5T9890NLI [IDT]

Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PQCC68, PLASTIC, VFQFPN-68;
5T9890NLI
型号: 5T9890NLI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PQCC68, PLASTIC, VFQFPN-68

驱动 逻辑集成电路
文件: 总37页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT5T9890  
EEPROM PROGRAMMABLE 2.5V  
PROGRAMMABLE SKEW PLL  
CLOCK DRIVER  
FEATURES:  
DESCRIPTION:  
• 2.5VDD  
The IDT5T9890 is a 2.5V PLL clock driver intended for high perfor-  
mancecomputinganddata-communicationsapplications.Akeyfeatureof  
theprogrammableskewistheabilityofoutputstoleadorlagtheREFinput  
signal.TheIDT5T9890has tenprogrammableskewoutputs infivebanks  
oftwo,plus a dedicateddifferentialfeedback.Skewis controlledthrough  
• 5 pairs of programmable skew outputs  
Low skew: 100ps all outputs at same interface level, 250ps all  
outputs at different interface levels  
• Selectable positive or negative edge synchronization  
Tolerant of spread spectrum input clock  
• Synchronous output enable  
2
theuseof JTAGorI Cprogramming. Theredundantinputcapabilityallows  
fora smoothchange overtoa secondaryclocksource whenthe primary  
clocksource is absent.  
• Selectable inputs  
TheclockdrivercanbeconfiguredthroughtheuseofJTAG/I2Cprogram-  
ming. An internal EEPROM will allow the user to save and restore the  
configurationofthedevice.  
Input frequency: 4.17MHz to 250MHz  
• Output frequency: 12.5MHz to 250MHz  
Internal non-volatile EEPROM  
2
• JTAG or I C bus serial interface for programming  
The feedbackbankallows divide-by-functionalityfrom1to12through  
2
Hot insertable and over-voltage tolerant inputs  
• Feedback divide selection with multiply ratios of (1-6, 8, 10, 12)  
• Selectable HSTL, eHSTL, 1.8V/2.5V LVTTL, or LVEPECL input  
interface  
• Selectable HSTL, eHSTL, or 1.8V/2.5V LVTTL output interface for  
each output bank  
• Selectable differential or single-ended inputs and ten single-  
ended outputs  
• PLL bypass for DC testing  
• External differential feedback, internal loop filter  
Low Jitter: <75ps cycle-to-cycle, all outputs at same interface  
level: <100ps cycle-to-cycle all outputs at different interface  
levels  
theuseof JTAGorI Cprogramming. Thisprovidestheuserwithfrequency  
multiplication1to12withoutusingdividedoutputsforfeedback. Eachoutput  
bank also allows for a divide-by-functionality of 2 or 4.  
The IDT5T9890 features a user-selectable, single-ended or differential  
inputtotensingle-endedoutputs. Theclockdriveralsoactsasatranslatorfrom  
a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended  
1.8V/2.5VLVTTLinputtoHSTL,eHSTL,or1.8V/2.5VLVTTLoutputs. Each  
outputbankcanbe individuallyconfiguredtobe eitherHSTL, eHSTL, 2.5V  
LVTTL,or1.8VLVTTL,includingthefeedbackbank. Also,eachclockinput  
can be individually configured to accept 2.5V LVTTL, 1.8V LVTTL, or  
differentialsignals. Theoutputscanbesynchronouslyenabled/disabled.  
Furthermore,alltheoutputscanbesynchronizedwiththepositiveedge  
of the REF clock input or the negative edge of REF.  
• Power-down mode  
Lock indicator  
Available in VFQFPN package  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
March 2009  
1
c
2004 Integrated Device Technology, Inc.  
DSC - 6504/19  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
FUNCTIONALBLOCKDIAGRAM  
(TDO)  
TDO/ADDR1  
(ADDR1)  
TMS/ADDR0  
TCLK/SCLK  
TDI/SDA  
JTAG/I2C  
PROGRAMMING  
SELECTION  
AND CONTROL  
LOGIC  
1sOE  
VDDQ1  
TRST/SEL  
1Q0  
Skew  
Select  
1Q1  
2sOE  
EEPROM  
VDDQ2  
2Q0  
Skew  
Select  
2Q1  
PD  
3sOE  
OMODE  
VDDQ3  
FB  
3Q0  
/N  
Skew  
FB/VREF2  
0
1
Select  
PLL  
3Q1  
REF0  
0
1
REF0/VREF0  
4sOE  
VDDQ4  
REF1  
4Q0  
REF1/VREF1  
Skew  
Select  
4Q1  
5sOE  
VDDQ5  
REF_SEL  
PLL_EN  
5Q0  
Skew  
Select  
5Q1  
LOCK(φ)  
VDDQFB  
QFB  
Skew  
Select  
QFB  
2
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
PINCONFIGURATION  
TRST/SEL  
OMODE  
VDD  
TDI/SDA  
TCLK/SCLK  
VDD  
51  
50  
49  
48  
47  
46  
1
2
3
3sOE  
VDDQ3  
4
VDDQ3  
REF_SEL  
REF1  
5
3Q0  
6
45  
3Q1  
REF1/VREF1  
REF0  
7
VDD  
44  
43  
42  
8
REF0/VREF0  
GND  
VDD  
VDD  
VDD  
4Q1  
9
10  
11  
12  
13  
14  
15  
16  
17  
FB  
FB/VREF2  
41  
40  
39  
VDD  
VDD  
4Q0  
38  
VDDQ4  
NC  
NC  
NC  
37  
36  
35  
VDDQ4  
4sOE  
VDD  
NC  
VFQFPN  
TOP VIEW  
3
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
ABSOLUTEMAXIMUMRATINGS(1)  
CAPACITANCE(TA = +25°C, f = 1MHz, VIN = 0V)  
Symbol  
Description  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDDQ +0.5  
–0.5 to +3.6  
150  
Unit  
V
Parameter Description  
Min.  
2.5  
Typ.  
3
Max.  
3.5  
7
Unit  
pF  
VDDQN, VDD Power Supply Voltage(2)  
CIN  
InputCapacitance  
OutputCapacitance  
VI  
Input Voltage  
V
COUT  
6.3  
pF  
VO  
Output Voltage  
V
NOTE:  
1. Capacitance applies to all inputs except JTAG/I2C signals, SEL, ADDR0, and ADDR1.  
VREF  
TJ  
Reference Voltage(3)  
Junction Temperature  
Storage Temperature  
V
°C  
°C  
TSTG  
–65 to +165  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. VDDQN and VDD internally operate independently. No power sequencing requirements  
need to be met.  
3. Not to exceed 3.6V.  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
(1)  
VDD  
HSTL Output Power Supply Voltage  
Extended HSTL and 1.8V LVTTL Output Power Supply Voltage  
1.4  
1.65  
1.5  
1.8  
1.6  
1.95  
V
V
(1)  
VDDQN  
2.5VLVTTLOutputPowerSupplyVoltage  
TerminationVoltage  
VDD  
V
V
VT  
VDDQN / 2  
NOTE:  
1. All power supplies should operate in tandem. If VDD or VDDQN is at maximum, then VDDQN or VDD (respectively) should be at maximum, and vice-versa.  
PINDESCRIPTION  
Symbol  
I/O  
Type  
Description  
REF[1:0]  
I
I
Adjustable(1) Clockinput. REF[1:0] isthe"true"sideofthedifferentialclockinput. Ifoperatinginsingle-endedmode, REF[1:0] istheclockinput.  
Adjustable(1)  
REF[1:0]/  
VREF[1:0]  
Complementaryclockinput. REF[1:0]/VREF[1:0] isthe"complementary"sideofREF[1:0] iftheinputisindifferentialmode. Ifoperating  
insingle-endedmode,REF[1:0]/VREF[1:0] isleftfloating. Forsingle-endedoperationindifferentialmode,REF[1:0]/VREF[1:0]shouldbeset  
tothedesiredtogglevoltageforREF[1:0]:  
2.5VLVTTL  
1.8VLVTTL,eHSTL  
HSTL  
VREF =1250mV(SSTL2compatible)  
VREF = 900mV  
VREF = 750mV  
LVEPECL  
VREF = 1082mV  
FB  
I
I
Adjustable(1) Clockinput. FBisthe"true"sideofthedifferentialfeedbackclockinput. Ifoperatinginsingle-endedmode,FBisthefeedbackclockinput.  
FB/VREF2  
Adjustable(1) Complementaryfeedbackclockinput. FB/VREF2isthe"complementary"sideofFBiftheinputisindifferentialmode. Ifoperatinginsingle-  
endedmode,FB/VREF2isleftfloating. Forsingle-endedoperationindifferentialmode, FB/VREF2shouldbesettothedesiredtogglevoltage  
for FB:  
2.5VLVTTL  
1.8VLVTTL,eHSTL  
HSTL  
VREF =1250mV(SSTL2compatible)  
VREF = 900mV  
VREF = 750mV  
LVEPECL  
VREF = 1082mV  
NOTE:  
1. Inputs are capable of translating the following interface standards. User can select between:  
Single-ended 2.5V LVTTL levels  
Single-ended 1.8V LVTTL levels  
or  
Differential 2.5V/1.8V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL levels  
4
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
PINDESCRIPTION,CONTINUED  
Symbol  
REF_SEL  
nsOE  
I/O  
Type  
LVTTL(1)  
LVTTL(1)  
Description  
I
I
Reference clock select. When LOW, selects REF0 and REF0/VREF0. When HIGH, selects REF1 and REF1/VREF1.  
Synchronousoutputenable/disable. Eachoutputs'senable/disablestatecanbecontrolledeitherwiththensOEpinorthroughJTAG  
or I2C programming, corresponding bits 52 - 56. When the nsOE is HIGH or the corresponding Bit (52 - 56) is 1, the output will be  
synchronouslydisabled.WhenthensOEisLOWandthecorrespondingBit(52-56)is0,theoutputwillbeenabled. (SeeJTAG/I2C  
SerialConfigurationtable.)  
QFB  
QFB  
O
O
O
I
Adjustable(2) Feedbackclockoutput  
Adjustable(2) Complementaryfeedbackclockoutput  
Adjustable(2) Fivebanksoftwooutputs  
nQ[1:0]  
PLL_EN  
LVTTL(1)  
PLL enable/disable control. The PLL's enable/disable state can be controlled either with the PLL_EN pin or through JTAG or I2C  
programming,correspondingBit57. WhenPLL_ENisHIGHorthecorrespondingBit57is1,thePLLisdisabledandREF[1:0] goes  
to all outputs. When PLL_EN is LOW and the corresponding Bit 57 is 0, the PLL will be active.  
PD  
I
LVTTL(1)  
Power down control. When PD is LOW, the inputs are disabled and internal switching is stopped. The OMODE pin in conjunction  
withthecorrespondingBit59selectswhethertheoutputsaregatedLOW/HIGHortri-stated. WhenOMODEisHIGHorBit59is1,  
Bit58determinesthelevelatwhichtheoutputsstop. WhenBit58is0/1,thenQ[1:0] andQFBarestoppedinaHIGH/LOWstate,while  
theQFBisstoppedinaLOW/HIGHstate. WhenOMODEisLOWandBit59is0,theoutputsaretri-stated. SetPDHIGHfornormal  
operation. (SeeJTAG/I2CSerialConfigurationtable.)  
LOCK  
O
I
LVTTL  
PLL lock indication signal. HIGH indicates lock. LOW indicates that the PLL is not locked and outputs may not be synchronized to  
theinputs. Theoutputwillbe2.5VLVTTL. (FormoreinformationonapplicationspecificuseoftheLOCKpin, pleaseseeAN237.)  
OMODE  
LVTTL(1)  
Outputdisablecontrol. UsedinconjunctionwithnsOEandPD. Theoutputs'disablestatecanbecontrolledeitherwiththeOMODE  
pinorthroughJTAGorI2Cprogramming,correspondingBit59.WhenOMODEisHIGHorthecorrespondingBit59is1,theoutputs'  
disable state will be gated and Bit 58 will determine the level at which the outputs stop. When Bit 58 is 0/1, the nQ[1:0] andQFBare  
stopped in a HIGH/LOW state, while the QFB is stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding bit  
59is0,theoutputsdisablestatewillbethetri-state.(SeeJTAG/I2CSerialConfigurationtable.)  
TRST/SEL  
I/I  
LVTTL/  
TRST- Active LOW input to asynchronously reset the JTAG boundary-scan circuit.  
LVTTL(4,5) SEL-Selectprogramminginterfacecontrolforthedual-functionpins. WhenHIGH,thedual-functionpinsaresetforJTAGprogramming.  
WhenLOW,thedual-functionpinsaresetforI2CprogrammingandtheJTAGinterfaceisasynchronouslyplacedintheTestLogicReset  
state.  
TDO/ADDR1 O/I  
TMS/ADDR0 I/I  
LVTTL/  
TDO-Serialdataoutputpinforinstructionsaswellastestandprogrammingdata. DataisshiftedinonthefallingedgeofTCLK. The  
pinistri-statedifdataisnotbeingshiftedoutofthedevice.  
ADDR1-UsedtodefineauniqueI2Caddressforthisdevice. OnlyforI2Cprogramming. (SeeJTAG/I2CSerialInterfaceDescription.)  
3-Level(3,4,5)  
LVTTL/  
TMS-InputpinthatprovidesthecontrolsignaltodeterminethetransitionsoftheJTAGTAPcontrollerstatemachine. Transitionswithin  
thestatemachineoccurattherisingedgeofTCLK. Therefore,TMSmustbesetupbeforetherisingedgeofTCLK. TMSisevaluated  
ontherisingedgeofTCLK.  
3-Level(3,4,5)  
ADDR0-UsedtodefineauniqueI2Caddressforathisdevice. OnlyforI2Cprogramming. (SeeJTAG/I2CSerialInterfaceDescription.)  
TCLK/SCLK I/I  
LVTTL/  
TCLK - The clock input to the JTAG BST circuitry.  
LVTTL(4,5) SCLK - Serial clock  
TDI/SDA  
I/I  
LVTTL/  
TDI-Serialinputpinforinstructionsaswellastestandprogrammingdata. DataisshiftedinontherisingedgeofTCLK.  
LVTTL(4,5) SDA - Serial data (see JTAG/I2C Serial Description table)  
VDDQN  
PWR  
Power supply for each pair of outputs. When using 2.5V LVTTL, 1.8V LVTTL, HSTL, or eHSTL outputs, VDDQN should be set to its  
correspondingoutputs(seeFrontBlockDiagram). Whenusing2.5VLVTTLoutputs,VDDQNshouldbeconnectedtoVDD.  
VDD  
PWR  
PWR  
Powersupplyforphaselockedloop,lockoutput,inputs,andotherinternalcircuitry  
Ground  
GND  
NOTES:  
1. Pins listed as LVTTL inputs can be configured to accept 1.8V or 2.5V signals through the use of the I2C/JTAG programming, bit 61. (See JTAG/I2C Serial Description.)  
2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQN voltage.  
3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.  
4. The JTAG (TDO, TMS, TCLK, and TDI) and I2C (ADDR1, ADDR0, SCLK, and SDA) signals share the same pins (dual-function pins) for which the TRST/SEL pin will select between  
the two programming interfaces.  
5. JTAG and I2C pins accept 2.5V signals. The JTAG input pins (TMS, TCLK, TDI, TRST) will also accept 1.8V signals.  
5
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
JTAG/ I2C SERIAL DESCRIPTION  
Bit  
Description  
95:62 Reserved Bits. Set bits 95:62 to '0'.  
61  
Input interface selection for control pins (REF_SEL, PD, PLL_EN, OMODE, nSOE). When bit 61 is ‘1’, the control pins are 2.5V LVTTL. When bit 61 is ‘0’,  
thecontrolpinsare1.8VLVTTL.  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
VCO frequency range. When ‘0’, range is 50MHz-125MHz. When ‘1’, range is 100MHz-250MHz.  
Output’sdisablestate. SeecorrespondingexternalpinOMODEforPinDescriptiontable.  
Positive/Negativeedgecontrol. When0’/’1’, theoutputsaresynchronizedwiththenegative/positiveedgeofthereferenceclock.  
PLL enable/disable. SeecorrespondingexternalpinPLL_ENinPinDescriptiontable.(1)  
Outputdisable/enablefor1Q[1:0]outputs. Seecorrespondingexternalpin1SOEinPinDescriptiontable.  
Outputdisable/enablefor2Q[1:0]outputs. Seecorrespondingexternalpin2SOEinPinDescriptiontable.  
Outputdisable/enablefor3Q[1:0]outputs. Seecorrespondingexternalpin3SOEinPinDescriptiontable.  
Outputdisable/enablefor4Q[1:0]outputs. Seecorrespondingexternalpin4SOEinPinDescriptiontable.  
Outputdisable/enablefor5Q[1:0]outputs. Seecorrespondingexternalpin5SOEinPinDescriptiontable.  
FB Divide-by-N selection  
FB Divide-by-N selection  
FB Divide-by-N selection  
FB Divide-by-N selection  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 1  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 1  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 2  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 2  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 3  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 3  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 4  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 4  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 5  
Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 5  
FB output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on FB bank  
FB output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on FB bank  
REF0Inputinterfaceselectionfor2.5VLVTTL,1.8VLVTTL,orDifferential  
REF0Inputinterfaceselectionfor2.5VLVTTL,1.8VLVTTL,orDifferential  
REF1inputinterfaceselectionfor2.5VLVTTL,1.8VLVTTL,orDifferential  
REF1inputinterfaceselectionfor2.5VLVTTL,1.8VLVTTL,orDifferential  
FBinputinterfaceselectionfor2.5VLVTTL,1.8VLVTTL,orDifferential  
FBinputinterfaceselectionfor2.5VLVTTL,1.8VLVTTL,orDifferential  
Skew or frequency selection for bank 1  
Skew or frequency selection for bank 1  
Skew or frequency selection for bank 1  
Skew or frequency selection for bank 1  
Skew or frequency selection for bank 1  
Skew or frequency selection for bank 2  
Skew or frequency selection for bank 2  
Skew or frequency selection for bank 2  
NOTE:  
1. Only for EEPROM operation; bit 57 must be set to 0 to enable the PLL for proper EEPROM operation. The EEPROM access times are based on the VCO frequency of the PLL  
(refer to the EEPROM Operation section).  
6
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
JTAG/ I2C SERIAL DESCRIPTION, CONT.  
Bit  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Description  
Skew or frequency selection for bank 2  
Skew or frequency selection for bank 2  
Skew or frequency selection for bank 3  
Skew or frequency selection for bank 3  
Skew or frequency selection for bank 3  
Skew or frequency selection for bank 3  
Skew or frequency selection for bank 3  
Skew or frequency selection for bank 4  
Skew or frequency selection for bank 4  
Skew or frequency selection for bank 4  
Skew or frequency selection for bank 4  
Skew or frequency selection for bank 4  
Skew or frequency selection for bank 5  
Skew or frequency selection for bank 5  
Skew or frequency selection for bank 5  
Skew or frequency selection for bank 5  
Skew or frequency selection for bank 5  
Skew or frequency selection for FB bank  
Skew or frequency selection for FB bank  
Skew or frequency selection for FB bank  
Skew or frequency selection for FB bank  
Skew or frequency selection for FB bank  
8
7
6
5
4
3
2
1
0
JTAG/ I2C SERIAL CONFIGURATIONS:  
POWERDOWN  
JTAG/ I2C SERIAL CONFIGURATIONS:  
OUTPUTENABLE/DISABLE  
PD  
H
Bit 59 (OMODE)  
X(X)  
Output  
NormalOperation  
Tri-Sate  
Bit 59 (OMODE)  
X(X)  
Bit 56-52 (nsOE)  
0 and (L)  
Output  
NormalOperation  
Tri-Sate  
L
0 and (L)  
1 or (H)  
0 and (L)  
1 or (H)  
1 or (H)  
L
Gated(1)  
1 or (H)  
Gated(1)  
NOTE:  
NOTE:  
1. OMODE and its corresponding Bit 59 selects whether the outputs are gated LOW/  
HIGH or tri-stated. When OMODE is HIGH or the corresponding Bit 59 is 1, the outputs'  
disable state will be gated. Bit 58 determines the level at which the outputs stop.  
When Bit 58 is 0/ 1, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the  
QFB is stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding  
Bit 59 is 0, the outputs' disable state will be the tri-state.  
1. OMODE and its corresponding Bit 59 selects whether the outputs are gated LOW/  
HIGH or tri-stated. When OMODE is HIGH or the corresponding Bit 59 is 1, the outputs'  
disable state will be gated. Bit 58 determines the level at which the outputs stop.  
When Bit 58 is 0/ 1, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the  
QFB is stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding  
Bit 59 is 0, the outputs' disable state will be the tri-state.  
JTAG/ I2C SERIAL CONFIGURATIONS:  
OUTPUTDRIVESTRENGTH  
SELECTION(1)  
JTAG/ I2C SERIAL CONFIGURATIONS:  
CLOCKINPUTINTERFACESELEC-  
TION(1)  
Bit 37, 39, 41,  
Bit 36, 38, 40,  
Bit 31, 33, 35  
Bit 30, 32, 34  
Interface  
Differential(2)  
2.5VLVTTL  
1.8VLVTTL  
43, 45, 47  
42, 44, 46  
Interface  
2.5VLVTTL  
1.8VLVTTL  
HSTL/eHSTL  
0
0
1
0
1
1
0
0
1
0
1
0
NOTES:  
1. All other states that are undefined in the table will be reserved.  
2. Differential input interface for HSTL/eHSTL, LVEPECL (2.5V), and 2.5V/1.8V LVTTL.  
NOTE:  
1. All other states that are undefined in the table will be reserved.  
7
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
JTAG/ I2C SERIAL CONFIGURATIONS: SKEW OR FREQUENCY SELECT(1)  
Bit 4, 9, 14,  
19, 24, 29  
Bit 3, 8, 13,  
18, 23, 28  
Bit 2, 7, 12,  
17, 22, 27  
Bit 1, 6, 11,  
16, 21, 26  
Bit 0, 5, 10,  
15, 20, 25  
Output Skew  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
+7tu  
+6tu  
+5tu  
+4tu  
+3tu  
+2tu  
+1tu  
Zero Skew  
-1tu  
-2tu  
-3tu  
-4tu  
-5tu  
-6tu  
-7tu  
Inverted  
Divide-by-2  
Divide-by-4  
NOTE:  
1. All other states that are undefined in the table will result in zero skew.  
JTAG/ I2C SERIAL CONFIGURATIONS: FB DIVIDE-BY-N(1)  
Bit51  
Bit50  
Bit49  
Bit48  
Divide-by-N  
Permitted Output Divide-by-N connected to FB and FB/VREF2 (2)  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
2
1, 2, 4  
1, 2  
1
3
4
1, 2  
1, 2  
1, 2  
1
5
6
8
10  
12  
1
1
NOTES:  
1. All other states that are undefined in the table will be reserved.  
2. Permissible output division ratios connected to FB and FB/VREF2. The frequencies of the REF[1:0] and REF [1:0]/VREF[1:0] inputs will be Fvco/N when the parts are  
configured for frequency multiplication by using an undivided output for FB and FB/VREF2 and setting N (N = 1-6, 8, 10, 12).  
JTAG/ I2C SERIAL CONFIGURATIONS:  
VCOFREQUENCYSELECT  
Bit60  
Min.  
Max.  
0
1
50Mhz  
100MHz  
125MHz  
250Mhz  
8
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
PROGRAMMABLESKEW  
Output skew with respect to the REF[1:0] and REF[1:0]/VREF[1:0] input is adjustable to compensate for PCB trace delays, backplane propagation  
delays or to accommodate requirements for special timing relationships between clocked components. Skew is selectable as a multiple of a time unit  
(tU) which ranges from 250ps to 1.25ns (see Programmable Skew Range and Resolution Table). There are 18 skew/divide configurations  
available for each output pair. These configurations are chosen through JTAG/I2C programming.  
PROGRAMMABLESKEWRANGEANDRESOLUTIONTABLE  
Bit 60 = 0  
Bit 60 = 1  
1/(16 x FNOM)  
100 to 250MHz  
Comments  
TimingUnitCalculation(tU)  
VCOFrequencyRange(FNOM)(1,2)  
SkewAdjustmentRange(3)  
MaxAdjustment:  
1/(16 x FNOM)  
50 to 125MHz  
±8.75ns  
±157.5°  
±43.75%  
tU = 1.25ns  
tU =0.833ns  
tU =0.625ns  
±4.375ns  
±157.5°  
±43.75%  
ns  
PhaseDegrees  
% of Cycle Time  
Example 1, FNOM = 50MHz  
Example 2, FNOM = 75MHz  
Example 3, FNOM = 100MHz  
Example 4, FNOM = 150MHz  
Example 5, FNOM = 200MHz  
Example 6, FNOM = 250MHz  
tU =0.625ns  
tU =0.417ns  
tU =0.313ns  
tU = 0.25ns  
NOTES:  
1. The device may be operated outside recommended frequency ranges without damage, but functional operation is not guaranteed.  
2. The VCO frequency always appears at nQ[1:0] outputs when they are operated in their undivided modes. The frequency appearing at the REF[1:0] and REF[1:0]/VREF[1:0] and  
FB and FB/VREF2 inputs will be FNOM when the QFB and QFB are undivided and FB divide-by-1. The frequency of the REF[1:0] and REF[1:0]/VREF[1:0] and FB and FB/VREF2  
inputs will be FNOM /2 or FNOM /4 when the part is configured for frequency multiplication by using a divided QFB and QFB and setting FB divide-by-1. Using the FB divide-  
by-N configuration inputs allows a different method for frequency multiplication (see JTAG/I2C Serial Configurations: FB Divide-by-N).  
3. Skew adjustment range assumes that a zero skew output is used for feedback. If a skewed QFB and QFB output is used for feedback, then adjustment range will be greater.  
For example if a 4tU skewed output is used for feedback, all other outputs will be skewed –4tU in addition to whatever skew value is programmed for those outputs. ‘Max adjustment’  
range applies to all output pairs where ±7tU skew adjustment is possible and at the lowest FNOM value.  
INPUT/OUTPUTSELECTION(1)  
EXTERNALDIFFERENTIALFEEDBACK  
Input  
Output(2)  
By providing a dedicated external differential feedback, the IDT5T9890  
gives users flexibility with regard to divide selection. The FB and FB/  
VREF2 signals are compared with the input REF[1:0] and REF[1:0]/VREF[1:0]  
signals at the phase detector in order to drive the VCO. Phase differ-  
ences cause the VCO of the PLL to adjust upwards or downwards  
accordingly.  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
2.5VLVTTL,  
1.8VLVTTL,  
HSTL,  
eHSTL  
An internal loop filter moderates the response of the VCO to the  
phase detector. The loop filter transfer function has been chosen to  
provide minimal jitter (or frequency variation) while still providing accu-  
rate responses to input frequency changes.  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
MASTERRESETFUNCTIONALITY  
HSTL DIF  
The IDT5T9890 performs a reset of the internal output divide circuitry  
when all five output banks are disabled by toggling the nSOE pins  
HIGH. When one or more banks of outputs are enabled by toggling the  
nSOE LOW (if the corresponding nSOE programming bits are also set  
LOW), the divide circuitry starts again from a known state. In the case  
that the FB output is selected for divide-by-2 or divide-by-4, the FB  
output will stop toggling while all five nSOE pins and bits are LOW, and  
loss of lock will occur.  
NOTES:  
1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations  
of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require  
the REF[1:0] /VREF[1:0] and FB/VREF2 pins to be left floating. Differential Single-Ended  
(DSE) is for single-ended operation in differential mode, requiring VREF[1:0] and VREF2.  
Differential (DIF) inputs are used only in differential mode.  
2. For each output bank.  
9
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
VIHH  
Parameter  
Test Conditions  
Min.  
Max  
Unit  
V
Input HIGH Voltage Level(1)  
Input MID Voltage Level(1)  
InputLOWVoltageLevel(1)  
3-Level Inputs Only  
3-Level Inputs Only  
3-Level Inputs Only  
VIN = VDD  
VDD – 0.4  
VIMM  
VDD/2 – 0.2 VDD/2 + 0.2  
V
VILL  
0.4  
200  
+50  
V
HIGH Level  
MID Level  
LOW Level  
I3  
3-LevelInputDCCurrent  
(ADDR0, ADDR1)  
VIN = VDD/2  
–50  
–200  
–100  
µA  
µA  
VIN = GND  
IPU  
InputPull-UpCurrent  
VDD = Max., VIN = GND  
NOTE:  
1. These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected inputs to VDD/2. If these inputs are switched dynamically after powerup,  
the function and timing of the outputs may be glitched, and the PLL may require additional tLOCK time before all datasheet limits are achieved.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORHSTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(7)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQN/GND  
VI = GND/VDDQN  
±5  
±5  
µA  
InputLOWCurrent  
VIK  
ClampDiodeVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DCInputVoltage  
- 0.3  
0.2  
V
DCDifferentialVoltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-EndedReferenceVoltage(4,8)  
V
680  
750  
750  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
VOX  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100µA  
IOL = 8mA  
VDDQN - 0.4  
V
V
VDDQN - 0.1  
OutputLOWVoltage  
0.4  
0.1  
IOL = 100µA  
FB/FB Output Crossing Point  
VDDQN/2 - 150 VDDQN/2 VDDQN/2 + 150  
mV  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQN = 1.5V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
10  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
POWERSUPPLYCHARACTERISTICSFORHSTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQN = Max., CL = 0pF  
112  
150  
mA  
IDDQQ  
Quiescent VDDQN Power Supply Current(3)  
3
75  
µA  
IDDPD  
Power Down Current  
0.7  
22  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
30  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQN Power Supply  
CurrentperOutput  
Total Power VDD Supply Current(4,5)  
VDD = Max., VDDQN = Max., CL = 0pF  
18  
30  
µA/MHz  
mA  
VDDQN = 1.5V, FVCO = 100MHz, CL = 15pF  
VDDQN = 1.5V, FVCO = 250MHz, CL = 15pF  
VDDQN = 1.5V, FVCO = 100MHz, CL = 15pF  
VDDQN = 1.5V, FVCO = 250MHz, CL = 15pF  
280  
320  
130  
225  
400  
450  
200  
330  
ITOTQ  
Total Power VDDQN Supply Current(4,5)  
mA  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. Bit 60 = 1.  
5. All outputs are at the same interface level.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
Parameter  
Value  
Units  
InputSignalSwing(1)  
1
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
750  
VTHI  
CrossingPoint  
1
tR, tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
11  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOReHSTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(7)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQN/GND  
VI = GND/VDDQN  
±5  
±5  
µA  
InputLOWCurrent  
VIK  
ClampDiodeVoltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DCInputVoltage  
- 0.3  
0.2  
V
DCDifferentialVoltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-EndedReferenceVoltage(4,8)  
V
800  
900  
900  
1000  
mV  
mV  
mV  
mV  
VREF + 100  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
VOX  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100µA  
IOL = 8mA  
VDDQN - 0.4  
V
V
VDDQN - 0.1  
OutputLOWVoltage  
0.4  
0.1  
V
IOL = 100µA  
V
FB/FBOutput Crossing Point  
VDDQN/2 - 150 VDDQN/2 VDDQN/2 + 150  
mV  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in a differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQN = 1.8V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
12  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
POWERSUPPLYCHARACTERISTICSFOReHSTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQN = Max., CL = 0pF  
112  
150  
mA  
IDDQQ  
Quiescent VDDQN Power Supply Current(3)  
3
75  
µA  
IDDPD  
Power Down Current  
0.7  
22  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
30  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQN Power Supply  
VDD = Max., VDDQN = Max., CL = 0pF  
22  
30  
µA/MHz  
mA  
CurrentperOutput  
Total Power VDD Supply Current(4,5)  
VDDQN = 1.8V, FVCO = 100MHz, CL = 15pF  
VDDQN = 1.8V, FVCO = 250MHz, CL = 15pF  
VDDQN = 1.8V, FVCO = 100MHz, CL = 15pF  
VDDQN = 1.8V, FVCO = 250MHz, CL = 15pF  
280  
320  
160  
280  
400  
450  
250  
400  
ITOTQ  
Total Power VDDQN Supply Current(4,5)  
mA  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. Bit 60 = 1.  
5. All outputs are at the same interface level.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
Parameter  
Value  
Units  
InputSignalSwing(1)  
1
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
900  
VTHI  
CrossingPoint  
1
tR, tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under  
actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
13  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR  
LVEPECL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VDD = 2.3V, IIN = -18mA  
VI = VDDQN/GND  
±5  
±5  
µA  
InputLOWCurrent  
VI = GND/VDDQN  
VIK  
ClampDiodeVoltage  
DCInputVoltage  
DC Common Mode Input Voltage(3,5)  
Single-EndedReferenceVoltage(4,5)  
DC Input HIGH  
- 0.7  
- 1.2  
3.6  
V
VIN  
VCM  
VREF  
VIH  
VIL  
- 0.3  
915  
V
1082  
1082  
1248  
mV  
mV  
mV  
mV  
1275  
555  
1620  
875  
DC Input LOW  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation while in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
DIFFERENTIALINPUTACTESTCONDITIONSFORLVEPECL  
Symbol  
VDIF  
Parameter  
Value  
Units  
mV  
mV  
V
InputSignalSwing(1)  
732  
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
1082  
CrossingPoint  
1
VTHI  
tR, tF  
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC)  
specification under actual use conditions.  
2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
14  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR2.5V  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(8)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
InputLOWCurrent  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQN/GND  
VI = GND/VDDQN  
±5  
±5  
µA  
VIK  
VIN  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
- 0.3  
Single-Ended Inputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.7  
V
V
VIL  
0.7  
DifferentialInputs  
VDIF  
VCM  
VIH  
DCDifferentialVoltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-EndedReferenceVoltage(5,9)  
0.2  
1150  
1350  
V
1250  
1250  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -12mA  
IOH = -100µA  
IOL = 12mA  
IOL = 100µA  
VDDQN - 0.4  
V
V
V
V
VDDQN - 0.1  
OutputLOWVoltage  
0.4  
0.1  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. For 2.5V LVTTL single-ended operation, Bits 35/34, 33/32, 31/30 = 0/1 or 1/0, and REF[1:0]/VREF[1:0] is left floating. If Bits 47 - 36 = 0, FB/VREF2 should be left floating.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQN = VDD, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
15  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
POWERSUPPLYCHARACTERISTICSFOR2.5VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQN = Max., CL = 0pF  
112  
150  
mA  
IDDQQ  
Quiescent VDDQN Power Supply Current(3)  
20  
75  
µA  
IDDPD  
Power Down Current  
0.7  
19  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
30  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQN Power Supply  
CurrentperOutput  
Total Power VDD Supply Current(4,5)  
VDD = Max., VDDQN = Max., CL = 0pF  
32  
40  
µA/MHz  
mA  
VDDQN = 2.5V., FVCO = 100MHz, CL = 15pF  
VDDQN = 2.5V., FVCO = 250MHz, CL = 15pF  
VDDQN = 2.5V., FVCO = 100MHz, CL = 15pF  
VDDQN = 2.5V., FVCO = 250MHz, CL = 15pF  
275  
315  
215  
355  
400  
450  
320  
530  
ITOTQ  
Total Power VDDQN Supply Current(4,5)  
mA  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. Bit 60 = 1.  
5. All outputs are at the same interface level.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL  
Symbol  
VDIF  
Parameter  
Value  
VDD  
Units  
InputSignalSwing(1)  
V
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
VDD/2  
VTHI  
CrossingPoint  
2.5  
V
tR, tF  
V/ns  
NOTES:  
1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF  
(AC) specification under actual use conditions.  
2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL  
Symbol  
VIH  
Parameter  
Value  
VDD  
0
Units  
V
Input HIGH Voltage  
VIL  
InputLOWVoltage  
V
VTHI  
InputTimingMeasurementReferenceLevel(1)  
InputSignalEdgeRate(2)  
VDD/2  
2
V
tR, tF  
V/ns  
NOTES:  
1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
2. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
16  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR1.8V  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(8)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current  
InputLOWCurrent  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.7V  
VDD = 2.7V  
VI = VDDQN/GND  
VI = GND/VDDQN  
±5  
±5  
µA  
VIK  
VIN  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
V
V
- 0.3  
VDDQN + 0.3  
Single-Ended Inputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.073(10)  
0.683(11)  
V
V
VIL  
DifferentialInputs  
VDIF  
VCM  
VIH  
DCDifferentialVoltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-EndedReferenceVoltage(5,9)  
0.2  
825  
975  
V
900  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -6mA  
IOH = -100µA  
IOL = 6mA  
VDDQN - 0.4  
V
V
V
V
VDDQN - 0.1  
OutputLOWVoltage  
0.4  
0.1  
IOL = 100µA  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. For 1.8V LVTTL single-ended operation, Bits 35 - 30 = 0 and REF[1:0]/VREF[1:0] is left floating. If Bits 47/46, 45/44, 43/42, 41/40, 39/38, 37/36 = 0/1, FB/VREF2 should be left floating.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. The input is guaranteed to toggle within ±200mV of VREF[1:0] when VREF[1:0]  
is constrained within +600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the REF[1:0] input. To guarantee switching in voltage range  
specified in the JEDEC 1.8V LVTTL interface specification, VREF[1:0] must be maintained at 900mV with appropriate tolerances.  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQN = 1.8V, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output Selection table.)  
10. This value is the worst case minimum VIH over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIH = 0.65 * VDD where VDD is 1.8V ± 0.15V.  
However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated  
worst case value ( VIH = 0.65 * [1.8 - 0.15V]) rather than reference against a nominal 1.8V supply.  
11. This value is the worst case maximum VIL over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIL = 0.35 * VDD where VDD is 1.8V ± 0.15V.  
However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated  
worst case value ( VIL = 0.35 * [1.8 + 0.15V]) rather than reference against a nominal 1.8V supply.  
17  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
POWERSUPPLYCHARACTERISTICSFOR1.8VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDDQN = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
PLL_EN = HIGH, Outputs enabled, All outputs unloaded  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH  
VDD = Max., VDDQN = Max., CL = 0pF  
112  
150  
mA  
IDDQQ  
Quiescent VDDQN Power Supply Current(3)  
3
75  
µA  
IDDPD  
Power Down Current  
0.7  
18  
3
mA  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
30  
µA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQN Power Supply  
VDD = Max., VDDQN = Max., CL = 0pF  
19  
30  
µA/MHz  
mA  
CurrentperOutput  
Total Power VDD Supply Current(4,5)  
VDDQN = 1.8V., FVCO = 100MHz, CL = 15pF  
VDDQN = 1.8V., FVCO = 250MHz, CL = 15pF  
VDDQN = 1.8V., FVCO = 100MHz, CL = 15pF  
VDDQN = 1.8V., FVCO = 250MHz, CL = 15pF  
275  
310  
135  
200  
400  
450  
200  
300  
ITOTQ  
Total Power VDDQN Supply Current(4,5)  
mA  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. Bit 60 = 1.  
5. All outputs are at the same interface level.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL  
Symbol  
VDIF  
Parameter  
Value  
VDDI  
Units  
InputSignalSwing(1)  
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
VDDI/2  
VTHI  
CrossingPoint  
1.8  
tR, tF  
V/ns  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable  
results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.  
2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL  
Symbol  
VIH  
Parameter  
Value  
VDDI  
0
Units  
V
Input HIGH Voltage(1)  
VIL  
InputLOWVoltage  
V
VTHI  
InputTimingMeasurementReferenceLevel(2)  
InputSignalEdgeRate(3)  
VDDI/2  
2
mV  
V/ns  
tR, tF  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input.  
2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
18  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Alloutputsatthesameinterfacelevel  
Symbol  
FNOM  
tRPW  
Parameter  
Min.  
Typ.  
Max  
Unit  
VCO Frequency Range  
see JTAG/I2C Serial Configurations: VCO Frequency Range table  
Reference Clock Pulse Width HIGH or LOW  
Feedback Input Pulse Width HIGH or LOW  
Output Matched Pair Skew(1,2,4)  
OutputSkew(Rise-Rise,Fall-Fall,Nominal)(1,3)  
MultipleFrequencySkew(Rise-Rise,Fall-Fall,Nominal-Divided,Divided-Divided)(1,3,4)  
MultipleFrequencySkew(Rise-Fall,Nominal-Divided,Divided-Divided)(1,3,4)  
InvertingSkew(Nominal-Inverted)(1,3)  
InvertingSkew(Rise-Rise,Fall-Fall,Rise-Fall,Inverted-Divided)(1,3,4)  
Process Skew(1,3.5)  
REF Input to FB Static Phase Offset(6)  
1
1
50  
ns  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tFPW  
tSK(B)  
-100  
-375  
-275  
50  
tSK(O)  
100  
100  
400  
400  
400  
300  
100  
375  
275  
1.2  
1
tSK1(ω)  
tSK2(ω)  
tSK1(INV)  
tSK2(INV)  
tSK(PR)  
t(φ)  
tODCV  
Output Duty Cycle Variation from 50%(7)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
tORISE  
tOFALL  
OutputRiseTime(8)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
ns  
ns  
OutputFallTime(8)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
1.2  
1
tL  
Power-upPLLLockTime(9)  
PLLLockTimeAfterInputFrequencyChange(9)  
PLL Lock Time After Change in REF_SEL (9,11)  
PLLLockTimeAfterChangeinREF_SEL(REF1 andREF0aredifferentfrequency)(9)  
PLL Lock Time After Asserting PD Pin(9)  
Cycle-to-CycleOutputJitter(peak-to-peak)(10)  
PeriodJitter(peak-to-peak)(10)  
4
ms  
ms  
µs  
ms  
ms  
ps  
tL(ω)  
1
tL(REFSEL1)  
tL(REFSEL2)  
tL(PD)  
100  
1
1
tJIT(CC)  
tJIT(PER)  
75  
75  
ps  
tJIT(HP)  
tJIT(DUTY)  
VOX  
Half Period Jitter (peak-to-peak, QFB/QFB only)(10, 12)  
DutyCycleJitter(peak-to-peak)(10)  
125  
100  
ps  
ps  
HSTLandeHSTLDifferentialTrueandComplementaryOutputCrossingVoltageLevel  
QFB/QFB only(12)  
VDDQN/2 - 150 VDDQN/2 VDDQN/2 + 150 mV  
NOTES:  
1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.  
2. tSK(B) is the skew between a pair of outputs (nQ0 and nQ1) when all outputs are selected as the same class.  
3. The measurement is made at VDDQN/2.  
4. There are three classes of outputs: nominal (multiple of tU), inverted, and divided (divide-by-2 or divide-by-4 mode).  
5. tSK(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQN, ambient temperature, air flow, etc.).  
6. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For 1.8V / 2.5V LVTTL input and output, the measurement is taken from VTHI on REF  
to VTHI on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to 0tU, FB input  
divider set to divide-by-one, and Bit 60 = 1.  
7. tODCV is measured with all outputs selected for 0tU.  
8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.  
9. tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDQN is stable and  
within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified  
limits.  
10. The jitter parameters are measured with all outputs selected for 0tU, FB input divider is set to divide-by-one, and Bit 60 = 1.  
11. Both REF inputs must be the same frequency, but up to ±180° out of phase.  
12. For HSTL/eHSTL outputs only.  
19  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Alloutputsatthedifferentinterfacelevels  
Symbol  
FNOM  
tRPW  
Parameter  
Min.  
Typ.  
Max  
Unit  
VCO Frequency Range  
see JTAG/I2C Serial Configurations: VCO Frequency Range table  
Reference Clock Pulse Width HIGH or LOW  
Feedback Input Pulse Width HIGH or LOW  
Output Matched Pair Skew(1,2,4)  
OutputSkew(Rise-Rise,Fall-Fall,Nominal)(1,3)  
MultipleFrequencySkew(Rise-Rise,Fall-Fall,Nominal-Divided,Divided-Divided)(1,3,4)  
MultipleFrequencySkew(Rise-Fall,Nominal-Divided,Divided-Divided)(1,3,4)  
InvertingSkew(Nominal-Inverted)(1,3)  
InvertingSkew(Rise-Rise,Fall-Fall,Rise-Fall,Inverted-Divided)(1,3,4)  
Process Skew(1,3.5)  
REF Input to FB Static Phase Offset(6)  
1
1
ns  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tFPW  
tSK(B)  
-200  
-475  
-375  
200  
250  
500  
500  
500  
500  
400  
200  
475  
375  
1.2  
1
tSK(O)  
tSK1(ω)  
tSK2(ω)  
tSK1(INV)  
tSK2(INV)  
tSK(PR)  
t(φ)  
tODCV  
Output Duty Cycle Variation from 50%(7)  
OutputRiseTime(8)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
tORISE  
tOFALL  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
ns  
ns  
OutputFallTime(8)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
1.2  
1
tL  
Power-upPLLLockTime(9)  
PLLLockTimeAfterInputFrequencyChange(9)  
PLL Lock Time After Change in REF_SEL (9,11)  
PLLLockTimeAfterChangeinREF_SEL(REF1 andREF0 aredifferentfrequency)(9)  
PLL Lock Time After Asserting PD Pin(9)  
Cycle-to-CycleOutputJitter(peak-to-peak)(10)  
PeriodJitter(peak-to-peak)(10)  
4
ms  
ms  
µs  
ms  
ms  
ps  
tL(ω)  
1
tL(REFSEL1)  
tL(REFSEL2)  
tL(PD)  
100  
1
1
tJIT(CC)  
tJIT(PER)  
100  
150  
200  
150  
ps  
tJIT(HP)  
tJIT(DUTY)  
VOX  
Half Period Jitter (peak-to-peak, QFB/QFB only)(10, 12)  
DutyCycleJitter(peak-to-peak)(10)  
ps  
ps  
HSTLandeHSTLDifferentialTrueandComplementaryOutputCrossingVoltageLevel  
QFB/QFB only(12)  
VDDQN/2 - 150 VDDQN/2 VDDQN/2 + 150 mV  
NOTES:  
1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.  
2. tSK(B) is the skew between a pair of outputs (nQ0 and nQ1) when all outputs are selected as the same class.  
3. The measurement is made at VDDQN/2.  
4. There are three classes of outputs: nominal (multiple of tU), inverted, and divided (divide-by-2 or divide-by-4 mode).  
5. tSK(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQN, ambient temperature, air flow, etc.).  
6. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For 1.8V / 2.5V LVTTL input and output, the measurement is taken from VTHI on REF  
to VTHI on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to 0tU, FB input  
divider set to divide-by-one, and Bit 60 = 1.  
7. tODCV is measured with all outputs selected for 0tU.  
8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.  
9. tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDQN is stable and  
within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified  
limits.  
10. The jitter parameters are measured with all outputs selected for 0tU, FB input divider is set to divide-by-one, and Bit 60 = 1.  
11. Both REF inputs must be the same frequency, but up to ±180° out of phase.  
12. For HSTL/eHSTL outputs only.  
20  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
t W  
Reference/FeedbackInputClockPulseWidthHIGHorLOW(HSTL/eHSTLoutputs)(2)  
Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)(2)  
1
1
ns  
HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL  
VDIF  
VIH  
ACDifferentialVoltage(3)  
AC Input HIGH(4,5)  
AC Input LOW(4,6)  
400  
Vx + 200  
mV  
mV  
mV  
VIL  
Vx - 200  
LVEPECL  
VDIF  
ACDifferentialVoltage(3)  
AC Input HIGH(4)  
AC Input LOW(4)  
400  
1275  
mV  
mV  
mV  
VIH  
VIL  
875  
NOTES:  
1. For differential input mode, Bits 35 - 30 = 1.  
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined  
by VDIF has been met or exceeded.  
3. Differential mode only. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level.  
The AC differential voltage must be achieved to guarantee switching to a new state.  
4. For single-ended operation, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. Refer to each input interface's DC specification for the correct VREF[1:0] range.  
5. Voltage required to switch to a logic HIGH, single-ended operation only.  
6. Voltage required to switch to a logic LOW, single-ended operation only.  
21  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
AC TIMING DIAGRAM(1)  
tRPWL  
tRPWH  
REF  
REF  
tFPWH  
tFPWL  
tODCV  
tODCV  
tODCV  
tODCV  
FB  
FB  
Q
tSK(O),  
tSK(B)  
tSK(O),  
tSK(B)  
OTHER Q  
INVERTED Q  
tSK1(INV)  
tSK1(INV)  
tSK2(ω),  
tSK2(INV)  
tSK2(INV)  
tSK2(ω)  
tSK1(ω)  
Q DIVIDED BY 2  
Q DIVIDED BY 4  
tSK1(ω),  
tSK2(INV)  
NOTE:  
1. The AC TIMING DIAGRAM applies to Bit 58 = 1. For Bit 58 = 0, the negative edge of FB aligns with the negative edge of REF[1:0], divided outputs change on the negative  
edge of REF[1:0], and the positive edges of the divide-by-2 and divide-by-4 signals align.  
22  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
JITTERANDOFFSETTIMINGWAVEFORMS  
QFB  
nQ[1:0], QFB  
tcycle n  
tcycle n + 1  
=
tjit(cc) tcycle n tcycle n+1  
Cycle-to-Cycle jitter  
REF[1:0]  
REF[1:0]  
FB  
FB  
t(Ø)n + 1  
t(Ø)n  
n = N  
1
t(Ø)n  
=
t(Ø)  
Static Phase Offset  
(N is a large number of samples)  
N
NOTE:  
1. Diagram for Bit 58 = 1 and HSTL / eHSTL input and output.  
QFB  
nQ[1:0], QFB  
tW(MIN)  
tW(MAX)  
tJIT(DUTY) = tW(MAX) - tW(MIN)  
Duty-Cycle Jitter  
23  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
QFB  
nQ[1:0], QFB  
tcycle n  
QFB  
nQ[1:0], QFB  
1
f
o
1
f
=
tjit(per) tcycle n  
o
Period jitter  
NOTE:  
1. 1/fo = average period.  
QFB  
QFB  
thalf period n+1  
thalf period n  
QFB  
QFB  
1
f
o
1
2*f  
=
tjit(hper) thalf period n  
o
Half-Period jitter  
NOTE:  
1. 1/fo = average period.  
24  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
TESTCIRCUITSANDCONDITIONS  
VDDI  
R1  
R2  
3 inch, ~50  
Transmission Line  
VIN  
VDDQN  
VDD  
VDDI  
REF[1:0]  
D.U.T.  
Pulse  
Generator  
R1  
R2  
REF[1:0]  
3 inch, ~50Ω  
Transmission Line  
VIN  
Test Circuit for Differential Input(1)  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
R1  
100  
100  
R2  
VDDI  
VCM*2  
V
HSTL: Crossing of REF[1:0] and REF[1:0]  
eHSTL: Crossing of REF[1:0] and REF[1:0]  
LVEPECL: Crossing of REF[1:0] and REF[1:0]  
1.8V LVTTL: VDDI/2  
VTHI  
V
2.5V LVTTL: VDD/2  
NOTE:  
1. This input configuration is used for all input interfaces. For single-ended testing,  
the REF[1:0] must be left floating. For testing single-ended in differential input  
mode, the VIN should be floating.  
25  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
VDDQN  
VDDQN  
R1  
VDDQN  
VDD  
VDDQN  
VDD  
R1  
R2  
REF[1:0]  
R2  
CL  
REF[1:0]  
nQ[1:0]  
VDDQN  
QFB  
D.U.T.  
D.U.T.  
FB  
FB  
QFB  
R1  
CL  
QFB  
FB  
FB  
QFB  
R2  
CL  
SW1  
SW1  
Test Circuit for Differential Outputs  
Test Circuit for Differential Feedback  
DIFFERENTIALFEEDBACKTEST  
CONDITIONS  
OUTPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
VDDQN = Interface Specified  
15  
Unit  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
VDDQN = Interface Specified  
CL  
R1  
pF  
V
CL  
R1  
15  
100  
pF  
100  
R2  
100  
R2  
100  
VOX  
HSTL: Crossing of QFB and QFB  
eHSTL: Crossing of QFB and QFB  
1.8V LVTTL: VDDQN/2  
2.5V LVTTL: VDDQN/2  
1.8V/2.5V LVTTL  
HSTL/eHSTL  
VTHO  
SW1  
VDDQN/2  
V
1.8V/2.5V LVTTL  
HSTL/eHSTL  
Open  
Closed  
VTHO  
V
SW1  
Open  
Closed  
26  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
I2CSERIALINTERFACECONTROL  
The I2C interface permits the configuration of the IDT5T9890. The  
IDT5T9890isaread/writeslavedevicemeetingPhilipsI2Cbusspecifications.  
The I2C bus is controlled by a master device that generates the serial clock  
SCLK,controlsbusaccess,andgeneratestheSTARTandSTOPconditions  
while the device works as a slave. Both master and slave can operate as a  
transmitter and receiver but the master device determines which mode is  
activated.  
I2CADDRESS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
1
0
1
X
X
X
AddressA0istheread/writebitandissetto0forwritesand1forreads.  
The ADDR0 and ADDR1 tri-level pins allow the last three bits of the 7-bit  
address to be defined by the user.  
BUS CONDITIONS  
ADDR1  
LOW  
LOW  
LOW  
MID  
ADDR0  
LOW  
MID  
A3  
0
A2  
0
A1  
0
Datatransferonthebuscanonlybeinitiatedwhenthebusisnotbusy. During  
datatransfer,thedataline(SDA)mustremainstablewhenevertheclockline  
(SCLK) is high. Changes in the data line while the clock line is high will be  
interpretedbythedeviceasaSTARTorSTOPcondition. Thefollowingbus  
conditions are defined by the I2C bus protocol and are illustrated in figure 1.  
0
0
1
HIGH  
LOW  
MID  
0
1
0
0
1
1
MID  
1
0
0
NOT BUSY  
MID  
HIGH  
LOW  
MID  
1
0
1
Boththedata(SDA)andclock(SCLK)linesremainhightoindicatethebus  
is not busy.  
HIGH  
HIGH  
HIGH  
1
1
0
1
1
1
HIGH  
1
1
0
STARTDATATRANSFER  
AhightolowtransitionoftheSDAlinewhiletheSCLKinputishighindicates  
aSTARTcondition. AllcommandstothedevicemustbeprecededbyaSTART  
condition.  
WRITE OPERATION  
(see I2C Interface Definition for ProgWrite)  
Toinitiateawriteoperation(ProgWrite),theread/writebitissetto0’. During  
thewriteoperation,thefirsttwobytestransferredmustbetheDeviceAddress  
followedbytheCommandCode. Theinternalprogrammingregistersofthe  
deviceignorethesefirsttwobytes. ThesubsequentbytesaretheDataBytes,  
whichtotaltwelve. AlltwelveDataBytesmustbewrittenintothedeviceduring  
the write operation in order for the internal programming registers to be  
updated. IfaSTOPconditionisgeneratedbeforethe12th DataByte,theinternal  
programming registers will remain unchanged to prevent an invalid PLL  
configuration. AnAcknowledgebythedevicebetweeneachbytemustoccur  
before the next byte is sent. After the transfer of the 12th Data Byte, an  
Acknowledgesignalwillbesenttothebusmasterafterwhichitwillgenerate  
a STOP condition. Once the STOP condition has occurred, the internal  
programmingregistersofthedevicewillbeupdated.  
STOPDATATRANSFER  
AlowtohightransitionoftheSDAlinewhileSCLKisheldhighindicatesa  
STOP condition. All commands to the device must be followed by a STOP  
condition.  
DATAVALID  
ThestateoftheSDAlinerepresentsvaliddataiftheSDAlineisstablefor  
thedurationofthehighperiodoftheSCLKlineafteraSTARTconditionoccurs.  
The data on the SDA line must be changed only during the low period of the  
SCLKsignal. Thereisoneclockpulseperdatabit. Eachdatatransferisinitiated  
by a START condition and terminated with a STOP condition.  
ACKNOWLEDGE  
READOPERATION  
When addressed, the receiving device is required to generate an  
Acknowledgeaftereachbyteisreceived. Themasterdevicemustgenerate  
anextraclockpulsetocoincidewiththeAcknowledgebit. Theacknowledging  
device must pull the SDA line low during the high period of the master  
acknowledgeclockpulse. Setupandholdtimesmustbetakenintoaccount.  
(see I2C Interface Definition for ProgRead)  
Toinitiateareadoperation(ProgRead),theread/writebitissetto1’. During  
thereadoperation,therewillbeatotaloffourteendatabytesreturnedfollowing  
anAcknowledgeofthedeviceaddress. ThefirsttwodatabytesaretheIDByte  
andaReservedByte,inthatorder. Thesubsequentbytesarethesametwelve  
Data Bytes that were written during the write operation. The read back can  
I2C BUS OPERATION  
TheIDT5T9890I2CinterfacesupportsStandard-Mode(100kHz)andFast-  
Mode(400kHz)datatransferrates. Dataistransferredinbytesinsequential  
orderfromthelowesttohighestbyte. AftergeneratingaSTARTcondition,the  
bus master broadcasts a 7-bit slave address followed by a read/write bit.  
beterminatedatanytimebyissuingaSTOPcondition.  
I2C ID BYTE  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
0
0
0
0
0
1
1
0
27  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
EEPROMOPERATION  
(see I2C Interface Definition for the EEPROM instructions)  
TheIDT5T9890canalsostoreitsconfigurationininternalEEPROM. Thecontentsofthedevice’sinternalprogrammingregisterscanbesavedtotheEEPROM  
by issuing a save instruction (ProgSave) and can be loaded back to the internal programming registers by issuing a restore instruction (ProgRestore). To  
initiateasaveorrestore,onlytwobytesaretransferred. TheDeviceAddressisissuedwiththeread/writebitsetto0followedbytheappropriateCommand  
Code. ThesaveorrestoreinstructionexecutesaftertheSTOPconditionisreceived,duringwhichtimetheIDT5T9890willnotgenerateAcknowledgebits.  
ThedeviceisreadytoacceptanewprogramminginstructiononceitAcknowledgesits7-bitaddress. Thetimeittakesforthesaveandrestoreinstructions  
to complete depends on the PLL oscillator frequency, FVCO. The restore time, TRESTORE, and the save time, TSAVE, can be calculated as follows:  
TRESTORE = 1.23X109/FVCO  
(mS)  
TSAVE  
9 FVCO + 52  
(mS)  
= 3.09X10 /  
Inorderforthesaveandrestoreinstructionstofunctionproperly,theIDT5T9890mustnotbeinpower-downmode(PDmustbeHIGH),andthePLLmust  
be enabled (PLL_EN must be LOW and Bit 57 = 0).  
Onpower-upoftheIDT5T9890,anautomaticrestoreisperformedtoloadtheEEPROMcontentsintotheinternalprogrammingregisters. Theauto-restore  
will not function properly if the device is in power-down mode (PDmust be HIGH). The device’s auto-restore feature will function regardless of the state of  
the PLL_EN pin or Bit 57. The IDT5T9890 will be ready to accept a programming instruction once it acknowledges its 7-bit I2C address. The time it takes  
forthedevicetocompletetheauto-restoreisapproximately3ms.  
PROGRAMMINGNOTES  
OncetheIDT5T9890hasbeenprogrammedeitherwithaProgWriteorProgRestoreinstruction,thedevicewillattempttoachievephaselockusingthenew  
PLLconfiguration. IfthereisavalidREFandFBinputclockconnectedtothedeviceanditdoesnotachievelock,theusershouldissueaProgReadinstruction  
toconfirmthatthePLLconfigurationdataisvalid.  
Onpower-upandbeforetheautomaticProgRestoreinstructionhascompleted,theinternalprogrammingregisterswillcontainthevalueof0forallbits95:0.  
ThePLLwillremainattheminimumfrequencyandwillnotachievephaselockuntilaftertheautomaticrestoreiscompleted. Iftheoutputsareenabledbythe  
nSOEpins,theoutputswilltoggleattheminimumfrequency. IftheoutputsaredisabledbythenSOEpinsandtheOMODEpinissetHIGH,thenQ[1:0]and  
QFB are stopped HIGH, while QFB is stopped LOW.  
SCLK  
tSU:START  
tHD:START  
tSU:STOP  
SDA  
Address or data  
valid  
Data can  
change  
START  
STOP  
tR  
tF  
tHIGH  
tLOW  
SCLK  
tHD:START  
tHD:DATA  
tSU:DATA  
tSU:START  
tSU:STOP  
SDA IN  
tBUF  
tOVD  
tOVD  
SDA OUT  
Figure 1: I2C Timing Data  
28  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
I2CINTERFACEDEFINITION  
Device Address  
Command Code  
8'bxxxxxx00  
Data  
W
0
ProgWrite  
S
7'b1101xxx  
A
A
Data Byte 1 (Bits 95 - 88) A . . .  
Data Byte 2  
Data Byte 3  
A
A
A
A
A
A
A
A
A
A
A
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
P
M
S
B
L
S
B
M
S
B
L
S
B
Data Byte 4  
Data Byte 5  
Data Byte 6  
ID Byte:  
ID  
00000110  
Data Byte 7  
Part #  
5T9890  
Data Byte 8  
Data Byte 9  
Data Byte 10  
Data Byte 11  
Data Byte 12 (Bits 7 - 0)  
Device Address  
7'b1101xxx  
R
1
ID Byte  
A
ProgRead  
S
8'b00000110  
A
A
. . .  
. . .  
Reserved Byte  
Data Byte 1 (Bits 95 - 88) A . . .  
Data Byte 2  
Data Byte 3  
A
A
A
A
A
A
A
A
A
A
A
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  
P
Data Byte 4  
Data Byte 5  
Data Byte 6  
Data Byte 7  
Data Byte 8  
Data Byte 9  
Data Byte 10  
Data Byte 11  
Data Byte 12 (Bits 7 - 0)  
Device Address  
7'b1101xxx  
W
0
Command Code  
8'bxxxxxx01  
ProgSave  
S
S
A
A
A
P
Device Address  
7'b1101xxx  
W
0
Command Code  
8'bxxxxxx10  
ProgRestore  
A
P
29  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
I2C BUS DC CHARACTERISTICS  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
Input HIGH Level  
InputLOWLevel  
Hysteresis of Inputs  
InputLeakageCurrent  
OutputLOWVoltage  
0.7 * VDD  
VIL  
0.3 * VDD  
V
VHYS  
IIN  
0.05 * VDD  
V
±1.0  
0.4  
µA  
V
VOL  
IOL = 3 mA  
I2C BUS AC CHARACTERISTICS FOR STANDARD MODE  
Symbol  
FSCLK  
tBUF  
Parameter  
Min  
0
Typ  
Max  
Unit  
KHz  
µs  
µs  
µs  
ns  
Serial Clock Frequency (SCLK)  
Bus free time between STOP and START  
SetupTime,START  
100  
4.7  
4.7  
4
tSU:START  
tHD:START  
tSU:DATA  
tHD:DATA  
tOVD  
HoldTime, START  
SetupTime, datainput(SDA)  
Hold Time, data input (SDA)(1)  
Outputdatavalidfromclock  
Capacitive Load for Each Bus Line  
Rise Time, data and clock (SDA, SCLK)  
Fall Time, data and clock (SDA, SCLK)  
HIGH Time, clock (SCLK)  
LOW Time, clock (SCLK)  
SetupTime, STOP  
250  
0
µs  
µs  
pF  
3.45  
400  
CB  
tR  
1000  
300  
ns  
tF  
ns  
tHIGH  
4
4.7  
4
µs  
µs  
µs  
tLOW  
tSU:STOP  
NOTE:  
1. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIHMIN of the SCLK signal) to bridge the undefined region of the falling edge of  
SCLK.  
I2C BUS AC CHARACTERISTICS FOR FAST MODE  
Symbol  
FSCLK  
tBUF  
Parameter  
Min  
0
Typ  
Max  
Unit  
KHz  
µs  
µs  
µs  
ns  
Serial Clock Frequency (SCLK)  
Bus free time between STOP and START  
SetupTime,START  
400  
1.3  
0.6  
0.6  
100  
0
tSU:START  
tHD:START  
tSU:DATA  
tHD:DATA  
tOVD  
HoldTime, START  
SetupTime, datainput(SDA)  
Hold Time, data input (SDA)(1)  
Outputdatavalidfromclock  
Capacitive Load for Each Bus Line  
Rise Time, data and clock (SDA, SCLK)  
Fall Time, data and clock (SDA, SCLK)  
HIGH Time, clock (SCLK)  
LOW Time, clock (SCLK)  
SetupTime, STOP  
µs  
µs  
pF  
0.9  
400  
300  
300  
CB  
tR  
20 + 0.1 * CB  
ns  
tF  
20 + 0.1 * CB  
ns  
tHIGH  
0.6  
1.3  
0.6  
µs  
µs  
µs  
tLOW  
tSU:STOP  
NOTE:  
1. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIHMIN of the SCLK signal) to bridge the undefined region of the falling edge of  
SCLK.  
30  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
JTAGINTERFACE  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
Test Access Port (TAP)  
TAP controller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCLK and TRST) are provided to  
supporttheJTAGboundaryscaninterface.TheIDT5T9890 incorporatesthe  
necessarytapcontrollerandmodifiedpadcellstoimplementtheJTAGfacility.  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The following sections provide a brief description of each element. For a  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
MUX  
Device ID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
TAP  
TMS  
clkDR, ShiftDR  
TAP  
Controller  
UpdateDR  
TCLK  
TRST  
Instruction Decode  
clkLR, ShiftLR  
UpdateLR  
Instruction Register  
Control Signals  
Boundary Scan Architecture  
TEST ACCESS PORT (TAP)  
THETAPCONTROLLER  
The Tap interface is a general-purpose port that provides access to the  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
internaloftheprocessor.Itconsistsoffourinputports(TCLK,TMS,TDI,TRST) TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
and one output port (TDO). and Data Registers for capture and update of data.  
31  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Exit1-DR  
Exit1-IR  
0
0
Pause-DR  
Pause-IR  
1
1
0
0
Exit2-DR  
Exit2-IR  
1
1
Update-DR  
Update-IR  
0
1
1
0
TAP Controller State Diagram  
NOTES:  
1. Five consecutive TCLK cycles with TMS = 1 will reset the TAP.  
2. TAP controller must be reset before normal PLL operations can begin.  
RefertotheIEEEStandardTestAccessPortSpecification(IEEEStd.1149.1)  
forthefullstatediagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
Register parallel loads a pattern of fixed values on the rising edge of TCLK.  
All state transitions within the TAP controller occur at the rising edge of The last two significant bits are always required to be “01”.  
theTCLKpulse.TheTMSsignallevel(0or1)determinesthestateprogression Shift-IR In this controller state, the instruction register gets connected  
thatoccursoneachTCLKrisingedge.TheTAPcontrollertakesprecedence betweenTDIandTDO, andthecapturedpatterngetsshiftedoneachrising  
over the PLL and must be reset after power up of the device. See TRST edgeofTCLK.TheinstructionavailableontheTDIpinisalsoshiftedintothe  
descriptionformoredetailsonTAPcontrollerreset.  
instructionregister.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned IRstateorUpdate-IRstateismade.  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Pause-IRThisstateisprovidedinordertoallowtheshiftingofinstruction  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCLK registertobetemporarilyhalted.  
five times. This is the reason why the Test Reset (TRST) pin is optional.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
Run-Test-IdleInthiscontrollerstate, thetestlogicintheICisactiveonly IRstateorUpdate-IRstateismade.  
ifcertaininstructionsarepresent.Forexample,ifaninstructionactivatesthe  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregister  
selftest,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetest islatchedintothelatchbankoftheInstructionRegisteroneveryfallingedge  
logic in the IC is idles otherwise.  
Select-DR-ScanThisisacontrollerstatewherethedecisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
ofTCLK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registers selected by the current instruction on the rising edge of TCLK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade. TheControllercanreturntotheTest-Logic-Reset controllerstatesaresimilartotheShift-IR,Exit1-IR,Pause-IR,Exit2-IRand  
stateotherwise. Update-IRstatesintheInstructionpath.  
32  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
THE INSTRUCTION REGISTER  
path. Whenthebypassregisterisselectedbyaninstruction,theshiftregister  
stageissettoalogiczeroontherisingedgeofTCLKwhentheTAPcontroller  
isintheCapture-DRstate.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
The Instruction is used to select the test to be performed, or the test data  
register to be accessed, or both. The instruction shifted into the register is  
latchedatthecompletionoftheshiftingprocesswhentheTAPcontrollerisat  
Update-IRstate.  
THE BOUNDARY-SCAN REGISTER  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata.Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports.TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
TESTDATAREGISTER  
THE DEVICE IDENTIFICATION REGISTER  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
The following sections provide a brief description of each element. For a  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
The Device Identification Register is a Read Only 32-bit register used to  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDTJEDECIDnumberis0xB3. Thistranslatesto0x33whentheparityis  
dropped in the 11-bit Manufacturer ID field.  
For the IDT5T9890, the Part Number field is 0x3A8.  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO.Itcontainsasinglestageshiftregisterforaminimumlengthinserial  
JTAGDEVICEIDENTIFICATION  
REGISTER  
31 (MSB)  
28 27  
Partnumber  
(16-bit)  
12 11  
ManufacturerID  
(11-bit)0X33  
1 0(LSB)  
Version(4bits)  
0X0  
1
JTAGINSTRUCTIONREGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate.Theinstructionisdecodedto  
performthefollowing:  
Selecttestdataregistersthatmayoperatewhiletheinstructioniscurrent.  
Theothertestdataregistersshouldnotinterferewithchipoperationandthe  
selecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
The Instruction Register is a 4-bit field (i.e.IR3, IR2, IR1, IR0) to decode  
sixteendifferentpossibleinstructions.Instructionsaredecodedasfollows.  
JTAGINSTRUCTIONREGISTERDECODING  
IR (3)  
IR (2)  
IR (1)  
IR (0)  
Instruction  
Function  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
X
0
1
0
1
0
1
0
1
0
1
X
X
EXTEST  
Selectboundaryscanregister  
Selectboundaryscanregister  
SAMPLE/PRELOAD  
IDCODE  
Selectchipidentificationdataregister  
Reserved  
PROGWRITE  
PROGREAD  
PROGSAVE  
PROGRESTORE  
CLAMP  
Writingtothevolatileprogrammingregisters  
Readingfromthevolatileprogrammingregisters  
SavingthecontentsofthevolatileprogrammingregisterstotheEEPROM  
LoadingtheEEPROMcontentsintothevolatileprogrammingregisters  
JTAG  
HIGHZ  
JTAG  
BYPASS  
Selectbypassregister  
Selectbypassregister  
BYPASS  
33  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction.Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
ThePROGRESTOREinstructionisforloadingtheIDT5T9890configuration  
datafromtheEEPROMtothedevice’svolatileprogrammingregisters. This  
instructionselectstheBYPASSregisterpathforshiftingdatafromTDItoTDO  
duringdataregisterscanning.  
EXTEST  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetween  
TDIandTDO. Duringthisinstruction,theboundary-scanregisterisaccessed  
todrivetestdataoff-chipthroughtheboundaryoutputs,andrecievetestdata  
off-chipthroughtheboundaryinputs. Assuch,theEXTESTinstructionisthe  
workhorseofIEEE.Std1149.1,providingforprobe-lesstestingofsolder-joint  
opens/shortsandoflogicclusterfunction.  
DuringtheexecutionofaPROGSAVEorPROGRESTOREinstruction,the  
IDT5T9890willnotacceptanewprogramminginstruction(read,write,save,  
orrestore). Allnon-programmingJTAGinstructionswillfunctionproperly,but  
theusershouldwaituntilthesaveorrestoreiscompletebeforeissuinganew  
programminginstruction. Thetimeittakesforthesaveandrestoreinstructions  
tocompletedependsonthePLLoscillatorfrequency,FVCO. Therestoretime,  
TRESTORE, andthesavetime, TSAVE, canbecalculatedasfollows:  
TRESTORE = 1.23X109/FVCO  
(mS)  
SAMPLE/PRELOAD  
TSAVE  
9 FVCO + 52  
(mS)  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatascanoperation,totakeasampleofthefunctionaldata  
entering and leaving the IC.  
= 3.09X10 /  
If a new programming instruction is issued before the save or restore  
completes, the new instruction is ignored, and the BYPASS register path  
remainsineffectforshiftingdatafromTDItoTDOduringdataregisterscanning.  
IDCODE  
InorderfortheProgSaveandProgRestoreinstructionstofunctionproperly,  
the IDT5T9890 must not be in power-down mode (PD must be HIGH), and  
the PLL must be enabled (PLL_EN = LOW and Bit 57 = 0).  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containing information regarding the IC manufacturer, device type, and  
versioncode. Accessingthedeviceidentificationregisterdoesnotinterfere  
withtheoperationoftheIC.Also,accesstothedeviceidentificationregister  
shouldbeimmediatelyavailable,viaaTAPdata-scanoperation,afterpower-  
up of the IC or after the TAP has been reset using the optional TRST pin or  
byotherwisemovingtotheTest-Logic-Resetstate.  
Onpower-upoftheIDT5T9890,anautomaticrestoreisperformedtoload  
the EEPROM contents into the internal programming registers. The auto-  
restorewillnotfunctionproperlyifthedeviceisinpower-downmode(PDmust  
beHIGH). Thedevice'sauto-restorefeaturewillfunctionregardlessofthestate  
of the PLL_EN pin or Bit 57. The time it takes for the device to complete the  
auto-restoreisapproximately3ms.  
PROGWRITE  
CLAMP  
The PROGWRITE instruction is for writing the IDT5T9890 configuration  
datatothedevice’svolatileprogrammingregisters. Thisinstructionselectsthe  
programmingregisterpathforshiftingdatafromTDItoTDOduringdataregister  
scanning. The programming register path has 112 registers (14 bytes)  
between TDI and TDO. The 12 configuration data bytes are scanned in  
throughTDIfirst,startingwithBit0. Afterscanninginthelastconfigurationbit,  
Bit95,sixteenadditionalbitsmustbescannedintoplacetheconfigurationdata  
intheproperlocation. Thelastsixteenregistersintheprogrammingpathare  
reserved, read-only registers.  
TheoptionalCLAMPinstructionloadsthecontentsfromtheboundary-scan  
registerontotheoutputsoftheIC,andselectstheone-bitbypassregisterto  
be connected between TDI and TDO. During this instruction, data can be  
shifted through the bypass register from TDI to TDO without affecting the  
conditionoftheICoutputs.  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand  
selectstheone-bitbypassregistertobeconnectedbetweenTDIandTDO.  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
PROGREAD  
ThePROGREADinstructionisforreadingouttheIDT5T9890configuration  
datafromthedevice’svolatileprogrammingregisters. Thisinstructionselects  
theprogrammingregisterpathforshiftingdatafromTDItoTDOduringdata  
registerscanning. Theprogrammingregisterpathhas112registersbetween  
TDI and TDO, and the first bit scanned out through TDO will be Bit 0 of the  
configurationdata.  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
functional mode and selects the one-bit bypass register to be connected  
between TDI and TDO. The BYPASS instruction allows serial data to be  
transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
theIC.  
PROGSAVEandPROGRESTORE(EEPROMOPERATION)  
The PROGSAVE instruction is for copying the IDT5T9890 configuration  
datafromthedevice’svolatileprogrammingregisterstotheEEPROM. This  
instructionselectstheBYPASSregisterpathforshiftingdatafromTDItoTDO  
duringdataregisterscanning.  
34  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
PROGRAMMINGNOTES  
OncetheIDT5T9890hasbeenprogrammedeitherwithaProgWriteorProgRestoreinstruction,thedevicewillattempttoachievephaselockusingthenew  
PLLconfiguration. IfthereisavalifREFandFBinputclockconnectedtothedevice,anditdoesnotachievelock,theusershouldissueaProgReadinstruction  
toconfirmthatthePLLconfigurationdataisvalid.  
Onpower-upandbeforetheautomaticProgRestoreinstructionhascompleted,theinternalprogrammingregisterswillcontainthevalueof'0'forallbits95:0.  
ThePLLwillremainattheminimumfrequencyandwillnotachievephaselockuntilaftertheautomaticrestoreiscompleted. Iftheoutputsareenabledbythe  
nSOEpins,theoutputswilltoggleattheminimumfrequency. IftheoutputsaredisabledbythenSOEpins,andtheOMODEpinissethigh,thenQ[1:0]and  
QFB are stopped HIGH, while QFB is stopped LOW.  
tTCLK  
t4  
t2  
t1  
TCLK  
t3  
TDI/TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
t5  
Standard JTAG Timing  
NOTE:  
t1 = tTCLKLOW  
t2 = tTCLKHIGH  
t3 = tTCLKFALL  
t4 = tTCLKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
JTAG  
ACELECTRICALCHARACTERISTICS  
SYSTEMINTERFACEPARAMETERS  
Symbol  
Parameter  
Min.  
100  
40  
Max.  
Units  
Symbol  
Parameter  
DataOutput(1)  
Min.  
Max.  
Units  
tTCLK  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
ns  
tDO  
20  
ns  
tDOH  
tDS  
DataOutputHold(1)  
DataInput, tRISE =3ns  
DataInput, tFALL =3ns  
0
ns  
tTCLKHIGH  
tTCLKLOW  
tTCLKRISE  
tTCLKFALL  
tRST  
ns  
40  
ns  
10  
ns  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAGReset  
5(1)  
5(1)  
ns  
tDH  
10  
ns  
ns  
NOTE:  
1. 50pF loading on external output signals.  
50  
ns  
tRSR  
JTAG Reset Recovery  
50  
ns  
NOTE:  
1. Guaranteed by design.  
35  
IDT5T9890  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
INDUSTRIALTEMPERATURERANGE  
RECOMMENDEDLANDINGPATTERN  
NL 68 pin  
NOTE: All dimensions are in millimeters.  
36  
IDT5T9890  
INDUSTRIALTEMPERATURERANGE  
EEPROMPROGRAMMABLE2.5VPROGRAMMABLESKEWPLLCLOCKDRIVER  
ORDERINGINFORMATION  
X
XXXXX  
XX  
Package Package  
Device Type  
I
-40°C to +85°C (Industrial)  
NL  
Thermally Enhanced Plastic Very Fine  
Pitch Quad Flat No Lead Package  
VFQFPN - Green  
NLG  
5T9890  
EEPROM Programmable 2.5V Programmable  
Skew PLL Clock Driver  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
for Tech Support:  
clockhelp@idt.com  
37  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY