP32, GREEN, TQFP-32

驱动 逻辑集成电路
文件: 总14页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5V LVDS 1:6 GLITCHLESS  
IDT5T93GL061  
CLOCK BUFFER  
TERABUFFER™ II  
DESCRIPTION:  
FEATURES:  
The IDT5T93GL061 2.5V differential clock buffer is a user-selectable  
• Guaranteed Low Skew < 50ps (max)  
• Very low duty cycle distortion < 100ps (max)  
• High speed propagation delay < 2.2ns (max)  
• Up to 450MHz operation  
differentialinputtosixLVDSoutputs. Thefanoutfromadifferentialinputtosix  
LVDSoutputsreducesloadingontheprecedingdriverandprovidesanefficient  
clockdistributionnetwork. TheIDT5T93GL061canactasatranslatorfroma  
differentialHSTL,eHSTL,LVEPECL (2.5V),LVPECL(3.3V),CML,orLVDS  
input to LVDS outputs. A single-ended 3.3V / 2.5V LVTTL input can also be  
usedtotranslatetoLVDSoutputs. Theredundantinputcapabilityallowsfora  
glitchlesschange-over fromaprimaryclocksourcetoasecondaryclocksource  
upto450MHz. SelectableinputsarecontrolledbySEL. Duringtheswitchover,  
theoutputwilldisablelowforuptothreeclockcyclesofthepreviously-selected  
inputclock. Theoutputswillremainlowforuptothreeclockcyclesofthenewly-  
selectedclock,afterwhichtheoutputswillstartfromthenewly-selectedinput.  
AFSELpinhasbeenimplementedtocontroltheswitchoverincaseswherea  
clocksourceisabsentorisdriventoDClevelsbelowtheminimumspecifications.  
The IDT5T93GL061 outputs can be asynchronously enabled/disabled.  
Whendisabled,theoutputswilldrivetothevalueselectedbytheGLpin. Multiple  
power and grounds reduce noise.  
• Selectable inputs  
• Hot insertable and over-voltage tolerant inputs  
• 3.3V / 2.5V LVTTL, HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V),  
CML, or LVDS input interface  
• Selectable differential inputs to six LVDS outputs  
• Power-down mode  
• 2.5V VDD  
• Available in TQFP package  
APPLICATIONS:  
• Clock distribution  
FUNCTIONALBLOCKDIAGRAM  
GL  
G
Q1  
OUTPUT  
CONTROL  
Q1  
PD  
Q2  
Q2  
OUTPUT  
CONTROL  
A1  
1
A1  
Q3  
Q3  
OUTPUT  
CONTROL  
A2  
Q4  
Q4  
OUTPUT  
CONTROL  
0
A2  
Q5  
Q5  
OUTPUT  
CONTROL  
SEL  
FSEL  
Q6  
Q6  
OUTPUT  
CONTROL  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
JANUARY 2007  
1
© 2007 Integrated Device Technology, Inc.  
DSC 6740/7  
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
PINCONFIGURATION  
32  
30  
29 28 27 26 25  
31  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PD  
G
VDD  
VDD  
GND  
Q4  
GND  
Q1  
Q4  
Q1  
GND  
A2  
GND  
A1  
A2  
A1  
9
10 11 12 13 14 15 16  
TQFP  
TOP VIEW  
2
IDT5T93GL061  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
CAPACITANCE(1) (TA = +25°C, F = 1.0MHz)  
ABSOLUTEMAXIMUMRATINGS(1)  
Symbol  
VDD  
VI  
Description  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDD +0.5  
–65 to +150  
150  
Unit  
V
Symbol  
Parameter  
Min  
Typ.  
Max.  
Unit  
Power Supply Voltage  
CIN  
Input Capacitance  
3
pF  
Input Voltage  
V
NOTE:  
VO  
Output Voltage(2)  
Storage Temperature  
Junction Temperature  
V
1. This parameter is measured at characterization but not tested  
TSTG  
TJ  
°C  
°C  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. Not to exceed 3.6V.  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
VDD  
PINDESCRIPTION  
Symbol  
A[1:2]  
I/O  
Type  
Description  
I
I
Adjustable(1,4) Clockinput. A[1:2] isthe"true"sideofthedifferentialclockinput.  
Adjustable(1,4) Complementaryclockinputs. A[1:2] isthecomplementarysideofA[1:2]. ForLVTTLsingle-endedoperation, A[1:2] shouldbesettothe  
A[1:2]  
desiredtogglevoltageforA[1:2]:  
3.3V LVTTL VREF = 1650mV  
2.5V LVTTL VREF = 1250mV  
G
I
I
LVTTL  
LVTTL  
GatecontrolfordifferentialoutputsQ1 andQ1 throughQ6 and Q6. WhenGisLOW, thedifferentialoutputsareactive. WhenGis  
HIGH,thedifferentialoutputsareasynchronouslydriventotheleveldesignatedbyGL(2).  
GL  
Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true"  
outputsdisableLOWand"complementary"outputsdisableHIGH.  
Qn  
Qn  
SEL  
O
O
I
LVDS  
LVDS  
LVTTL  
LVTTL  
Clockoutputs  
Complementaryclockoutputs  
Reference clock select. When LOW, selects A2 and A2. When HIGH, selects A1 and A1.  
PD  
I
Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both  
"true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation.(3)  
FSEL  
VDD  
I
LVTTL  
PWR  
PWR  
At a rising edge, FSEL forces select to the input designated by SEL. Set LOW for normal operation.  
Power supply for the device core and inputs  
Ground  
GND  
NOTES:  
1. Inputs are capable of translating the following interface standards:  
Single-ended 3.3V and 2.5V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels  
Differential LVDS levels  
Differential CML levels  
2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt  
pulses or be able to tolerate them in down stream circuitry.  
3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-  
up after asserting PD.  
4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal.  
3
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATING  
RANGEFORLVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
μA  
InputLOWCurrent  
VDD = 2.7V  
VIK  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
V
V
VIN  
VIH  
VIL  
- 0.3  
1.7  
DC Input HIGH  
DC Input LOW  
0.7  
VTHI  
VREF  
DCInputThresholdCrossingVoltage  
Single-EndedReferenceVoltage(3)  
VDD/2  
1.65  
3.3VLVTTL  
2.5VLVTTL  
1.25  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. For A[1:2] single-ended operation, A[1:2] is tied to a DC reference voltage.  
DCELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATING  
RANGEFORDIFFERENTIALINPUTS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(4)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
±5  
±5  
μA  
InputLOWCurrent  
VDD = 2.7V  
VIK  
VIN  
VDIF  
VCM  
ClampDiodeVoltage  
DCInputVoltage  
DCDifferentialVoltage(2)  
DC Common Mode Input Voltage(3)  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
V
V
- 0.3  
0.1  
0.05  
VDD  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential  
voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
4. Typical values are at VDD = 2.5V, +25°C ambient.  
DCELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATING  
RANGE FOR LVDS(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
OutputCharacteristics  
VOT(+)  
VOT(-)  
ΔVOT  
VOS  
DifferentialOutputVoltagefortheTrueBinaryState  
DifferentialOutputVoltagefortheFalseBinaryState  
ChangeinVOT BetweenComplementaryOutputStates  
OutputCommonModeVoltage(OffsetVoltage)  
ChangeinVOS BetweenComplementaryOutputStates  
OutputsShortCircuitCurrent  
247  
247  
1.2  
12  
6
454  
454  
50  
mV  
mV  
mV  
V
1.125  
1.375  
50  
ΔVOS  
IOS  
mV  
mA  
mA  
VOUT + and VOUT - = 0V  
VOUT + = VOUT -  
24  
IOSD  
DifferentialOutputsShortCircuitCurrent  
12  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
4
IDT5T93GL061  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
1
750  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
1
900  
mV  
%
DH  
Duty Cycle  
50  
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL (2.5V) AND  
LVPECL(3.3V)  
Symbol  
VDIF  
Parameter  
Value  
Units  
mV  
InputSignalSwing(1)  
732  
VX  
DifferentialInputSignalCrossingPoint(2)  
LVEPECL  
LVPECL  
1082  
mV  
1880  
DH  
Duty Cycle  
50  
%
V
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point levels are specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment.  
This device meets the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
5
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVDS  
Symbol  
VDIF  
VX  
Parameter  
Value  
Units  
mV  
V
InputSignalSwing(1)  
DifferentialInputSignalCrossingPoint(2)  
400  
1.2  
DH  
Duty Cycle  
50  
%
VTHI  
tR, tF  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
CrossingPoint  
2
V
V/ns  
NOTES:  
1. The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
VDIF  
VIX  
Parameter  
Min.  
0.1  
Typ.  
Max  
3.6  
Unit  
V
ACDifferentialVoltage(2)  
DifferentialInputCrosspointVoltage  
CommonModeInputVoltageRange(3)  
InputVoltage  
0.05  
0.05  
- 0.3  
VDD  
VDD  
+3.6  
V
VCM  
V
VIN  
V
NOTES:  
1. The output will not change state until the inputs have crossed and the minimum differential voltage defined by VDIF has been met or exceeded.  
2. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage  
must be achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2.  
POWERSUPPLYCHARACTERISTICSFORLVDSOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions  
VDD = Max., All Input Clocks = LOW(2)  
Outputsenabled  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
240  
mA  
ITOT  
IPD  
Total Power VDD Supply Current  
Total Power Down Supply Current  
VDD = 2.7V., FREFERENCE CLOCK = 450MHz  
PD = LOW  
250  
5
mA  
mA  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.  
2. The true input is held LOW and the complementary input is held HIGH.  
6
IDT5T93GL061  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE(1,5)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
SkewParameters  
tSK(O)  
Same Device Output Pin-to-Pin Skew(2)  
Pulse Skew(3)  
50  
ps  
ps  
ps  
tSK(P)  
100  
300  
tSK(PP)  
Part-to-PartSkew(4)  
PropagationDelay  
tPLH  
tPHL  
fO  
Propagation Delay A, A Crosspoint to Qn, Qn Crosspoint  
1.5  
2.2  
ns  
FrequencyRange(6)  
450  
MHz  
OutputGateEnable/DisableDelay  
tPGE  
Output Gate Enable Crossing VTHI to Qn/Qn Crosspoint  
3.5  
3.5  
ns  
ns  
tPGD  
Output Gate Disable Crossing VTHI to Qn/Qn Crosspoint Driven to GL Designated Level  
Power Down Timing  
tPWRDN  
PD Crossing VTHI to Qn = VDD, Qn = VDD  
Output Gate Disable Crossing VTHI to Qn/Qn Driven to GL Designated Level  
100  
100  
μS  
μS  
tPWRUP  
NOTES:  
1. AC propagation measurements should not be taken within the first 100 cycles of startup.  
2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.  
3. Skew measured is the difference between propagation delay times tPHL and tPLH of any single differential output pair under identical input and output interfaces, transitions and load  
conditions on any one device.  
4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions  
at identical VDD levels and temperature.  
5. All parameters are tested with a 50% input duty cycle.  
6. Guaranteed by design but not production tested.  
7
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIALACTIMINGWAVEFORMS  
1/fo  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
tPHL  
tPLH  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
tSK(O)  
tSK(O)  
+ VDIF  
VDIF = 0  
- VDIF  
Qm - Qm  
Output Propagation and Skew Waveforms  
NOTES:  
1. Pulse skew is calculated using the following expression:  
tSK(P) = | tPHL - tPLH |  
Note that the tPHL and tPLH shown above are not valid measurements for this calculation because they are not taken from the same pulse.  
2. AC propagation measurements should not be taken within the first 100 cycles of startup.  
8
IDT5T93GL061  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
VIH  
VTHI  
VIL  
GL  
tPLH  
VIH  
VTHI  
VIL  
G
tPGE  
tPGD  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
Differential Gate Disable/Enable Showing Runt Pulse Generation  
NOTE:  
1. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time the G signal to avoid this problem.  
+ VDIF  
VDIF = 0  
- VDIF  
A1 - A1  
A2 - A2  
SEL  
+ VDIF  
VDIF = 0  
- VDIF  
VIH  
VTHI  
VIL  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
Glitchless Output Operation with Switching Input Clock Selection  
NOTES:  
1. When SEL changes, the output clock goes LOW on the falling edge of the output clock up to three cycles later. The output then stays LOW for up to three clock cycles of the  
new input clock. After this, the output starts with the rising edge of the new input clock.  
2. AC propagation measurements should not be taken within the first 100 cycles of startup.  
9
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
FSEL Operation for When Current Clock Dies  
NOTES:  
1. When the differential on the selected clock goes below the minimum DC differential, the outputs clock goes to an unknown state. When this happens, the SEL pin should be toggled  
and FSEL asserted in order to force selection of the new input clock. The output clock will start up after a number of cycles of the newly-selected input clock.  
2. The FSEL pin should stay asserted until the problem with the dead clock can be fixed in the system.  
3. It is recommended that the FSEL be tied HIGH for systems that use only one input. If this is not possible, the user must guarantee that the unused input have a differential greater  
than or equal to the minimum DC differential specified in the datasheet.  
FSEL Operation for When Opposite Clock Dies  
NOTES:  
1. When the differential on the non-selected clock goes below the minimum DC differential, the outputs clock goes to an unknown state. When this happens, the FSEL pin should  
be asserted in order to force selection of the new input clock. The output clock will start up after a number of cycles of the newly-selected input clock.  
2. The FSEL pin should stay asserted until the problem with the dead clock can be fixed in the system.  
3. It is recommended that the FSEL be tied HIGH for systems that use only one input. If this is not possible, the user must guarantee that the unused input have a differential greater  
than or equal to the minimum DC differential specified in the datasheet.  
10  
IDT5T93GL061  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
A2 - A2  
FSEL  
SEL  
+VDIF  
VDIF=0  
-VDIF  
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
Selection of Input While Protecting Against When Opposite Clock Dies  
NOTES:  
1. If the user holds FSEL HIGH, the output will not be affected by the deselected input clock.  
2. The output will immediately be driven to LOW once FSEL is asserted. This may cause glitching on the output. The output will restart with the input clock selected by the SEL  
pin.  
3. If the user decides to switch input clocks, the user must de-assert FSEL, then assert FSEL after toggling the SEL input pin. The output will be driven LOW and will restart with  
the input clock selected by the SEL pin.  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
A2 - A2  
G
+VDIF  
VDIF=0  
-VDIF  
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
PD  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
Power Down Timing  
NOTES:  
1. It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after  
asserting PD.  
2. The POWER DOWN TIMING diagram assumes that GL is HIGH.  
3. It should be noted that during power-down mode, the outputs are both pulled to VDD. In the POWER DOWN TIMING diagram this is shown when Qn - Qn goes to VDIF = 0.  
11  
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
TESTCIRCUITSANDCONDITIONS  
~50Ω  
Transmission Line  
VIN  
VDD/2  
A
D.U.T.  
Pulse  
Generator  
A
~50Ω  
Transmission Line  
VIN  
-VDD/2  
Scope  
50Ω  
50Ω  
Test Circuit for Differential Input  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
VTHI  
Crossing of A and A  
V
12  
IDT5T93GL061  
INDUSTRIALTEMPERATURERANGE  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
VDD  
A
Qn  
Qn  
Pulse  
Generator  
RL  
RL  
A
D.U.T.  
VOS  
VOD  
Test Circuit for DC Outputs and Power Down Tests  
VDD/2  
SCOPE  
CL  
Z = 50Ω  
A
A
Qn  
Pulse  
Generator  
50Ω  
50Ω  
D.U.T.  
Qn  
Z = 50Ω  
CL  
-VDD/2  
Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing  
LVDSOUTPUTTESTCONDITION  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
CL  
0(1)  
8(1,2)  
50  
pF  
RL  
Ω
NOTES:  
1. Specifications only apply to "Normal Operations" test condition. The TIA/EIA specification load is for reference only.  
2. The scope inputs are assumed to have a 2pF load to ground. TIA/EIA - 644 specifies 5pF between the output pair. With CL = 8pF, this gives the test circuit appropriate 5pF equivalent  
load.  
13  
IDT5T93GL061  
2.5VLVDS1:6GLITCHLESSCLOCKBUFFERTERABUFFERII  
INDUSTRIALTEMPERATURERANGE  
ORDERINGINFORMATION  
XX  
X
XXXXX  
IDT  
Package Process  
Device Type  
I
-40°C to +85°C (Industrial)  
Thin Quad Flat Pack  
TQFP - Green  
PF  
PFG  
2.5V LVDS 1:6 Glitchless Clock Buffer Terabuffer™ II  
5T93GL061  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
clockhelp@idt.com  
www.idt.com  
14  

相关型号:

5T93GL061PFGI8

Low Skew Clock Driver, 5T Series, 6 True Output(s), 0 Inverted Output(s), PQFP32, GREEN, TQFP-32
IDT

5T93GL061PFI

Clock Driver, PQFP32
IDT

5T93GL061PFI8

Clock Driver, PQFP32
IDT

5T93GL06NLGI8

Low Skew Clock Driver, 5T Series, 6 True Output(s), 0 Inverted Output(s), PQCC28, GREEN, PLASTIC, VFQFPN-28
IDT

5T93GL101PFGI8

Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PQFP44, GREEN, TQFP-44
IDT

5T93GL10NLGI

VFQFPN-40, Tray
IDT

5T93GL161PFGI

Low Skew Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), CMOS, PQFP64, GREEN, TQFP-64
IDT

5T93GL161PFI

Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), CMOS, PQFP64, TQFP-64
IDT

5T93GL161PFI8

Low Skew Clock Driver, PQFP64
IDT

5T93GL16NLGI

VFQFPN-52, Tray
IDT

5T93GL16NLGI8

Low Skew Clock Driver, 5T Series, 16 True Output(s), 0 Inverted Output(s), PQCC52, GREEN, PLASTIC, QFN-52
IDT

5T940-10NLGI

VFQFPN-28, Tray
IDT